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Within the framework of macroscopic quantum electrodynamics, the resonant van der Waals potential
experienced by an excited two-level atom near a planar magnetoelectric two-layer system consisting of a slab
of left-handed material and a perfect mirror is studied. It is shown that the disregard of material absorption
leads to unphysical results, with divergent values for the potential away from the surface. Under appropriate
conditions, the setup is found to feature a barrier near the surface which can be employed to levitate particles
or used as a trapping or cooling mechanism. Finally, the problem of spontaneous decay �Kästel and
Fleischhauer, Phys. Rev. A 68, 011804�R� �2005�� is reconsidered. Disregard of absorption is shown to
drastically falsify the dependence on the atomic position of the decay rate.
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I. INTRODUCTION

The first most comprehensive account of the properties of
left-handed materials �LHMs�, i.e., materials simultaneously
exhibiting negative real parts of the electric permittivity and
the magnetic permeability in a certain frequency interval,
was given by Veselago �1�. As he pointed out, a negative
refractive index may be attributed to such materials, leading
to a number of unusual optical phenomena. While natural
materials with a negative real part of the permittivity such as
plasmas �2� or a negative real part of the permeability such
as some ferrites �3� exist, LHMs have not yet been found in
nature. During the last decade, significant progress in the
fabrication of LHMs in laboratories has been achieved.
Metamaterials based on periodic arrays of split ring resona-
tors and a grid of metallic rods have been reported to exhibit
left-handedness in the microwave region �4,5�. More re-
cently, a two-dimensional material consisting of a metal-
insulator-metal waveguide has been experimentally demon-
strated to show a negative refractive index in the optical
region �6�. The effective permittivity and permeability of
such metamaterials, valid on length scales which are suffi-
ciently large in comparison to the elementary building blocks
of the material, are determined either theoretically �7,8� or by
means of reflection experiments �9�.

As already indicated in Ref. �1�, a planar LHM slab with
a negative refractive index has the interesting property of
being able to focus light—an effect which suggests the pos-
sibility of realizing a so-called superlens for subwavelength
imaging with a resolution well beyond the diffraction limit
�7�. The superlens concept has been a subject of intense dis-
cussion �10,11�, and limiting factors such as the finite dimen-
sion of the lens �12� or the influence of absorption have been
studied �13�.

In view of the unusual properties of LHMs, it has also
been of interest to study the modifications of dispersion
forces in the presence of magnetoelectric materials. In par-
ticular, the question of whether a left-handedness may lead to
a repulsive Casimir force between two magnetoelectric
plates has been addressed �14�. From the study of van der
Waals �vdW� forces on single �15� and between two ground-
state atoms �16� in the presence of a planar system exhibiting
magnetoelectric properties, it has been shown that the attrac-
tive or repulsive behavior of the potential is influenced by
the strength of the magnetic properties rather than the left-
handedness. This may be attributed to the fact that in both
cases the atoms are in the ground state, so the vdW forces
represent off-resonant interactions that involve integrals over
the whole frequency range. Hence, frequency intervals where
no left-handedness occurs will inevitably also contribute to
the force and counteract the effect of the left-handedness;
this becomes evident after expressing the force in terms of an
integral over the imaginary frequency axis where both the
permittivity and the permeability are always real and posi-
tive. Similar arguments also apply to the abovementioned
Casimir force between two magnetoelectric plates, where a
repulsive behavior has also been found to primarily require
strong magnetic rather than left-handed properties �14�.

Two strategies might be envisaged to enhance the influ-
ence of left-handed properties on dispersion forces. The first
one would be to consider a material exhibiting left-
handedness over a sufficiently large �real� frequency range,
as recently discussed in the context of the Casimir force �17�;
however, such a requirement is, in general, in conflict with
the causality requirements met by all physical media. Sec-
ond, one may consider excited systems like amplifying me-
dia as also addressed in Ref. �17�. The fundamental differ-
ence between absorbing and amplifying media requires,
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however, a careful reconsideration of the underlying quan-
tum electrodynamics �18�. The situation is more transparent
in the case of an excited atom where the necessary theory of
vdW forces is readily available �19�. Excited atoms give rise
to resonant force components which directly depend on the
frequencies of possible downward transitions. If a material
exhibits left-handed properties at one such frequency, one
may expect these to influence the dispersion forces in a more
significant way.

The spontaneous emission of an excited atom situated in
vacuum in the vicinity of a perfect mirror combined with a
lossless LHM slab is studied in Refs. �20,21�, where it is
noticed that a slab of unity negative refraction �n=−1� has
the peculiar feature of making the space between atom and
mirror appear of zero optical length when the atom-slab dis-
tance is equal to the thickness of the slab. For such positions,
called focal points, complete suppression of the spontaneous
emission for a dipole moment parallel to the surface, and
enhancement of the spontaneous emission rate by a factor of
2 for a dipole moment perpendicular to the surface is re-
ported. More recently, it has been pointed out that in reality
inhibition of spontaneous decay can be weakened due to
nonradiative decay at short distances and due to radiative
decay at large distances �22�.

Motivated by Refs. �20,21�, we shall study the vdW inter-
action of an excited two-level atom with the quantized elec-
tromagnetic field in the presence of a perfect mirror com-
bined with a realistic LHM slab. To conform with causality
and to avoid unphysical consequences, absorption in the
LHM is taken into account from the very beginning. The
paper is organized as follows. In Sec. II, basic formulas for
the vdW potential and the decay rate and for the Green ten-
sor of a planar magnetoelectric multilayer structure are
given. Section III is devoted to analytical and numerical
studies of the vdW potential experienced by an excited two-
level atom in front of a system consisting of a LHM slab
combined with a perfect mirror. Special emphasis is put on
the effects of material absorption. In Sec. IV, the atomic
spontaneous decay rate is discussed and a comparison with
earlier results is made. Some concluding remarks and a sum-
mary are given in Sec. V.

II. BASIC EQUATIONS

Consider the vdW potential of a neutral, unpolarized and
nonmagnetic atomic system �position rA, energy eigenstate
�n�, transition frequencies �nk, electric-dipole transition ma-
trix elements dnk, polarizability ����� in the presence of an
arbitrary magnetoelectric medium of complex permittivity
��r ,�� and permeability ��r ,��. The medium affects the
classical Green tensor G�r ,r� ,�� of the electromagnetic
field, which satisfies the differential equation

�� �
1

��r,��
� � −

�2

c2 ��r,���G�r,r�,�� = ��r − r��

�1�

together with the boundary condition at infinity

G�r,r�,�� → 0 for �r − r�� → � . �2�

The potential can be decomposed into a resonant and an
off-resonant part �see, e.g., Ref. �19��,

Un�rA� = Un
r �rA� + Un

or�rA� , �3�

where

Un
r �rA� = − �0	

k

���nk��nk
2 dnk · Re G�1��rA,rA,�nk� · dkn

�4�

�� is the unit step function� and

Un
or�rA� =

	�0

2




0

�

du u2Tr���iu� · G�1��rA,rA,iu�� , �5�

respectively. Here, G�1��r ,r� ,�� refers to the scattering part
of the Green tensor. For an excited atom, the resonant part of
the potential often dominates and the off-resonant part can be
neglected, as we will do throughout this paper. We shall also
be interested in the rate of the spontaneous decay �n�→ �k� of
the atom, which reads as �see, e.g., Ref. �23��

� = ���nk�
2�nk

2

	�0c2dnk · Im G�rA,rA,�nk� · dnk. �6�

In what follows, we restrict ourselves to a two-level atom
with upper level �1� and lower level �0�. Consider the atom to
be placed in free space in front of a metamaterial slab of
thickness d, permittivity ����, and permeability ���� which
is bounded by a perfectly conducting mirror on the back, as
sketched in Fig. 1. The coordinate system is chosen such that
the z axis is perpendicular to the slab and its origin coincides
with the slab-vacuum interface. The scattering part of the
Green tensor at the relevant atomic transition frequency and
equal positions r=r�=rA in the vacuum region is given by
�15�

G�1��rA,rA,�nk� � G�1��zA,zA,�10�

=
i

8
2 
 d2q
1

�
	

=s,p
e

+e
−r2−

 e2i�zA. �7�

In Eq. �7�, p �s� denotes p �s� polarization. The reflection
coefficients are given by

r2−
s =

r21
s − e2i�1d

1 − r21
s e2i�1d , �8�

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

perfect
mirror

ε1(ω) ≡ ε(ω) vacuum
µ1(ω)≡ µ(ω)

zAd

z
0

0 21

FIG. 1. Atom in front of a slab of an �absorptive� metamaterial
of thickness d which is bounded by a perfect mirror on the back.
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r2−
p =

r21
p + e2i�1d

1 + r21
p e2i�1d , �9�

with

r21
s =

�� − �1

�� + �1
, r21

p =
�� − �1

�� + �1
, �10�

where the wave vectors in the z direction are given by

� =��10
2

c2 − q2, �1 = �k1
2 − q2, �11�

with k1, which always appears in the form of k1
2 in the Green

tensor, Eq. �7�, being given according to

k1
2 =

�10
2

c2 ���10����10� . �12�

The s- and p-polarization unit vectors are defined as

es
� = eq � ez, ep

� =
c

�10
�qez � �eq� �13�

�eq=q /q, q= �q��. The square root in Eq. �11� has to be cho-
sen such that it obeys the physical requirement Im �1�0 for
a passive medium, with this choice being unique for purely
absorbing media �Im � , Im ��0� �8�. The imaginary part of
�1

2 reads Im �1
2= �Re� Im �+Im �Re���10

2 /c2. It is positive
for right-handed materials, which together with the condition
Im �1�0 implies that �1 has to be in the first quadrant of the
complex plane. On the other hand, Im �1

2 is negative for
left-handed materials. This, combined with the condition
Im �1�0, leads to that �1 lies in the second quadrant of the
complex plane �see also Ref. �24��.

Introduction of polar coordinates in the q plane, i.e., eq
= �cos � , sin � ,0�, es

�= �sin � ,−cos � ,0�, ez= �0,0 ,1�, im-
plies the identities

es
+es

− =  sin2 � − sin � cos � 0

− sin � cos � cos2 � 0

0 0 0
� �14�

and, with ep
�= ���c cos � /�10, ��c sin � /�10,qc /�10�,

ep
+ep

− =
c2

�10
2  − �2 cos2 � − �2 sin � cos � − q� cos �

− �2 sin � cos � − �2 sin2 � − q� cos �

q� cos � q� sin � q2 � . �15�

With d2q=q dq d�, the angular integration in Eq. �7� can be
performed on using



0

2


d� es
+es

− = 
1 0 0

0 1 0

0 0 0
� , �16�



0

2


d� ep
+ep

− =

c2

�10
2 − �2 0 0

0 − �2 0

0 0 2q2� , �17�

resulting in

G�1��zA,zA,�10� =
i

8




0

�

dq
q

�
e2i�zA

r2−
s −

�2c2

�10
2 r2−

p 0 0

0 r2−
s −

�2c2

�10
2 r2−

p 0

0 0
2q2c2

�10
2 r2−

p � . �18�

From Eq. �18� it can be seen that an atom with a dipole moment perpendicular to the surface is coupled to the p-polarized
waves only while an atom with a dipole moment parallel to the surface is coupled to both p- and s-polarized waves. It is
instructive to decompose the integral in Eq. �18� into two parts,
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0

�

dq
q

�
e2i�zAf�q� = 


0

�10/c

d� e2i�zAf���10
2

c2 − �2�
+

1

i



0

�

db e−2bzAf���10
2

c2 + b2� .

�19�

The first integral, which contains an oscillating factor, results
from propagating waves, whereas the second one, which
contains an exponentially decaying factor, results from eva-
nescent waves. The first is the more important one away
from the surfaces while the second dominates near the sur-
faces.

III. vdW POTENTIAL

A. Ideal (nonabsorbing) LHM

Let us assume hypothetically an absolutely nonabsorbing
LHM having �=�=−1. In accordance with the remarks be-
low Eq. �13�, we thus set

�1 = �− � for q � �/c ,

� for q � �/c ,
� �20�

and the reflection coefficients �8�–�10� become

r2−
s = − e−2i�d, r2−

p = e−2i�d. �21�

Note that this result does not depend to the sign of the square
root chosen for �1, since for the ideal LHM discussed here,
the reflection coefficients are invariant under a change �1
→−�1. Substitution of these reflection coefficients in Eq.
�18� for the Green tensor leads to

G�1��zA,zA,�10� = −
i

8




0

�10/c

d� e2i��zA−d�1 + �2c2/�10
2 0 0

0 1 + �2c2/�10
2 0

0 0 − 2�1 − c2�2/�10
2 �
�

−
1

8




0

�

db e−2b�zA−d�1 − b2c2/�10
2 0 0

0 1 − b2c2/�10
2 0

0 0 − 2�1 + c2b2/�10
2 �
� . �22�

Equation �22� reveals that for zA�d the Green tensor ex-
actly coincides with that of a configuration in which a per-
fectly conducting mirror is placed at z=d. As can be seen
from an image dipole construction, this is due to the perfect
negative refraction taking place at the vacuum-LHM inter-
face: The image of an electric dipole at zA�d is situated at
zA

� =d− �zA−d�, just as it would be if a perfectly conducting
mirror were placed at z=d �see Fig. 2�. An important differ-
ence to the case of a mirror placed at z=d is the fact that in
the setup considered here the atom can be placed in the re-
gion 0�zA�d. However, it can be seen that, whereas the
first integral in Eq. �22�, which is complex, is always well
behaved, the second �purely real� integral tends to minus
infinity in this region. Thus, we are left with an infinite po-
tential for 0�zA�d, despite the absence of any physical
surface at d. We clearly have a situation where an unphysical
assumption �of absolute zero absorption� gives rise to un-
physical results.

After calculating the two integrals, we obtain for zA�d

Gxx
�1��zA,zA,�10� = Gyy

�1��zA,zA,�10� =
�10e

iz̃

4
cz̃3 �1 − iz̃ − z̃2� ,

�23�

Gzz
�1��zA,zA,�10� =

�10e
iz̃

2
cz̃3 �1 − iz̃� �24�

�z̃=2�10�zA−d� /c�. Note that the off-diagonal components of
the Green tensor are equal to zero. For zA�d, the vdW po-
tential then reads, in accordance with Eqs. �3�–�5� and after
neglecting the off-resonant part,

U�zA� � U1
r�zA� = − �0�10

2 �Re Gxx
�1��d10

� �2 + Re Gzz
�1��d10

� �2�
�25�

�d10
� = (�d10�x , �d10�y ,0), d10

� = (0,0 , �d10�z)�, where

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

zAd

z
0

FIG. 2. Image-dipole construction for the setup depicted in Fig.
1. The dashed line marks the position of a perfect mirror that would
generate the same image.
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Re Gxx
�1� =

�10

4
cz̃3 �cos�z̃� + z̃ sin�z̃� − z̃2 cos�z̃�� �26�

and

Re Gzz
�1� =

�10

2
cz̃3 �cos�z̃� + z̃ sin�z̃�� . �27�

For 0�zA�d, the potential is, as already mentioned, diver-
gent due to the unphysical assumption of vanishing absorp-
tion. Hence, the question may arise whether at least in the
range zA�d the above-given result can be regarded as being
correct in the limit of sufficiently small absorption. An an-
swer to this question can obviously only be given by taking
material absorption into account from the very beginning, as
shall be done in the next section.

B. Real (absorbing) LHM

To allow for material absorption, we return to Eq. �18� for
the scattering part of the Green tensor and set therein
���10�=−1+ i�e, ���10�=−1+ i�m, where for simplicity we
assume ���e=�m. Due to the positive imaginary parts of �
and �, divergent integrals of the type of the second integral
in Eq. �22� can never occur. Note that nonvanishing absorp-
tion helps to regularize the behavior of the integrals, just like
it does in the superlens geometry �7�.

In Fig. 3, the resulting �resonant� vdW potential is plotted
versus the distance from the atom to the LHM slab, for the
two cases of parallel and perpendicular alignment of the
atomic dipole moment with respect to the slab and for dif-
ferent values of absorption. It is seen that the potential fea-
tures an attractive behavior in the nonretarded regime, which
is governed by an inverse power law, while in the retarded
regime an oscillating behavior with alternating sign of the
potential occurs. The nonretarded regime is dominantly de-
termined by evanescent waves �first integral in Eq. �19��
while propagating waves are mainly responsible for the re-
tarded regime �second integral in Eq. �19��. The figure fur-
ther reveals that in the limit of vanishing absorption when �
tends to zero, then the potential approaches the one found,
for zA�d, in the case of absolutely nonabsorbing LHM �Eq.
�25� together with Eqs. �26� and �27��. It is clearly seen that
in practice, unavoidable absorption always prevents the sys-
tem to feature an infinitely negative potential in the interval
0�zA�d, as would be expected from the study of a nonab-
sorbing LHM. We do, however, note that for very small ab-
sorption, the potential starts to become strongly negative
around the region zA�d, where this effect is more noticeable
on the case of perpendicular atomic dipole moment.

A very striking feature of the potential is completely miss-
ing if absorption is disregarded: For a transition dipole mo-
ment parallel to the surface and medium absorption, a barrier
appears in front of the slab at distances zA�10 /c�1 �Fig.
3�a�, 10−4���10−3�. The fact that barriers occur only for
transition dipole moments parallel to the surface but not for
those perpendicular to the surface suggests that s-polarized
waves, which are coupled to the first but not the latter, play
an important role in their formation.

For sufficiently weak absorption ��=10−5 in Fig. 3�a� and
�=10−3 ,10−4 ,10−5 in Fig. 3�b��, an attractive potential starts

to appear at distances of a few wavelengths, somewhat away
from the surface. Atoms located within this range will get
adsorbed to the surface. This behavior is more pronounced
for a transition dipole moment perpendicular to the surface
than for a transition dipole moment parallel to the surface—a
fact that can be related to the coupling respective no cou-
pling of these two dipole moment orientations to s-polarized
waves. By setting the denominators in Eqs. �8� and �9� equal
to zero, one finds that the poles of the generalized reflection
coefficients for p- and s-polarized waves, respectively, are
solutions to the equations

�1

��
= coth�i�1d� , �28�

�1

��
= tanh�i�1d� . �29�

These are the dispersion relations for the surface plasmon
polaritons �25�, which can be strongly excited when the atom
is close to the surface. The real parts of the poles lie in the
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FIG. 3. Resonant vdW potential experienced by an excited two-
level atom in the setup sketched in Fig. 1 for d=5c /�10, ���10�
=���10�=−1+ i�, and dipole moments �a� parallel and �b� perpen-
dicular to the surface. Curves 1-5 refer to various degrees of ab-
sorption �=10−1, 10−3, 10−4, 10−5, and 0, respectively.
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regions covered by the second integral in Eq. �19�. The poles
of the s-�p� polarized waves are in the upper �lower� half of
the complex plane, where for smaller absorption they are
closer to the real axis.

The influence on the vdW potential of the slab thickness
is illustrated in Fig. 4. Note that zero slab thickness means an
atom in front of a perfect mirror. As the slab thickness in-
creases, a potential barrier arises and grows in height for
dipole moments parallel to the surface. However, at some
threshold value of d, the height of the barrier starts to be
reduced, and eventually the barrier disappears when the slab
is too thick. This can be explained as resulting from the
increasing effects of material absorption. It is seen from the
figures that the distance from the surface at which a rela-
tively strong attractive potential can occur increases with the
slab thickness. This is more pronounced for perpendicular
dipole moments rather than for parallel ones—a consequence
of the fact that, as already mentioned, the first is coupled
more efficiently to the evanescent waves.

C. Near-surface limit

Further insight into how the appearance of the barrier de-
pends on the amount of absorption, the orientation of the
atomic dipole moment as well as the thickness of the LHM
slab can be gained by examining the vdW potential in the
near-surface limit. Near the surface, the evanescent waves
dominate the potential �the second integral in Eq. �19��. Let
us consider the �resonant part of the� potential as given by
Eq. �4� together with Eqs. �18� and �19� for very short dis-
tances, zA�10 /c�1, in more detail. The main contribution to
the q integral is from values q��10 /c and q�������10 /c
������10�, �����10��, since the exponential factor �in the
second integral in Eq. �19�� effectively limits the integration
interval to values q�zA. Hence, with

� � iq, �1 � iq , �30�

the potential in the short-distance regime reads

U�zA� = −
�10

2 �0

8




0

�

dq e−2qzA��Re r2−
s +

q2c2

�10
2 Re r2−

p ��d10
� �2

+
2q2c2

�10
2 Re r2−

p �d10
� �2� , �31�

where

Re r2−
p = �����2 − 1��1 + e−4qd� + ��� − 1�2 + �� + 1�2�e−2qd�

��� + 1 + �� − 1�e−2qd�−2, �32�

Re r2−
s = �����2 − 1��1 + e−4qd� − ��� − 1�2 + �� + 1�2�e−2qd�

��� + 1 − �� − 1�e−2qd�−2. �33�

When

� � − 1 and � � − 1, �34�

then the first terms in Eqs. �32� and �33� approximately van-
ish; thus,

Re r2−
p �

��� − 1�2 + �� + 1�2�e−2qd

�� + 1 + �� − 1�e−2qd�2
, �35�

Re r2−
s � −

��� − 1�2 + �� + 1�2�e−2qd

�� + 1 − �� − 1�e−2qd�2
, �36�

where the opposite signs imply that the two polarizations
give competing contributions to the potential. Namely, the
p-polarized waves give rise to attractive contributions to the
potential while the s-polarized waves lead to repulsive ones.
Very close to the surface, due to the presence of the q2 factor
�see Eq. �31��, the contribution to the potential of the
p-polarized waves is proportional to 1 /zA

3 while the contri-
bution of the s-polarized waves is proportional to 1 /zA. The
contribution of the p-polarized waves hence dominates, re-
sulting in an attractive potential �also see Figs. 3 and 4�. At
some distance from the surface, the contribution of the
s-polarized waves can dominate under appropriate condi-
tions, which then leads to the appearance of a potential bar-
rier. This also explains the absence of the barrier in the case
where the dipole moment is perpendicular to the surface.
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FIG. 4. Resonant vdW potential experienced by an excited atom
in the setup sketched in Fig. 1 for ���10�=���10�=−1+ i10−3, and
�a� dipole moments parallel to the surface and �b� dipole moments
perpendicular to the surface. Curves 1-5 refer to various thicknesses
of the slab d�10 /c=0, 3, 5, 7, and 10, respectively.
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Inspection of Eqs. �32� and �33� reveals that Re r2−
p is

positive for all ����1 while Re r2−
s is negative for all ���

�1. Since the height of the potential barrier is determined by
the magnitude of �Re r2−

s �, left-handedness is not necessarily
required to realize a potential barrier in general. We note here
yet another situation where, in the absence of the lefthand-
edness property, a high potential barrier might appear. For
this, it is convenient to consider a more general setup where
the spatial area 2 in Fig. 1 is filled with a medium of permit-
tivity �2��� and permeability �2���. Then, apart from a scal-
ing factor due to local-field correction, 9�2

2��10� / �2�2��10�
+1�2 �26�, the vdW potential retains the form of Eq. �31�,
with the reflection coefficients �32� and �33� being modified
as follows: ���2−1 ����2−1� is replaced by ���2− ��2�2 ����2
− ��2�2� and ��1 ���1� is replaced by ���2 ����2�. If
we choose ���� ��2� and ���� ��2�, the first terms, rather than
the second terms, in the modified equations �32� and �33�
dominate, but it remains that p-�s-� polarized waves give rise
to an attractive �repulsive� potential. In this scenario, the ap-
pearance and the height of the barrier are determined by the
difference between the absolute values of the permittivity on
the two sides of the interface and the accordant difference
between the absolute values of the permeability. Negative
�real parts of the� permittivities and/or permeabilities are al-
lowed but are not a prerequisite. The presence of a potential
barrier in this case is essentially a surface effect, the finite
thickness of the slab and the perfect mirror playing only
secondary roles.

Let us return to the influence of the thickness of the LHM
slab. As can be inferred from Eq. �33�, the magnitude of
�Re r2−

s � is about 1 for d→0 �slab absent�, and is typically
determined by a e2qd term otherwise. Therefore, the presence
of the slab is crucial for the appearance of a potential barrier.
When the slab is very thick, the influence of the mirror van-
ishes e−2qd→0 �cf. Eqs. �32� and �33��, and it is not difficult
to verify that Eq. �31� reproduces the result for the resonant
part of the potential of an excited atom in front of an inter-
face �see, e.g., Ref. �19��, which, in the nonretarded limit,
reads as

U�zA� = −
C

zA
3

���2 − 1

�� + 1�2
�37�

�C= ��d10
� �2+2�d10

� �2� / �32
�0��. Clearly, when the slab is too
thick, then the atom only experiences the vacuum-slab inter-
face. Note that a repulsive behavior of the potential is also
possible in the case of nonmagnetic materials provided that
����1. It is particularly apparent that �U�zA�� cannot become
infinite as zA→0, because the underlying macroscopic quan-
tum electrodynamics is valid only for atom-surface distances
much larger than the average distances between the constitu-
ents of the media involved.

Although potential barriers in planar magnetodielectric
multilayer structures have also been found in the case of
ground-state atoms �15�, it is worth noting that the barriers
are generally much more significant in the case of excited
atoms. For instance, the peaks of the potentials in the nu-
merical examples given here are about six orders of magni-
tude larger than those given in Ref. �15�. This is because the

potential in the case of ground-state atoms is an integral over
the whole frequency range, for most of which the material
does not exhibit strong electric or magnetic responses. The
excited atoms essentially allows one to pick out a frequency
of choice.

IV. SPONTANEOUS DECAY RATE REVISITED

Whereas the �resonant� vdW potential depends on the real
part of the Green tensor, the rate of spontaneous decay is
determined by its imaginary part. From Eq. �22� for the
Green tensor of the absolutely nonabsorbing setup consid-
ered in Sec. III A, it can be seen that the contributions from
evanescent waves, which give rise to divergences in the re-
gion zA�d, are purely real and thus do not contribute to the
decay rate. The decay rate is thus expressed in terms of
traveling-wave contributions which are finite for arbitrary zA.
However, baring in mind the findings for the vdW potential,
one should carefully examine whether these idealized results
valid for nonabsorbing material are an appropriate approxi-
mation to the reality.

To do so, we note that from Eq. �6�, the decay rate can be
rewritten as

�

�0
= 1 +

6
c

�10�d10�2
Im�Gxx

�1��d10
� �2 + Gzz

�1��d10
� �2� , �38�

where

�0 =
�d10�2�10

3

3
	�0c3 �39�

is the decay rate of the atom in free space. Let us first assume
an absolutely nonabsorbing LHM, having �=�=−1 again.
From Eqs. �23� and �24�, we obtain

Im Gxx
�1� =

�10

4
cz̃3 �sin�z̃� − z̃ cos�z̃� − z̃2 sin�z̃�� , �40�

Im Gzz
�1� =

�10

2
cz̃3 �sin�z̃� − z̃ cos�z̃�� �41�

�z̃=2�10�zA−d� /c�. Equation �38�, together with Eqs. �40�
and �41�, which mathematically holds for any atom-surface
distance, is studied in Ref. �20�. It is not difficult to see that
Im Gxx

�1� and Im Gzz
�1� are even functions of z̃, and are finite at

the surface. The position zA=d, termed the focus point in
Ref. �20�, stands out in that the optical path for a ray of light
for a round trip to the mirror and back is zero. For zA=d, Eq.
�38�, together with Eqs. �40� and �41�, implies complete in-
hibition of spontaneous decay ��=0� for a dipole moment
oriented parallel to the surface and enhancement of sponta-
neous decay ��=2�0� for dipole moment oriented perpen-
dicular to the surface �20�.

It is worth noting that absorption can drastically change
this behavior. Inclusion in the calculations of the effect of
material absorption requires the calculations to be performed
on the basis of the exact �scattering part of the� Green tensor
as given in Eq. �18� together with Eqs. �8�–�10�. Numerical
examples are given in Fig. 5, where the case of zero absorp-
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tion in accordance with Eqs. �38�–�41� is also shown to fa-
cilitate comparison. We see that, whereas in the case of
strictly zero absorption the decay rate as a function of the
atomic position zA�0 is symmetric with respect to the posi-
tion zA=d, any absorption destroys this symmetry. As a re-
sult, large enhancement of the spontaneous decay can be
observed when the atom is near the surface, which is obvi-
ously due to the absorption-assisted atomic coupling with
evanescent waves—an effect already known for ordinary
materials �see, e.g., Ref. �27�� which features qualitatively
new distance terms �cf. Eq. �45��. This result is consistent
with those reported in Ref. �22�. In particular for distances
zA�d, Eq. �38�, together with Eqs. �40� and �41�, cannot be
regarded as an acceptable approximation to the spontaneous
decay rate in the case of small absorption—a result which
corresponds, for zA�d, to the result found in the case of the
vdW potential.

To further elucidate the influence of the evanescent
waves, let us examine the near-surface limit of the rate of
spontaneous decay. By using approximations similar to those

in Sec. III C, it can be shown that for zA�10 /c�1

�

�0
= 1 +

3c

4�10�d10�2



0

�

dq e−2qzA��Im r2−
s +

q2c2

�10
2 Im r2−

p �
��d10

� �2 +
2q2c2

�10
2 Im r2−

p �d10
� �2� , �42�

where

Im r2−
s =

2 Im ��1 − e−4qd�
�� + 1 − �� − 1�e−2qd�2

, �43�

Im r2−
p =

2 Im ��1 − e−4qd�
�� + 1 − �� − 1�e−2qd�2

. �44�

Note that in this case only evanescent waves contribute to
the rate. Unlike the real parts �cf. Eqs. �32� and �33��, the
imaginary parts of r2−

s and r2−
p have the same �positive� sign.

The two polarizations therefore contribute constructively to
the spontaneous decay rate. If the slab becomes sufficiently
thick, Eq. �42� reduces, in leading order, to

�

�0
= 1 +

D

zA
3

Im �

�� + 1�2
�45�

�D=3c3��d10
� �2+2�d10

� �2� / �8�10
3 �d10�2��, i.e., the spontaneous

rate for an atom in front of an interface. Equation �45� shows
that the decay rate takes on large values as zA→0, which is a
consequence of direct energy transfer from the atom to the
constituents of the medium �see, e.g., Ref. �27��.

It is well known that left-handedness of the slab is of
course not a necessary condition for, say, inhibition of spon-
taneous decay, as illustrated in Fig. 6. The figure shows that
almost complete inhibition of spontaneous decay is possible
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FIG. 5. Atom-surface distance dependence of the decay rate of
an excited atom in the setup in Fig. 1 for �=�=−1+ i�, d
=5c /�10, and dipole moments �a� parallel and �b� perpendicular to
the surface. Curves 1-5 refer to various degrees of absorption �
=10−1, 10−3, 10−4, 10−5, and 0, respectively.
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FIG. 6. Atom-surface distance dependence of the decay rate of
an excited atom in the setup in Fig. 1 for d=5c /�10, and �1� �=1,
�=−1+ i10−3, and atomic dipole moment perpendicular to the sur-
face; �2� �=−1+ i10−3, �=1, and atomic dipole moment perpen-
dicular to the surface; �3� �=1, �=−1+ i10−3, and atomic dipole
moment parallel to the surface.
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for both parallel and perpendicular orientations of the dipole
moment with respect to the surface of a slab that is not left-
handed.

V. CONCLUDING REMARKS AND SUMMARY

The macroscopic theory employed in this paper breaks
down on length scales that are comparable to the size of the
elementary building blocks of the metamaterial employed. In
order to observe the predicted effects, one thus has to ensure
that both the atomic transition wavelength and the atom-
surface separation are larger than this length scale. With cur-
rently available metamaterials, this can most readily be
achieved with polar molecules whose rotational and vibra-
tional transition wavelengths can be very large. For example,
the bulk metamaterial reported in Ref. �9� exhibits negative
refraction with Re n�−1.6 at a frequency of 1.03 THz; it
consists of unit cells with lattice constant a�6�10−5 m.
The frequency of the first rotational transition of an NH mol-
ecule �about 1 THz �28�� falls within this frequency window,
with the associated wavelength 3�10−4 m being sufficiently
large in comparison with the lattice constant. One could ex-
pect the macroscopic results to be valid down to molecule-
surface separations of zA=10−4 m, which corresponds to
zA�nk /c�2. Smaller values of zA�nk /c can be reached by
using molecules with larger transition wavelengths.

Let us briefly comment on the strength of the force
F�zA�=−�U�zA� /�zA associated with a potential of the type
shown in Figs. 3 and 4. In this context, it may be convenient
to express the potential and the force in terms of the sponta-
neous decay rate �. From Eqs. �3�, �4�, and �39�, it follows
that U�zA�=−3 /2	�0�10Re Gxx

�1��zA ,zA ,�10�, where a dipole
moment parallel to the surface has been assumed. Consider
an excited hydrogenlike atom with a transition having spon-
taneous decay rate �0�6�108 s−1 and wavelength �10
�10−7 m �29�. If the atom is at rest relative to the slab, the
force that can counter the gravitation force and so levitate the
atom has to be larger than mg=3�10−26 N. This can be
achieved easily. For example, the peak value of the force
corresponding to the potential barrier represented by the dot-
ted line in Fig. 3�a� is 10−16 N.

Consider now a situation where one has a sample of a
dilute gas of excited atoms at some temperature. Take again
hydrogenlike atoms with the same excited level as above. At
a temperature of T=10 K, the kinetic energy of each particle
is E=3kT /2�2�10−22 J. A LHM slab of thickness d�10 /c
=9 and permittivity and permeability �=�=−1+ i2�10−6

then provides a potential barrier of a height of U=3
�10−22 J. This potential barrier is high enough to levitate the
sample of the dilute atomic gas. With an appropriate arrange-
ment, it clearly can be employed as a trapping mechanism.
One may also think of an �evaporative� cooling apparatus.
The kinetic energy is an averaged quantity. Some atoms

among the gas sample can have kinetic energy exceeding the
average and higher than the potential barrier. These can over-
come the barrier and get adsorbed by the walls, in so doing
lowering the average kinetic energy of the remaining �a little
more diluted� gas sample. It should be pointed out that in the
examples metamaterials with very small absorption are as-
sumed, which are still beyond the reach of today’s experi-
mental techniques. Furthermore, since excited atoms are con-
sidered, the effects predicted hold only for time periods short
compared to the atomic lifetime. A more refined theory
should include the broadening and shifting of the atomic
transition frequency.

In summary, we have studied the resonant vdW potential
experienced by an excited two-level atom in front of a
metamaterial slab backed by a perfect mirror, with emphasis
on a LHM slab with unity negative real parts of both the
permittivity and the permeability, and an atom located in
vacuum. We have shown that material absorption has to be
taken into account in order to avoid divergent values of the
potential when the atom-surface separation becomes smaller
than the slab thickness. Only for values of the atom-surface
separation that are larger than the slab thickness does disre-
gard of absorption lead to reasonable results provided that
absorption is sufficiently small.

Further, we have shown that the setup can be used to form
potential barriers for excited atoms—barriers that are typi-
cally of several orders of magnitude higher than those ob-
served for ground-state atoms. In particular, they are signifi-
cant enough to suggest potential use in quantum levitation,
trapping, or cooling of atoms. The barriers are results of
competing contributions from s- and p-polarized waves and,
thus, are peculiar to atoms with dipole moments parallel to
the surface. For random atomic dipole moment orientations,
a corresponding averaging has to be applied, which may lead
to a reduction of the barrier height.

Finally, we have revisited the effect of the LHM slab on
the spontaneous decay of the excited atom. We have shown
that already an arbitrarily small but finite amount of material
absorption can drastically change the decay compared to that
predicted when absorption is ignored. In particular near the
surface, absorption gives rise to a noticeable enhancement of
the decay. As a prospective task, the theory could be ex-
panded to other systems such as spherically or cylindrically
symmetric ones, amplifying instead of absorbing media
could be assumed, and the vdW interaction between excited
atoms near a macroscopic body of metamaterial could be
investigated.
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