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The macroscopic quantum theory of the electromagnetic field in a dielectric medium interacting with a dense
collection of embedded two-level atoms fails to reproduce a result that is obtained from an application of the
classical Lorentz local-field condition. Specifically, macroscopic quantum electrodynamics predicts that the
Lorentz redshift of the resonance frequency of the atoms will be enhanced by a factor of the refractive index
n of the host medium. However, an enhancement factor of �n2+2� /3 is derived using the Bloembergen
procedure in which the classical Lorentz local-field condition is applied to the optical Bloch equations. Both
derivations are short and uncomplicated and are based on well-established physical theories, yet lead to
contradictory results. Microscopic quantum electrodynamics confirms the classical local-field-based results.
Then the application of macroscopic quantum electrodynamic theory to embedded atoms is proved false by a
specific example in which both the correspondence principle and microscopic theory of quantum electrody-
namics are violated.
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I. INTRODUCTION

The effect of a dielectric host medium on the
spontaneous-emission rate of a two-level atom remains an
interesting and challenging problem in quantum optics with
an importance that befits a rigorous test of our understanding
of the interaction of light with matter. The essential charac-
teristic of the problem is its multiscale nature with the atom
being a creature of microscopic quantum electrodynamics
and the dielectric manifesting in the realm of classical con-
tinuum electrodynamics. In principle, it is possible to repre-
sent both the atom and dielectric microscopically, although,
in practice, the spontaneous-emission rate is calculated using
a macroscopic quantum electrodynamic theory �1–6� in
which the continuous dielectric medium is incorporated into
a medium-assisted electromagnetic field. While the dielectric
renormalization of the spontaneous-emission rate of an em-
bedded atom generates considerable interest, a mere handful
of papers discuss the effect of a dielectric on the Lorentz
redshift of the resonance frequency of two-level atoms.
Knoester and Mukamel �7� used a Hopfield �8� polariton
model of macroscopic quantum electrodynamics and found
that the Lorentz redshift is enhanced by a factor of the re-
fractive index n compared to the vacuum value. Crenshaw
and Bowden �9� derived the enhancement factor �n2+2� /3
using the Bloembergen �10� procedure in which the classical
Lorentz local-field condition is applied to the optical Bloch
equations. The two procedures also produce different values
for the renormalization of the field �Rabi frequency� that
drives the dynamics of atoms in a dielectric.

In this paper, we derive the generalized optical Bloch
equations for a dense collection of two-level atoms in a di-
electric host material using, first, the Bloembergen procedure
based on the classical Lorentz local-field condition and, sec-
ond, Ginzburg macroscopic quantum electrodynamics. The
derivations are simple and direct and based on well-
established physical theories, yet produce contradictory re-
sults for �i� the Lorentz redshift of the resonance frequency
of two-level atoms densely embedded in the dielectric, and

�ii� the renormalization of the field that drives the dynamics
of the embedded atoms. The microscopic quantum electro-
dynamic procedure described by Crenshaw and Bowden �11�
confirms the Bloembergen-based results. Then, we must con-
clude that the macroscopic quantum electrodynamic theory
applied to dielectrically embedded atoms violates both the
correspondence principle and microscopic quantum electro-
dynamics.

II. DIELECTRIC LOCAL-FIELD EFFECTS

In the view of Lorentz, classical continuum electrodynam-
ics is better expressed in terms of an atomistic model of
discrete particles embedded in the vacuum that interact with
the microscopic electromagnetic field at the point of the par-
ticle �12,13�. The local field that acts on that particle,

EL = E +
4�

3
P , �2.1�

is comprised of the macroscopic Maxwell field E and the
reaction field of all other particles, expressed in terms of the
macroscopic polarization P. For a linearly polarizable mate-
rial, the polarization P= pNdEL is the product of the micro-
scopic polarizability p, the dipole number density Nd, and the
local field. Using the Lorentz local-field condition �2.1� to
eliminate the microscopic local field produces the Clausius-
Mossotti-Lorentz-Lorenz relation

4�

3
pNd =

� − 1

� + 2
�2.2�

between the polarizability and the macroscopic dielectric
constant �=1+4�P /E.

The local-field principle also applies to nonlinear media.
Bloembergen �10� investigated nonlinear optics in the pres-
ence of a linear host medium and found that a local-field
dielectric enhancement factor of
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� =
n2 + 2

3
�2.3�

accompanies each appearance of a macroscopic field in the
nonlinear susceptibility. In our notation, �=n2 for a dielectric
and � refers to the specific quantity in the preceding equation
and not to any other constant or variable representing a local-
field factor. Bowden and co-workers �14–16� predicted in-
trinsic optical bistability in a dense collection of vacuum-
embedded two-level atoms due to an inversion-dependent
local-field shift of the resonance frequency. Later work �9�
reported the effect of embedding the dense two-level systems
in a host dielectric. The dynamics of the two-level systems
are described by the optical Bloch equations �17�. Building
on Bloembergen’s work �10�, Bowden and Dowling �18�
showed that the field that drives the atoms is the local field
�2.1�. With that substitution, one obtains the generalized op-
tical Bloch equations �18�,

�R21

�t
= i�� − �0�R21 −

i�

2�
�E +

4�

3
P�W − ��R21,

�2.4a�

�W

�t
= −

i�

�
��E* +

4�

3
P*�R21 − �E +

4�

3
P�R21

* �
− �	�W − Weq� . �2.4b�

Here, fields are represented in the plane-wave limit by enve-
lope functions such that P= 1

2 �Pe−i�t+c.c.�, E= 1
2 �Ee−i�t

+c.c.�, and EL= 1
2 �ELe−i�t+c.c.�. The macroscopic spatially

averaged atomic variables in a rotating frame of reference
are R21= 
�21e

i�t�sp, R12= 
�12e
−i�t�sp, and W=R22−R11

= 
�22�sp− 
�11�sp, where 
¯�sp corresponds to a spatial aver-
age over a volume of the order of a resonance wavelength
cubed and the �ij are the density-matrix elements for a two-
level system with a lower state �1� and an upper state �2�.
Also, � is the matrix element of the transition dipole mo-
ment, assumed real, �� is a phenomenological dipole
dephasing rate, �	 is a phenomenological population relax-
ation rate, and Weq is the population difference at equilib-
rium.

For a linearly polarizable material, the polarization is P
= pNdEL. For atoms embedded in a linearly polarizable ma-
terial, the polarization is the sum of the linear and nonlinear
components. Substituting the local field �2.1� into the linear
component, we have the polarization envelope

P = pNd�E +
4�

3
P� + 2N�R21,

where N is the number density of atoms. Collecting terms in
P and using the Clausius-Mossotti-Lorentz-Lorenz relation
�2.2� yields

P =
� − 1

4�
E +

� + 2

3
2N�R21. �2.5�

Substituting the polarization envelope �2.5� into the general-
ized Bloch equations �2.4� produces

�R21

�t
= i�� − �0 −

4�

3�
N�2�W�R21 −

i�

2�
�EW − ��R21,

�2.6a�

�W

�t
= −

i

�
���E*R21 − ��ER21

* � − �	�W − Weq� .

�2.6b�

For now, we assume that � is real. Then, the local-field effect
of the dielectric is simply an enhancement of the driving
field E, or Rabi frequency �E /�, and the inversion-
dependent Lorentz redshift by � �9�. The decay rates remain
phenomenological.

The optical Bloch equations �17� are the basic semiclas-
sical equations of motion for an isolated two-level system in
the vacuum. The two-level system interacts with its environ-
ment through the local field. Using the classical Lorentz
local-field condition shows the effects of the environment to
be �i� a Bowden-Lorentz redshift of the resonance frequency
by �4� /3��N�2W due to nearby atoms, �ii� a Bloembergen
enhancement of the field E by � due to the linear host, and
�iii� a Bloembergen-type enhancement of the Bowden-
Lorentz redshift by � due to the linear host. Further consid-
eration of the generalized Bloch equations, derived using the
classical Lorentz local-field condition, is suspended until
quantum electrodynamic equations of motion have been de-
rived. At that time, Eq. �2.6� will serve as the basis for
quantum-classical correspondence.

III. MACROSCOPIC QUANTUM ELECTRODYNAMICS

Quantum electrodynamics can be viewed as the quantized
version of Lorentzian electrodynamics in which discrete
quantum particles interact with the vacuum field modes.
When applied to dielectrics, the practice has been to create a
macroscopic version of quantum electrodynamics along the
lines of a quantized version of continuum electrodynamics.
The macroscopic theory can be derived either by quantizing
the classical Maxwell fields or by applying a continuum ap-
proximation to the microscopic quantum electrodynamic
Hamiltonian. Ginzburg �1� pioneered the procedure of ca-
nonical quantization of the field in a dielectric and applied it
to Cherenkov radiation. The macroscopic quantization pro-
cedure was limited to dielectrics with negligible dispersion
and absorption. Jauch and Watson �2,19� continued Gin-
zburg’s work and extended macroscopic quantization to dis-
persive dielectrics �5,20�, while other researchers have
treated absorption �21,22� and nonlinear dielectrics �23,24�.
Knoester and Mukamel �7� and Huttner, Baumberg, and Bar-
nett �25� start with the fundamental microscopic Hamiltonian
and transform from coordinate space to wave-number space
in the continuum approximation to derive the macroscopic
Hopfield Hamiltonian �26�. Recent work �27–31� includes
macroscopic quantization of fields in magnetodielectric me-
dia, including left-handed negative-index materials.

The spontaneous-emission rate of an atom in a dielectric
is readily derived by the macroscopic quantum electrody-
namic theory. In 1976, Nienhuis and Alkemade �6� used a
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macroscopic version of Fermi’s golden rule to derive the
dielectrically enhanced spontaneous-emission rate with the
macroscopic Ginzburg fields. Huttner, Barnett, and Loudon
�32�, among others, have combined the macroscopic Fano-
Hopfield �8,33� theory with Fermi’s golden rule to derive the
dielectric renormalization of the spontaneous-emission rate
of an impurity atom, while other studies begin with macro-
scopic Green’s functions �34� or auxiliary fields �35�. For the
most part, the collective attention is focused on the dielectric
renormalization of the spontaneous-emission rate. Knoester
and Mukamel �7� obtained the dielectric effect on both the
Lorentz redshift and the spontaneous decay rate by deriving
operator equations of motion from the Hopfield model. In
this section, we derive equations of motion using Weisskopf-
Wigner theory applied to the macroscopic Hamiltonian in
terms of the Ginzburg field operators �36�. A term-by-term
comparison with the generalized Bloch equations that were
derived in the preceding section under the Lorentz local-field
condition exposes an extraordinary degree of disagreement
between two known and accepted treatments of the effect of
a dielectric host on the electrodynamics of two-level atoms.

The principal product of the macroscopic quantization
theory is the medium-assisted field operator

Ē =
i�

n

l�

�2��l

�V
�āle

ikl·r − H.c.�êkl�
, �3.1�

where āl
† and āl are the macroscopic creation and destruction

operators for the field modes and �l is the frequency of the
field in the mode l. Also, V is the quantization volume, êkl�

is
a unit vector in the direction of the polarization, and � de-
notes the state of polarization. The spontaneous-emission
rate of an impurity atom in a dielectric can then be obtained
by applying Fermi’s golden rule,

	 =
2�

�
�
f �Hint�i��2D , �3.2�

to the effective interaction Hamiltonian Hint=−�a · Ē, where i
labels the initial state and f denotes all available final states.
As is typically calculated, the dielectric renormalization of
the vacuum spontaneous-emission rate of an atom is found to
be n �4–6� due to the dielectric renormalization of the elec-
tric field operator �3.1� by 1 /n, which is squared, and the
D=n3 density-of-states factor.

Local-field effects of a dielectric are suppressed in the
macroscopic quantization procedure, and such local-field ef-
fects must be introduced phenomenologically. The paradigm
that emerged from the propagation studies of Hopf and
Scully �37� and Bloembergen’s work �10� in nonlinear optics
is that the effect of a dielectric host is to multiply each oc-
currence of the dipole moment of a two-level atom by a
local-field enhancement factor �3,7,17�. Using the Lorentz
virtual cavity model of the local field, the spontaneous-
emission rate

	 = n�24�b
3��b�2

3c3�
= n�n2 + 2

3
�2

	0 �3.3�

for atoms in a dielectric scales as n5 for large n. For an atom
in a real cavity, the local-field enhancement factor is based
on the Onsager model, and the modified spontaneous-
emission rate

	 = n� 3n2

2n2 + 1
�2

	0 �3.4�

scales as n. A study of local-field effects by de Vries and
Lagendijk �38� found that the Lorentz virtual-cavity model is
appropriate if the atom goes into a crystal substitutionally but
that the Onsager real-cavity model should be used for inter-
stitial impurities.

The macroscopic quantum electrodynamic theory can be
used to derive additional consequences of the dielectric host
for two-level atoms. Taking the field in a coherent state, the
effective Hamiltonian is

Heff = 
js

��a

2

3

j + �
l�

�lāl
†āl

−
i�

n

js


l�

�gl
j
+

j āle
ikl·rj − g

l

j*āl
†
−

j e−ikl·rj�

−
i�a

2 
j

�
+
j Ēe−i��pt−kp·rj� − Ē*
−

j ei��pt−kp·rj�� .

�3.5�

For species a, 
3
j is the inversion operator and 
�

j are the
raising and lowering operators for the jth atom, gl

j

= �2��l /�V�1/2�a�x̂ j · êkl�
� is the coupling between the atom

at position r j and the radiation field, x̂ j is a unit vector in the
direction of the dipole moment at r j, �a is the transition
frequency, and �a is the matrix element of the transition
dipole moment.

Except for coefficients of 1 /n, and macroscopic field-
mode operators, the effective Hamiltonian is the same as the
microscopic Hamiltonian for identical two-level atoms in the
vacuum. Equations of motion can then be derived in the
same manner, which is the primary reason for adopting the
macroscopic formalism. The formal integral of the Heisen-
berg equation of motion for the field-mode operators is used
to eliminate these operators from the remaining Heisenberg
equations of motion. One obtains

d
−
j

dt
= − i�a
−

j �t� +
�a

2�

3

j �t�Ē�t�e−i��pt−kp·rj�

+
1

n

l�

gl
j
3

j �t�āl�0�e−i��lt−kl·rj�

+
1

n2
l�

gl
j
3

j �t��
0

t

dt�e−i�l�t−t�� 
i�j,s

g
l

i*
−
i �t��eikl·�rj−ri�

+
1

n2
l�

gl
j
3

j �t��
0

t

dt�e−i�l�t−t��g
l

j*
−
j �t�� �3.6�
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and a similar equation of motion for the inversion operator.
The procedure to evaluate these terms for two-level atoms in
the vacuum is generally known and will be considered in
detail in the next section. For now it is sufficient to note that
the only differences from the vacuum case are the coeffi-
cients of powers of n and the n3 renormalization of the den-
sity of states in a dielectric in which the sum over modes is
evaluated as


l

� � → n3� L

2�c
�3�

0

�

d�l�l
2� d� � �3.7�

in the mode continuum limit. Transforming to a rotating
frame of reference and performing a local spatial average,
one obtains the Bloch-like equations of motion

�R21

�t
= i��p − �a −

4�

3�
N�a

2nW�R21 −
i�a

2�
ĒW − n

	0

2
R21,

�3.8a�

�W

�t
= −

i

�
��aĒ*R21 − �aĒR21

* � − n	0�W + 1� , �3.8b�

where W= 

3�sp and R21= 
−i
−�sp.
Equations �3.8� are the equations of motion for a two-

level atom in a dielectric host medium that are derived using
macroscopic quantum electrodynamics. The effects of the
host appear as an enhancement of the decay rates and the
Bowden-Lorentz redshift by a factor of the refractive index
n, when compared to the vacuum n=1 case. However, the
equations of motion derived using the classical Lorentz
local-field condition, Eqs. �2.6�, display an enhancement of
both the Bowden-Lorentz redshift and the field by a factor of
�.

The fact that local-field effects are suppressed in the mac-
roscopic theory is well known. The accepted practice
�3,7,17� is to phenomenologically associate a local-field fac-
tor of � with each occurrence of the dipole moment � based
on the propagation studies of Hopf and Scully �37� and
Bloembergen’s work �10� in nonlinear optics. In this case,
Eqs. �3.8� become

�R21

�t
= i��p − �a −

4�

3�
N�a

2n�2W�R21 −
i�a

2�
�ĒW

− n�2	0

2
R21, �3.9a�

�W

�t
= −

i

�
��a�Ē*R21 − �a�ĒR21

* � − n�2	0�W + 1� .

�3.9b�

The ad hoc local-field correction gives the Bloembergen en-
hancement of the field that was derived classically in Eq.
�2.6�, although the redshift is overcorrected. More signifi-
cantly, the Bowden-Lorentz redshift retains the extraneous
factor of the refractive index due to the macroscopically
quantized fields. Then the equations of motion for two-level
atoms in a dielectric host, Eqs. �3.8� and �3.9�, that were
derived using the macroscopically quantized fields are incon-

sistent with the generalized Bloch equations �2.6� of the pre-
ceding section, and the application of quantized macroscopic
fields to the electrodynamics of two-level atoms is contrain-
dicated by classical Lorentz local-field theory.

IV. MICROSCOPIC QUANTUM ELECTRODYNAMICS

In the preceding two sections, we derived generalized
Bloch equations of motion for two-level atoms in a dielectric
host by two well-known methods and obtained contradictory
results. The most fundamental theoretical approach is to rep-
resent both the atoms and the dielectric microscopically
�7,23,25,32,39–44� and derive equations of motion from first
principles. We show that the results of microscopic quantum
electrodynamics affirm the Lorentz local-field theory with
respect to the field renormalization and the Lorentz redshift.
The macroscopic quantum electrodynamic theory produces
different results for these effects and is therefore not valid.

A dielectric host containing one or more two-level atoms
is modeled quantum electromagnetically as a mixture of two
species of atoms, a and b, embedded in the vacuum. To
emphasize the symmetry of the local-field interaction, both
species of atoms are initially treated as two-level systems.
Species b is later taken in the harmonic-oscillator limit that is
associated with a relatively large detuning from resonance.
Then, the total Hamiltonian is comprised of the Hamiltonians
for the free atoms, the free-space quantized radiation field,
and the interaction of the two-level systems with the free-
space quantized electromagnetic field. The multipolar and
minimal-coupling Hamiltonians are related by a canonical
transformation and either can be used. However, due to the
canonical transformation, the circumstances of the rotating-
wave approximation �RWA� are different for the two Hamil-
tonians �26�. In the typical derivation of the dielectric sus-
ceptibility from the minimal-coupling Hamiltonian, the RWA
is invoked implicitly by replacing polariton eigenenergies
with photon energies �7,8,33�. We take the direct route and
use the multipolar Hamiltonian in the RWA. Using a plane-
wave expansion of the electromagnetic field

E = i�
l�

�2��l

�V
�ale

ikl·rj − H.c.�êkl�
, �4.1�

the multipolar RWA Hamiltonian is �11,45�

H = 
js

��a

2

3

j + 
ns

��b

2
�3

n + 
l�

��lal
†al

− i�
js


l�

�gl
j
+

j ale
ikl·rj − g

l

j*al
†
−

j e−ikl·rj�

− i�
ns


l�

�hl
n�+

nale
ikl·rn − h

l

n*al
†�−

ne−ikl·rn� , �4.2�

where al
† and al are the creation and destruction operators for

the field modes and �l is the frequency of the field in the
mode l with kl=�l /c. For species a, 
3

j is the inversion op-
erator and 
�

j are the raising and lowering operators for the
jth atom, gl

j = �2��l /�V�1/2�a�x̂ j · êkl�
� is the coupling be-

tween the atom at position r j and the radiation field, x̂ j is a
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unit vector in the direction of the dipole moment at r j, �a is
the transition frequency, and �a is the dipole moment. For
species b, �3

n, ��
n , hl

n, rn, �b, and �b perform the same func-
tions. Also, V is the quantization volume, êkl�

is the polar-
ization vector, and � denotes the state of polarization. The
polarization indices on the variables have been suppressed
for clarity. In the two-level approximation, the transitions s
=�m� �−1,0 , +1� are treated separately and the operators
need not carry a specific value for the magnetic sublevel
�46�.

Equations of motion for the material and field-mode op-
erators are developed in a straightforward manner from the
Hamiltonian using the Heisenberg equation. We have

dal

dt
= − i�lal + 

js

g
l

j*
−
j e−ikl·rj + 

ns

hl
n*�−

ne−ikl·rn

�4.3a�

d
−
j

dt
= − i�a
−

j + 
l�

gl
j
3

j ale
ikl·rj , �4.3b�

d
3
j

dt
= − 2

l�

�gl
j
+

j ale
ikl·rj + g

l

j*al
†
−

j e−ikl·rj� , �4.3c�

d�−
n

dt
= − i�b�−

n + 
l�

hl
n�3

nale
ikl·rn, �4.3d�

d�3
n

dt
= − 2

l�

�hl
n�+

nale
ikl·rn + hl

n*al
†�−

ne−ikl·rn� . �4.3e�

Bloch-like operator equations of motion are obtained by sub-
stituting the formal integral of the field-mode operator equa-
tion �4.3a�,

al�t� = al�0�e−i�lt + �
0

t

dt�e−i�l�t−t��

� �
js

g
l

j*
−
j �t��e−ikl·rj + 

ns

h
l

n*�−
n�t��e−ikl·rn� ,

�4.4�

into the material operator equations of motion �4.3b�, �4.3c�,
�4.3d�, and �4.3e� �47�. We transform operator variables to
different rotating frames of reference in which 
̃−

j =
−
j ei�at

and �̆−
n =�−

nei�bt are slowly varying quantities. Performing the
indicated substitution into Eq. �4.3b� produces

d
̃−
j

dt
= 

l�

gl
j
3

j �t�eikl·rjal�0�e−i��l−�a�t + 
3
j �t�

l�

gl
j

� �
0

t

dt�e−i��l−�a��t−t��
is

g
l

i*
̃−
i �t��eikl·�rj−ri�

+ e−i��b−�a�t
l�

gl
j
3

j �t��
0

t

dt�e−i��l−�b��t−t��

� 
ns

h
l

n*�̆−
n�t��eikl·�rj−rn� �4.5�

in normal ordering with r ji=r j −ri. Likewise, one obtains

d�̆−
n

dt
= 

l�

hl
n�3

neikl·rnal�0�e−i��l−�b�t

+ ei��b−�a�t
l�

hl
n�3

n�t��
0

t

dt�e−i��l−�a��t−t��

� 
js

gl
j*
̃−

j �t��eikl·�rn−rj�

+ 
l�

hl
n�3

n�t��
0

t

dt�e−i��l−�b��t−t��

� 
ms

h
l

m*�̆−
m�t��eikl·�rn−rm� �4.6�

from Eq. �4.3d�. Equations of motion for the inversion op-
erators are obtained from Eqs. �4.3c� and �4.3e� in a similar
fashion.

The field that drives an atom, Eq. �4.4�, consists of the
vacuum field, the self-field, and the reaction field and we can
identify the terms on the right-hand side of Eqs. �4.5� and
�4.6� with fluctuations due to the vacuum field, spontaneous
decay from the self-field, near-dipole-dipole interactions be-
tween same-species atoms associated with the reaction field,
and near-dipole-dipole interactions of an atom with the at-
oms of the other species, also associated with the reaction
field. The usual procedure is to limit consideration to only
the spontaneous decay rate of a single impurity atom by
dropping the fluctuations and the single-species interactions
for both the bath and impurity atoms. These terms are re-
tained here because they contain significant information
about local-field effects in dielectrics. For concreteness, we
take species b to be the bath atoms and species a to be the
two-level impurity atoms.

V. NEAR-DIPOLE-DIPOLE INTERACTION

The near-dipole-dipole interaction is the basic mechanism
of the action of the local field. The Weisskopf-Wigner-based
procedure to evaluate the dipole-dipole interaction for a
dense collection of identical two-level atoms was developed
by Ben-Aryeh, Bowden, and Englund �14�, with corrections
by Benedict, Malyshev, Trifonov, and Zaitsev �48�, to inves-
tigate single-species intrinsic optical bistability. The results
apply to both species of two-level atoms, individually, but
we work with species b in order to maintain consistent nota-
tion when we take the harmonic-oscillator limit of a two-
level atom and derive the Lorentz local-field correction in a
dielectric.

We consider a dense collection of identical two-level at-
oms of species b in which the atoms are evenly distributed in
the vacuum with a number density Nb. The same-species
interaction

I1 = 
l�

hl
n�3

n�t��
0

t

dt�e−i��l−�b��t−t��
ms

h
l

m*�̆−
m�t��eikl·�rn−rm�

�5.1�

can be extracted from Eq. �4.6�.
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The self-interaction of the nth atom with its own reaction
field is characterized by the term rm=rn in the interaction as
a consequence of the relation �3

n�t��̆−
n�t�=−�̆−

n�t� between
Pauli spin operators for the same atom. Then

I1
self = 

l�

hl
n�3

n�t��
0

t

dt�e−i��l−�b��t−t��h
l

n*�̆−
n�t�� . �5.2�

Applying the typical Weisskopf-Wigner procedure �49–51�
in the mode continuum limit, one obtains

I1
self = −

2�b
3��b�2

3�c3 �̆−
n�t� = −

�b

2
�̆−

n�t� , �5.3�

where

�b =
4�b

3��b�2

3�c3 �5.4�

is the spontaneous decay rate. For an atom of species b,
initially in the excited state, �b is the spontaneous-emission
rate 	0 into the vacuum.

The pairwise interaction of atoms is carried in the remain-
ing m�n part of the summation. In the Milonni-Knight �46�
model of the interaction of two identical two-level atoms, the
strength of the interaction depends on the separation distance
and the magnetic sublevel transition. Then �46�,

F1�R� = eiR�−
i

R
+

i

R3 +
1

R2� �5.5�

for �m= �1 transitions and

F2�R� = eiR�−
2i

R3 −
2

R2� �5.6�

for �m=0 transitions, where

�b =
2�b

3��b�2

3�c3 , �5.7�

R=kbrnm=�brnm /c, kb= �kb�, rnm=rn−rm, and rnm= �rnm�. Per-
forming the summation over the magnetic sublevels, the
pairwise dipole-dipole interaction can be written as

I1
dd = �3

n�t�
3

2
�b 

m�n

Bnm�̆−
m�t − rnm/c� , �5.8�

where

Bnm = ��x̂m · x̂n� − �x̂m · n̂nm��x̂n · n̂nm��F1�kbrnm� + �x̂m · n̂nm�

��x̂n · n̂nm�F2�kbrnm� �5.9�

and n̂nm=rnm /rnm is a unit vector in the direction of rnm
=rn−rm �14,48�. Further, Bnm incorporates a view factor to
account for the arrangement of the dipoles in the volume.

The atoms are evenly distributed with a number density
Nb. For the nth atom, the single-species dipole-dipole inter-
action is obtained in a summation over all other atoms of
species b. In the region near rn, the interaction is evaluated
by taking the location of dipoles as discrete, while the con-
tinuum approximation is applied elsewhere. Then

I1
dd = �3

n�t�
3

2
�b 

m:rnm��

Bnm�̆−
m�t − rnm/c�

+ �3
n�t�

3

2
�bNb�

V−V�

B�̆−�t − �r�/c�d3r , �5.10�

where � is the radius of a small spherical volume V�, larger
than a cubic wavelength, about the point rn. For cubic sym-
metry, the field generated by the localized atoms rm�rn in
the virtual cavity is zero at the center �12,14,48�.

The atom n is located at the origin of a cylindrical volume
of thickness L and radius R0. The near-dipole-dipole interac-
tion is obtained by evaluating the integral

I1
dd �

3

2
�bNb�3

n�t��
0

2�

d��
−L/2

L/2

dz�
�min

�max

�d��̆−

� ��1 − ��

r
�2

cos2 ��F1 + ��

r
�2

cos2 �F2� ,

�5.11�

excluding a volume �4 /3���3 about the origin from the
range of integration, resulting in

I1
dd �

− 4�i

kb
3

Nb�b
3��b�2

�c3 eikb��3
n�t�
�̆−�t − �r�/c��sp.

�5.12�

In the limit �→0, the near-dipole-dipole interaction

I1
dd = − i�b�3

n�t��̄− �5.13�

remains finite. Here

�b =
4�

3�
Nb��b�2 �5.14�

is the strength of the near-dipole-dipole interaction and �̄−
= 
�̆−�t− �r� /c��sp represents a spatially averaged quantity. The
details of this calculation can be found in the articles by
Ben-Aryeh, Bowden, and Englund �14� and by Benedict,
Malyshev, Trifonov, and Zaitsev �48�.

The atoms of species b can be treated as harmonic oscil-
lators if all excitation frequencies are far from resonance
with �b. In this limit, the atom essentially remains in the
ground state such that �3

n→−1. Then the near-dipole-dipole
interaction reduces to the Lorentz local-field correction,
shifting the resonance frequency by 4�Nb��b�2 / �3��. The
microscopic result is in full agreement with the classical Lor-
entz local-field correction and has been experimentally vali-
dated �52,53� by selective reflection of Rb from a sapphire
window.

Finally, all of the results of this section can be applied to
the other species of atom. Repeating for species a yields

I1
self = −

2�a
3��a�2

3�c3 
̃−
j �t� = −

�a

2

̃−

j �t� , �5.15�
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I1
dd � − i�a
3

j �t�

̃−�t − �r�/c��sp = − i�a
3
j �t�
̄−.

�5.16�

In addition,

�a = 2�a =
4�a

3��a�2

3�c3 �5.17�

and

�a =
4�

3�
Na��a�2 �5.18�

are defined for later use.

VI. INTERSPECIES INTERACTION

The effect of the interspecies near-dipole-dipole interac-
tion can also be evaluated microscopically using Weisskopf-
Wigner theory. A single rotating frame of reference is used
for both species of atoms by making the transformation �̃−

n

= �̆−
ne−i��b−�a�t. Applying the results of the preceding section,

we have

d�̃−
n

dt
= − i��b − �a��̃−

n −
�b

�
fb

− + i�b�̄− −
�b

2
�̃−

n

− 
l�

hl
n�

0

t

dt�e−i��l−�a��t−t��
js

g
l

j*
̃−
j �t��eikl·�rn−rj�

�6.1�

in the harmonic-oscillator limit �3
n�t�→−1, where the fluctu-

ating field

fb
− = 

l�

�2��l�/V�1/2�x̂n · ek�eikl·rnal�0�e−i��l−�b�t

is associated with the spontaneous decay rate by the
Kramers-Kronig relations.

The interspecies interaction in Eq. �6.1� describes how a
specific host atom n interacts pairwise with each of the im-
purity atoms. The formal integral of the equation of motion
of the host atoms, Eq. �6.1�, is

�̃−
n�t� = − �

0

t

dt�e−i��t−t���b

�
f− − �

0

t

dt�e−i��t−t��

� 
l�

hl
n�

0

t�
dt�e−i��l−�a��t�−t��

is

g
l

i*
̃−
i �t��eikl·rni,

�6.2�

where �=�b−�a−�b− i�b /2. Substituting Eq. �6.2� into Eq.
�4.5�, one obtains

d
̃−
j

dt
=

�a

�

3

j f− − i�a
3
j 
̄− −

�a

2

̃−

j + I2, �6.3�

where

I2 = − 
nsl�

gl
j
3

j �t��
0

t

dt�e−i��l−�a��t�−t�h
l

n*

� eikl·rjn�
0

t�
dt�e−i��t�−t��

l���

hl�
n�

0

t�
dt�

� e−i��l�−�a��t�−t��
is�

g
l�

i*
̃−
i �t��eikl�·rni. �6.4�

The term containing the fluctuations has been dropped from
consideration because the procedures presented here apply
only to slowly varying quantities and because there will be
no contribution from the random fluctuations after averaging.

The direct dipole-dipole interactions between impurity at-
oms were derived in Sec. V. Equation �6.4� contains two
such dipole-dipole interactions between nonidentical atoms
that are integrated over the different subspaces correspond-
ing to �i� bath atoms and �ii� two-level impurity atoms. Due
to the relation 
3

j �t�
−
j �t�=−
−

j �t� between Pauli spin opera-
tors, the term i= j is the special case that is associated with
the renormalization of the spontaneous decay rate. This sepa-
rates the interaction I2= I2

ndd+ I2
self into I2

self for the case i= j
and I2

ndd for the summation over the rest of the impurity
atoms. The two parts of the interaction will be considered
separately.

A. Dielectric mediated dipole-dipole interaction

The nth atom of the dielectric interacts pairwise with ev-
ery impurity atom. The term

I2
ddA

= 
l���

hl�
n�

0

t�
dt�e−i��l�−�a��t�−t�� 

i�j,s
g

l�

i*
̃−
i �t��eikl�·�rn−ri�,

�6.5�

extracted from Eq. �6.4�, can be evaluated in the same man-
ner as in Sec. V, except that the atoms are of different spe-
cies. The summation represents the effect of all the impurity
atoms on a single atom of the host material. The sum over
the i� j impurity atoms is performed �i� in the near region by
the discrete summation over the impurity atoms and �ii� else-
where by treating the impurity atoms in the continuum limit.
For nonidentical atoms, the pairwise interaction goes as
�54,55�

I2
ddA

=
3

2
��a�b 

i:rni��

Bni
̃−
i �t� − rni/c�

+
3

2
��a�bNa�

V−V�

B
̃−�t� − �r�/c�d3r . �6.6�

Then, Eq. �6.6� is evaluated as in Sec. V to obtain �14�

I2
ddA

= −
4�i

3�
Na�

a
*�b

̃−�t� − �r�/c��sp = −

4�i

3�
Na�

a
*�b
̄−.

�6.7�

The quantity 
̄−= 

̃−�t�− �r� /c��sp is slowly varying in time,
and the temporal integral
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I2
ddB

�t�� = �
0

t�
dt�e−i��t�−t���− 4�i

3�
�Na�

a
*�b
̄− �6.8�

can be performed in the adiabatic-following approximation.
Repeatedly integrating Eq. �6.8� by parts �56�, the series can
be truncated at the first term in the expansion if the time rate
of change of 
̄− is much smaller than �
̄− yielding

I2
ddB

�t�� = �− 1

�
��− 4�i

3�
�Na�

a
*�b
̄−. �6.9�

The remaining part of the I2
dd integration is another inter-

species dipole-dipole interaction. In this case, the summation
imparts the effect of all the atoms of the host dielectric,
modified by interspecies interaction with the impurity atoms,
on the jth impurity atom. Combining terms,

I2
dd�t�� =

− 4�i

3�
Nb�

b
*�a

1

�

4�i

3�
Na�

a
*�b
3

j 
̄− �6.10�

becomes

I2
dd�t�� = −

4�i

3
�b�a
3

j 
̄−, �6.11�

where �b is the linear susceptibility of species b. Adding the
direct near-dipole-dipole interaction from Eq. �6.3�, we ob-
tain

I2
dd − i�a
3�t�
̄−�t� = − i�1 +

4�

3
�b��a
3�t�
̄−�t�

= − i
n2 + 2

3
�a
3�t�
̄−�t� . �6.12�

Comparison of Eq. �6.12� with the single species dipole-
dipole interaction, Eq. �5.16�, shows that the effect of the
dielectric host is to enhance the interaction by a factor of �
= �n2+2� /3. Taking the local spatial average, W= 

3�sp and
R21= 
−i
−�sp, one finds that the Lorentz redshift

n2 + 2

3

4�

3�
N�2 �6.13�

is consistent with the Lorentz local-field calculation, Eq.
�2.6a�, while the macroscopic quantum electrodynamic re-
sult, Eq. �3.9a�, is not.

B. Dielectric-enhanced spontaneous decay rate

Most of the elements of the microscopic theory of the
spontaneous decay rate of an atom in a dielectric are com-
mon to the treatment of the dipole-dipole interaction. In or-
der to show this clearly, we consider an equivalent derivation
of the dielectric mediated dipole-dipole interaction. Perform-
ing the temporal integrations first, the interspecies interaction
�6.4� can be written as

I2 = − 
nsl�

gl
j
3

j �t�����l − �a�hl
n*eikl·�rj−rn�

� �− i

�
� 

is�l���

hl�
n

����l� − �a�
is�

g
l�

i*
̃−
i �t��eikl�·�rn−ri�.

�6.14�

Applying the Milonni-Knight interaction with a view factor
results in

I2 = −
− i

�

9

4
�a�b
3

j 
n

���x̂ j · n̂nj��x̂n · n̂nj��F2�karnj�

+ ��x̂ j · x̂n� − �x̂ j · n̂nj��x̂n · n̂nj��F1�karnj��

� 
i

���x̂i · n̂ni��x̂n · n̂ni��F2�karni�

+ ��x̂i · x̂n� − �x̂i · n̂ni��x̂n · n̂ni��F1�karni��
−
i . �6.15�

Converting the sums, excluding i= j, to integrals and inte-
grating over the subspace of two-level atoms and then over
the subspace of oscillators is equivalent to the derivation of
the dielectric mediated dipole-dipole interaction that was
presented in the preceding subsection.

The renormalization of the spontaneous decay rate of a
dielectric-embedded two-level atom is derived from the in-
terspecies interaction �6.4� in the same fashion by taking the
target atom to be the same as the source atom. The summa-
tion over the two-level atoms is evaluated with the use of the
delta function �ij, rather than the integration over the sub-
space of two-level atoms. Likewise, the summation over the
magnetic sublevels invokes �ss�. Then,

I2
self =

− i

�

9

4
�a�b
−

j 
n

���x̂ j · n̂nj��x̂n · n̂nj��2F2
2�karnj�

+ ��x̂ j · x̂n� − �x̂ j · n̂nj��x̂n · n̂nj��2F1
2�karnj�� . �6.16�

The microscopic treatments of the spontaneous decay rate in
a dielectric �11,45� are missing elements of Eq. �6.16� and
can neither affirm nor contradict the macroscopic theory of
quantum electrodynamics. Because the dielectric renormal-
ization of the spontaneous decay rate does not have a classi-
cal local-field condition-based analog, we do not consider it
further.

VII. DIELECTRIC-ENHANCED FIELD

The dielectric has an effect on an applied electromagnetic
field that can also be evaluated microscopically. Taking the
field in a coherent state, the partial Hamiltonian is

Hf = −
i�

2 
j

�a
+
j e−i��pt−kp·rj� − 

a
*
−

j ei��pt−kp·rj��

−
i�

2 
n

�b�+
ne−i��pt−kp·rn� − 

a
*�−

nei��pt−kp·rn�� ,

�7.1�

where �p is the nominal frequency of the field and a
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=�aE /� and b=�bE /� are Rabi frequencies. The total
Hamiltonian is now comprised of the Hamiltonians �7.1� and
�4.2�. Developing Heisenberg equations of motion and elimi-
nating the field-mode operators and the dielectric operators
results in the appearance of

I3 =
�a

2�

3

j �t�E�t� − 
nsl�

gl
j
3

j �t��
0

t

dt�e−i��l−�p��t−t��

� h
l

n*ei�kl−kp�·rjn�
0

t�
dt�e��t�−t�� �a

2�
E�t�� �7.2�

as an addition to Eq. �6.3�. Equation �7.2� contains the same
type of interaction that was evaluated in the previous section.
Performing the adiabatic-following approximation and the
sum over polarizations, bath atoms, and magnetic sublevels
in the mode continuum limit, we obtain

I3 =
n2 + 2

3

�a

2�
E
3

j . �7.3�

The electromagnetic field is enhanced by the same factor of
� as the reaction field.

VIII. OPTICAL BLOCH EQUATIONS FOR EMBEDDED
ATOMS

The macroscopic optical Bloch equations can be derived
from the quantum electrodynamic equations of motion in the
limit of large numbers. Combining Eqs. �6.3�, �6.11�, and
�7.2�, one obtains

d
̃−
j

dt
= − i��a
3

j 
̄− + �
�a

2�
Ee−i��p−�a�t
3

j , �8.1�

neglecting the Gaussian noise source with zero mean and
absorption. The equation of motion for the inversion operator

d
3
j

dt
= 2�i��a
̃+

j 
̄− −
�a

2�

̃+

j �Ee−i��p−�a�t + H.c.� �8.2�

is derived in a similar manner. Optical Bloch equations of
motion are obtained by transforming to a frame rotating at
the frequency of the field and taking a local-spatial average,
as in Sec. III. We compare the optical Bloch equations

�R21

�t
= i��p − �a −

4�

3�
N�a

2�W�R21 −
i�a

2�
�EW ,

�8.3a�

�W

�t
= −

i

�
��a�*E*R21 − �a�ER21

* � , �8.3b�

that were derived from first principles, to the Lorentz local-
field-based equations �2.6�. Based on a favorable comparison
of the local-field enhancement of the Lorentz redshift and the
Rabi frequency with the classically derived result, we can
reasonably assert that the microscopic theory, unlike the
macroscopic quantum electrodynamic theory, satisfies the
correspondence principle.

The microscopic theory allows us to consider the more
general case of a complex local-field enhancement factor.
Separating the real and imaginary parts of �, the optical
Bloch equations can be written as

�R21

�t
= i��p − �a −

4�

3�
N�a

2�rW�R21 −
i�a

2�
�EW

−
4�

3�
N�a

2�iWR21, �8.4a�

�W

�t
= −

i

�
��a�*E*R21 − �a�ER21

* � − 4�i�a�R21�2

�8.4b�

with �=�r+ i�i. The microscopic theory justifies the use of a
complex refractive index in the classical Lorentz local-field
condition. Then Eqs. �8.4�, with phenomenological damping,
can be derived by substituting the polarization �2.5� with
complex n into the generalized Bloch equations �2.4�. The
imaginary part of the Lorentz redshift, derived in this man-
ner, was found to be associated with an intrinsic cooperative
decay for two-level atoms in an absorptive host �9�. This
result is confirmed by the microscopic theory.

The optical Bloch equations �8.4� for dielectric-embedded
two-level atoms are derived from the microscopic descrip-
tion of quantum electrodynamics using vacuum-based fields
that are known to satisfy the equal-time commutation rela-
tions. Because the field-mode operators have been elimi-
nated, the equal-time commutation relations cannot be dis-
cussed in the context of the optical Bloch equations �8.4� or
Heisenberg equations �8.1� and �8.2�. Instead, the optical
Bloch equations, generalized for a dielectric host, must dem-
onstrate conservation of probability. The total population is
W2+4�R21�2. Direct substitution from Eqs. �8.4� shows that
the temporal derivative of this quantity is nil, as required, in
the limit that absorption by the atoms and the host dielectric
can be neglected.

IX. SUMMARY

The interest in the dielectric renormalization of the
spontaneous-emission rate of an atom embedded in a dielec-
tric material has obscured the inconsistencies in the macro-
scopic theory of quantum electrodynamics. The dielectric
renormalization of the Lorentz redshift and the Rabi fre-
quency, but not the spontaneous decay rate, can be derived
using the classical Lorentz local-field condition providing an
independent check on the validity of macroscopic quantum
electrodynamics. The optical Bloch equations for a dense
collection of two-level atoms in a dielectric host medium
were derived using the classical Lorentz local-field condition

EL = E +
4�

3
P

in Sec. II, while in Sec. III, a different set of optical Bloch
equations were derived using the macroscopic quantum elec-
trodynamic theory. Both derivations are short and uncompli-

COMPARISON OF QUANTUM AND CLASSICAL LOCAL-… PHYSICAL REVIEW A 78, 053827 �2008�

053827-9



cated and are based on well-established physical theories, yet
lead to contradictory results for the Lorentz redshift and the
Rabi frequency. If we assume the validity of the Lorentz
local-field condition, then the macroscopic procedure is
proven to be incorrect. Conversely, the validity of the mac-
roscopic quantum electrodynamic theory would imply that
the Lorentz local-field condition is incorrect. One deciding
factor is that the Lorentz local-field correction has been vali-
dated experimentally �52,53�, while the experimental record
for the macroscopic quantum theory has been inconclusive.

We applied the more fundamental microscopic theory of
quantum electrodynamics to the same problem and demon-
strated complete agreement with classical theory. The differ-
ences in the Rabi frequencies can be reconciled with a phe-
nomenological local-field factor applied in the macroscopic
case, providing the virtual-cavity model is used. However, no
such facile reconciliation can be provided for the Lorentz
redshift. We conclude that both the correspondence principle
and microscopic quantum electrodynamics are violated by
the macroscopic quantum electrodynamic theory.
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