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Dispersion-enhanced laser gyroscope
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We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the
frequency and amplitude of the output modulation to determine the conditions for enhanced gyroscopic sen-
sitivities. The element is treated as both a phase and amplitude filter, and the time dependence of the cavity
field is considered. Both atomic gases (two level and multilevel) and optical resonators (single and coupled) are
considered and compared as dispersive elements. We find that it is possible to simultaneously enhance the gyro
scale factor sensitivity and suppress the dead band by using an element with anomalous dispersion that has
greater loss at the carrier frequency than at the sideband frequencies, i.e., an element that simultaneously
pushes and intensifies the perturbed cavity modes, e.g. a two-level absorber or an undercoupled optical reso-
nator. The sensitivity enhancement is inversely proportional to the effective group index, becoming infinite at
a group index of zero. However, the number of round trips required to reach a steady state also becomes
infinite when the group index is zero (or two). For even larger dispersions a steady state cannot be achieved,
and nonlinear dynamic effects such as bistability and periodic oscillations are predicted in the gyro response.
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I. INTRODUCTION

The additional phase shift acquired by an electromagnetic
wave as a result of the motion of a medium, known as the
Sagnac effect [1], can be measured directly by monitoring
the amplitude of interferometer fringes, i.e., an interferomet-
ric optical gyroscope. Alternatively, the Sagnac phase shift
can be transformed into a frequency shift by using an optical
cavity, i.e., a laser gyroscope (Fig. 1). The Doppler shift
owing to the rotation of a ring laser, for example, is deter-
mined from the beat frequency of two counterpropagating
modes that are made to interfere at a location outside the
cavity. In a laser gyroscope then, the rate of rotation is de-
termined, not by direct measurement of the Sagnac phase
shift, but by measurement of the frequency shift associated
with this phase-shift.

In recent years there has been interest in the development
of highly dispersive materials whose resonant features can
speed up, slow down, stop, store, or reverse the propagation
of pulses of light [2-9] as a result of their substantially modi-
fied group velocities. The use of these modified group veloci-
ties for the enhancement of optical gyroscopes has been dis-
cussed by a variety of authors [10-13]. Leonhardt and
Piwnitski have predicted an enhancement in the Fresnel drag
coefficient for an interferometric gyro containing a slow-
light medium. Shahriar et al. [14] point out that this enhance-
ment applies only to relative rotation measurements, not to
measurements of absolute rotation where the source and gy-
roscope are corotating and the Sagnac effect is independent
of refractive index. As we have noted, the Sagnac effect is,
however, often associated with a frequency shift, which in
turn is highly sensitive to dispersion. Inside an optical cavity,
the Sagnac phase shift accumulates each round trip and is
transformed into a Doppler shift, and so it is possible to
achieve a dispersion-related enhancement for the measure-
ment of absolute motion in this case.
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We are therefore obliged to consider the effect of such a
highly dispersive element on the performance of a laser gy-
roscope in greater detail. This objective necessitates a time-
dependent analysis of the field inside the cavity because dis-
persion contributes a nonlinear feedback mechanism to the
gyro response. Moreover, the absorptive part of the medium
response cannot be neglected because it is related to the con-
trast of the beat note with respect to backscattered frequen-
cies which tend to reduce gyro sensitivities or even injection
lock the modulation resulting in a dead band. In fact we will
show that the absorptive part of the material response can be
designed to mitigate such backscattering, suppressing the
gyro dead band, while at the same time the dispersive part
enhances the phase shift due to rotation. The rotation of the
gyroscope is considered to be a strong modulation, and the
theory of modulation spectroscopy is used to develop a time-
dependent analysis of the field in the cavity. Hence, we dem-
onstrate that the dispersive element acts as an amplitude and
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FIG. 1. (Color online) A dispersive element (represented by the
box) inside a ring laser gyroscope introduces a feedback in the form
of an additional phase shift @, that is dependent on the Sagnac
phase shift ¢, thereby modifying the Doppler shift between the
counterpropagating modes, and resulting in a modified beat fre-
quency (Q,—_)/2. In the absence of dispersion the beat frequency
is simply (w,—w_)/2.
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phase nonlinear filter, shifting and demodulating the fre-
quency components of the modulation, and we derive the
conditions under which this modulation is enhanced. Our
analysis agrees with previous mode pulling and intracavity
spectroscopy experiments [15-20].

The geometry that we will consider is shown in Fig. 1,
where a dispersive element, e.g., an atomic gas or optical
microresonator, is incorporated inside the cavity of a ring
laser gyroscope. All contributions to the dispersion within
the cavity are lumped into a single “black box,” that intro-
duces a positive (or negative) feedback [21] in the form of an
additional phase-shift ®, that is dependent on the original
Sagnac phase shift ¢, thereby increasing (or decreasing) the
Doppler shift between the counterpropagating modes, and
resulting in a modified beat frequency.

II. SAGNAC EFFECT AS A MODULATION

Consider an arbitrary modulation of carrier frequency
wy=cky and modulation frequency w,,=ck,,. Assume that
any FM component of the signal is sufficiently weak that
there are not more than two sidebands in the frequency spec-
trum, i.e., that the FM component is purely imaginary. The
heterodyne beat frequency and relative modulation ampli-
tude of the interfering sidebands are known from the theory
of modulation spectroscopy [22,23] to be

wb(z,t)t=wml—<w), (1)

and

2 271/2
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respectively, where w+=w,* w,,=ck. are the sideband fre-
quencies, the quantities E,(z,7) and ¢,(z,1) are slowly vary-
ing amplitudes and phases, and frequency components are
denoted by the subscript v, where v=0, +, or —. The modu-
lation can be described by a parametric plot of the complex
electric field amplitude as a function of time that traces out,
at the frequency wy(z,17), an ellipse whose size is determined
by the slowly varying quantity M(z,z) [23].

The relative modulation ellipse evolves with propagation
through a dispersive medium. This evolution is already im-
plicit in Egs. (1) and (2), because the quantities w(z,7) and
M(z,t) are slowly varying in z and ¢, but can be explicitly
taken into account by the use of a complex transfer function
Hw)=7(w)exp[iP(w)], where ®(w) is the effective phase
shift, 7(w) is the transmittance, and capital greek letters are
used to distinguish effective quantities. Hence, the medium
acts as both an amplitude and phase filter. The phase filter
influences the beat frequency, whereas the amplitude filter
affects the relative modulation. For p passes across the filter,
the transfer function is

P P
77(w) = (H T")(w))ew(iz CD(")(w)), 3)
j=1 j=1

where superscripts indicate the pass index. Egulvalently, we
make the substitutions ¢,(z,7)= (p(0)+21’ and E,(z,1)
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=E§}0)H§’=]T(;}/), where E(VO) and (pgjo) are the initial amplitudes
and phases, respectively, prior to interaction with the filter.
Note that because the frequency components shift, their
phase and amplitude change nonuniformly with each pass,
until a steady state is reached.

For a laser cavity containing a single dispersive element,
p=t/ 7, is simply the number of round trips completed within
time 7. Applying Eq. (3) and differentiating Eq. (1) over pg
round trips, we obtain the average effective beat frequency
and relative modulation amplitude
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respectively, where 7, is the cavity round trip time, and the
p=0 term utilizes noneffective quantities, i.e., wgo)—wm
—(goio) cp(o))/ 27. is the beat frequency prior to mteractmg
with the dispersive element. The single-pass or “instanta-
neous” beat frequency is obtained by setting py=1, i.e.,
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The actual beat frequency measurement averages over a
number of round trips, p,, determined by the detector band-
width compared to the cavity free spectral range. The first
term on the right-hand side (RHS) of Eq. (4) is the Doppler
shift due to the Sagnac effect itself, whereas the second term
on the RHS of Eq. (4) and the products in Eq. (5) represent
contributions from the dispersive medium. The dispersive
contributions are determined by the effective phase differ-
ence and relative transmittance of the sidebands per round
trip, respectively. Importantly, note that there is no influence
of the dispersion on w,,, i.e., the Sagnac effect itself is intrin-
sically independent of refractive index. The dispersive con-
tribution is strictly a consequence of the associated Doppler
shift (it goes to zero when Q@:Qg)).

As a consequence of the dispersion, these formulas are
iterative: the effective phase shift and transmittance of any
particular component are evaluated at the frequency of the
previous pass, i.e., ®V=®(QUV) and 7)=r(QUY). They
therefore depend on the history of beat frequencies (back to
when the sidebands first approach a material resonance).
This is emphasized by the corresponding recursion relations

(02,097 = 0 + QP QYY) (7)

and

M(/)(Q(/ D MU0y = il M(’ D, (8)
7'0

where QV(QY™)=—[®Y - ®P]/27,=GVQY™" and 0 are
again the dispersive and Sagnac contributions to the instan-
taneous beat frequency, respectively, GY) is the feedback
gain [14], and we allow the Sagnac contribution to change on
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a time scale comparable to that of the dispersive propagation,
ie., w,— a)m' , e.g., due to a changing rotation rate. Further-
more, in writing Eq. (8) we have assumed that the dispersive
element is resonant with the unperturbed cavity such that
7'(] 7/ and E,=E_. Note that the dispersion term
Q(’)(QU D) provides both the nonlinearity and feedback nec-
essary for nonlinear dynamic behavior, such as bistability.

We model the counterpropagating modes of the rotating
gyro by the two strong side-bands at ()., such that QE{’)
represents the laser gyro beat frequency, measured at some
location outside the cavity. Residual backscattering contrib-
utes a variety of central frequency components that fall be-
tween the sidebands. It is well known that if the back-
scattering is sufficiently strong these central frequencies
(which we model heuristically by the inclusion of a single
weak carrier frequency) can injection-lock the sidebands, re-
sulting in a dead band in the gyro response (see the Appen-
dix) [24]. The relative modulation M") indicates the strength
of these central frequencies, and thus the size of the dead
band. Therefore, to enhance the performance of a laser gy-
roscope, a dispersive element should be designed to increase
both the beat frequency (via the phase filter) and relative
modulation (via the amplitude filter), i.e., it should increase
both the rotation speed and size of the relative modulation
ellipse, respectively.

III. ENHANCEMENT OF GYRO SENSITIVITY

It is clear from Eq. (7) that dispersion alters the gyro beat
frequency. Intuitively, this is not difficult to understand: In
the absence of a dispersive medium, the redshifted compo-
nent of a rotating gyro accumulates more phase than the
blueshifted component, due its longer path length. But dis-
persion introduces an additional phase shift, whose size and
sign is dependent on the original (Sagnac) phase shift, and
therefore can either enhance or compensate the measured
beat note, in a manner analogous to regenerative and degen-
erative feedback in electronic amplifiers [21]. When QD(/)
<Y, the Sagnac phase shift is augmented due to the posi-
tive feedback (GY>0), and the beat frequency increases
(the rotation of the modulation ellipse accelerates until it
reaches some higher steady-state speed). Note that this con-
dition requires the presence of anomalous dispersion, but the
frequencies @, may fall outside the region of anomalous
dispersion. On the other hand, when <I>(’)>(I>(’) the Sagnac
phase shift is compensated by the negative feedback (G
< 0) associated with the normal dispersion, thereby decreas-
ing the beat frequency.

An increase in the beat frequency does not by itself, how-
ever, ensure an increase in gyro sensitivity. Rather, the gyro
scale factor sensitivity is proportional to the derivative of Eq.

(),

dQ(bP) 40w
_ (p)27b
dw,(f;) =15 dw(,fl’) ’ ©)

where
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is the sensitivity gain. Now, let us define an effective group
index of refraction N for the gyro cavity. First, we must
define an effective propagation constant K(w)=n.w/c
+®(w)/L, where n, is the index of refraction of the cavity
medium, and L is the size of the cavity, equivalent to the
distance between dispersive elements. Then, ignoring all ma-
terial dispersion except that of the element under consider-
ation, the effective group index is

dK(w) (
= n. 1+
dw

lddb(w)) an

dw

c

where 7.=n.L/c, and d®/dw corresponds to the delay time
of a long monochromatic pulse. Incorporation of Eq. (11)
into Eq. (10) yields

gnp)
S - N — G0 o4 dG?”
n, dQ(p b

where SN =(SN)+4N"P)/2 is the average group index of
the sidebands. Note that in general the sensitivity and feed-
back gain are not equal, i.e., S is always negative in re-
gions of normal dispersion (because dG?)/ dQ(” Vs nega-
tive), but G can be positive. When the dlsperswe element
is resonant with the unperturbed cav1t;/ the group index is
symmetric about @, i.e., *NP=SN? In this case NV
=8N P =sNP) Substitution of Eq. (12) into Eq. (9) yields

QP 1-a QP - QP Mide? 1
- () o
N Ine

(12)

do?

m steady state N av/ ne.

(13)

Equation (13) provides the evolution of the gyro scale factor
with round trip as a function of the input modulation fre-
quency w,(fl , given an element with group index ng’ ). In the
steady state, the beat frequency and its sensitivity become
independent of round trip, and dQ),/dw,,=n./$N, av> in agree-
ment with Shahriar et al. [14]. The same result is obtained
even when the beat frequency is changing, provided the
group index remains constant, i.e., in linear dispersion spec-
tral regions where ®(w) varies approximately linearly with
w, e.g., when the sideband frequencies never stray very far
from resonance. In this near-resonance case, S(P)%G(P), and
dQ(p) / dw(p)~Q(p)/ wfﬁ), i.e., an enhancement in beat fre-
quency corresponds to an enhancement in sensitivity. Note
also that because the dispersion is typically largest on reso-
nance (an exception would be a Fano resonance),
ngp)/ dw,(f;)Snc/ gN(({’) represents an upper bound on the
gyro sensitivity.

Such a steady state is achieved only for group indices
within the range 0 <? ” /n.<2,1i.e., for LS(I’)| > 1 nonlinear
dynamic effects become evident. For gN /n,.<0 bistability
occurs due to strong positive feedback (S ) > 1) whereas for
gN“’ )/n =72 continuous periodic oscillations arise in the beat
frequency as a result of strong negative feedback (S
<-1). Note that at $N?)=0, Eq. (13) predicts a critical
anomalous dispersion where the gyro sensitivity becomes in-
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finite. In practice, however, the gyro enhancement is limited
by group-velocity dispersion [14], and because the number
of round trips required to reach a steady-state increases with
the dispersion, becoming infinite when gN<f’,)=0 (or
gN;’;)/nc=2). Thus, even within the range 0< gNg’?/nc<2, a
steady state might not be attainable within a reasonable num-
ber of round trips, i.e., before a measurement is required. In
this case, the sensitivity would be reduced slightly, by the
factor 1-d(QP' - QP V) /dw'?.

Generally, according to Eq. (9), an enhancement in sensi-
tivity, |dQ§j’)/ dwff)| >1, occurs when the sensitivity gain
scale-factor product satisfies either

dQ(P—l)
N y (j(p) >0 (14)
or
dQ(P—l)
N da‘)’(p) <-2, (15)

i.e., for either normal or anomalous dispersion. However,
when restricted to the steady state, i.e., O<gNg€)/nc<2, Eq.
(15) cannot be satisfied, and Eq. (14) is only satisfied when
O<ngl"’,)/ n.<1, i.e., for anomalous dispersion that is suffi-
ciently weak. When the sideband frequencies Q¥ do fall
within a region of anomalous dispersion, satisfying Eq. (14),
both the beat frequency and its sensitivity are enhanced, but
it is only when they are close to the resonance frequency of
the dispersive element, w,, i.e., in the central linear-
dispersion region of the resonance, that the approximation
QP 0P ~dOP) 1 dw? is valid. In this region the enhance-
ment in beat frequency and its sensitivity are equal. But far-
ther away from resonance, in regions of normal dispersion,
the beat-note frequency is increased, but its sensitivity to
rotation is reduced. Hence, it is possible to have enhanced
beat frequencies as a result of positive feedback (GY)>0),
but reduced scale-factor sensitivies (S¥)<0) as a result of
normal dispersion.

The change in beat frequency may be understood simply
as due to mode pulling or pushing by the dispersion. It is
well known that the cold cavity modes of a laser are pulled
toward the gain line (or pushed away from an absorbing line)
by an amount that is proportional to their detuning (provided
the detuning is small compared to the linewidth) and depen-
dent on the strength of the dispersion [15-19]. In our case,
the mode pulling effect is in addition to the frequency shift
associated with the Sagnac effect, i.e., it modifies the per-
turbed cavity mode frequencies rather than the cold cavity
modes. (In fact, the Doppler shift due to the Sagnac effect
itself can also be thought of as due to mode pushing, where
the phase shift per round trip results from rotation rather than
dispersion.) The phase-shift condition Q. ,7.+¢.,
+®(Q.. )=q27 yields the steady-state frequencies of the
pulled modes,
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DO SN,
Q. =ow —Mszr’q{lI(—_’q—l)},

= =4 T, n
(16)

where g is an integer mode number, ® (.. ;) is the effective
phase shift evaluated at the pulled frequencies, and w. ,
=w,— @+ ,/ 7. are the unpulled mode frequencies of the per-
turbed cavity, Doppler-shifted from the cold cavity mode fre-
quencies w,=q2m/ 7, by the Sagnac phase shift per round
trip, ¢ ;. For detunings small compared to the linewidth, the
modes are pulled toward the resonance frequency w, for
N, ,>1 (e.g., an inverted two-level gain medium) and
pushed away from o, for *N. <1 (e.g., a two-level ab-
sorber). For larger detunings, the modes can be pushed away
from the resonance even when ¢N.. > 1, though the sensi-
tivity will not be enhanced.

For any one of the ¢ mode numbers, the pulled beat fre-
quency ,=(Q,-Q_)/2 is then given by

0= w, - M;(Qb) ~ wb{l —(%— 1>&] (17)

ne Wy,

c

where AD(,)=D(Q,)—D(€)_) is the effective phase differ-
ence of the pulled modes, and w,=(w,—w_)/2 is the un-
pulled beat frequency. Taking the derivative of Eq. (17)
yields dQ,/dw,=1/°N,,~Q,/w,, in agreement with Eq.
(13). The approximations shown are valid for mode frequen-
cies within the central linear-dispersion region, i.e., close to
the resonance frequency w,. The derivation is a steady-state
one, i.e., it does not keep track of the round trip p. But
clearly the mode pulling or pushing is time dependent. For
larger dispersions, the steady-state analysis is no longer suf-
ficient, and the nonlinear dynamics of the problem become
evident. Notably, such nonlinear effects have been observed
in high-gain lasers [18,19].

IV. COMPARISON OF ATOMS AND RESONATORS

These derivations are general and apply both the atomic
media and to optical resonators when the Sagnac effect in the
resonator itself can be neglected, e.g., in the limit where the
size of the resonator is zero, or the resonator is planar. We do
not consider the Sagnac effect inside the microresonator it-
self, as this has been treated previously [11]. As we have
seen, to properly understand the effect on the beat note, such
an element must be treated as both a phase and amplitude
filter. The amplitude and filters can work in concert, or
against one another. For noninverted two-level atoms or un-
dercoupled optical resonators, the absorption is higher on
resonance, which attenuates the carrier frequency more than
the sidebands, increasing the relative modulation, while at
the same time the anomalous dispersion increases the mag-
nitude of the beat frequency. The opposite occurs if the two-
level atom is inverted or the resonator is amplifying, i.e., the
amplification is higher on resonance, decreasing the relative
modulation, and the dispersion is normal, which decreases
the modulation frequency. Hence, in all of these cases the
amplitude and phase filters work together. However, a par-
ticular distinction of optical resonators is that they can be
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nonamplifying and possess normal dispersion provided they
are overcoupled (whereas two-level atoms must be inverted
to possess normal dispersion on resonance), thereby increas-
ing the relative modulation but decreasing the beat fre-
quency. In this case the amplitude and phase filters work
against one another.

Similar considerations hold when the dispersion is modi-
fied via coherent coupling schemes, e.g., for multilevel at-
oms and coupled optical resonators. Consider three proto-
typical atomic coherence schemes: electromagnetically
induced absorption (EIA) [25], electromagnetically induced
transparency (EIT) [26], and gain-assisted superluminality
(GAS) [27,28] from a double-gain line. The cases of EIA and
GAS are similar to an absorbing two-level atom, i.e., greater
carrier frequency absorption increases the relative modula-
tion, while the associated anomalous dispersion increases the
magnitude of the beat frequency. For the case of EIT, on the
other hand, the transparency and normal dispersion on reso-
nance result in both decreased relative modulation and beat
frequency, similar to an inverted two-level atom. In all these
atomic coherence schemes the amplitude and phase filters
work together. Again, to find cases where the amplitude and
phase filters oppose one another, one must turn to the analo-
gous coherence effects in coupled resonators [7-9].

V. RESULTS

For the dispersive element, we utilize optical resonators,
because both anomalous and normal dispersion can be
readily examined without the need for gain, simply by
changing from undercoupled (anomalous dispersion) to over-
coupled (normal dispersion), and because resonators offer all
of the coherence effects available in atomic media, but in a
more robust all-solid-state configuration. We assume a car-
rier frequency of w,/27w=10'* Hz, a cavity with a free spec-
tral range of 1/7.=100 MHz, and that the resonator is reso-
nant with the unperturbed cavity, i.e., ®,=wy.

We investigate four regimes of group indices: (a) weak
anomalous dispersion, 0 < gN(” >/ n.<1, (b) weak normal dis-
persion, l<gN(”)/ n.<2, (c) strong anomalous dlspersmn
”'N(”)/ n.<0, and (d) strong normal dispersion gN”’ /n.>2.
The free spectral range of the resonator is held fixed at
1/7,=100 GHz, and the group index is varied by changing
the coupling and loss of the resonator, while leaving the cav-
ity parameters fixed. In Figs. 2 and 3 the resonator quality
factor is (a) Q=4 X 10° and (b) Q=10°, respectively, whereas
in Figs. 4 and 5, the quality factor is Q=10° for each of the
four cases, corresponding to a 100 MHz full width at half
maximum resonance linewidth. The maximum group indices
are $NJ/n,=(a)0.2, (b) 1.8, (c) —1.0, and (d) 3, such that the
magnltude of the sensitivity gain is [S?)|=0.8 for cases (a)
and (b) and |S%)|=2 for cases (c) and (d). In Figs. 2 and 3 we
plot only the cases of weak dispersion, i.e., we consider only
dispersions that result in a steady state in the beat frequency,
whereas in Figs. 4 and 5 all four cases are plotted.

In Figs. 2 and 3, the initial modulation frequency is set to
wﬁ,?)/Zﬂ': 100 kHz and the beat frequency is allowed to
evolve over 50 000 round trips to a steady state, whereas
in Figs. 4 and 5, the modulation frequency is changed
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FIG. 2. Mode pushing (a) and mode pulling (b) of the counter-
propagating laser gyro frequencies by weak (a) anomalous and (b)
normal dispersion. The modes are shown (i) without and (ii) with
the resonator placed inside the cavity, after reaching their steady-
state frequencies. The effective phase shift and transmittance are
also plotted for comparison. In (a), the carrier frequency is signifi-
cantly attenuated, indicating suppression of backscattering frequen-
cies and the gyro dead band.

in increments of Aw,/27=100 kHz every Ap=50 round
trips, beginning at a frequency far from resonance, w( 12
=-100 MHz, 1ncreasmg to w“OOOOO /2w=100 MHZ and
then decreasing again back to the initial frequency
wijOOOO)/ 27r=-100 MHz to form a complete loop after a to-
tal of 200 000 round trips. So, over the course of this loop,
there is always more than one effective phase shift per modu-
lation cycle.

In Fig. 2, the counterpropagating modes are plotted in the
frequency domain, after they have reached the steady state,
with and without the resonators present in the cavity. A weak
carrier frequency is included as a heuristic, to account for
backscattering frequencies. A time-domain graph of the beat
frequency and relative modulation is presented in Fig. 3.
These figures show how the modulation sidebands are
pushed (pulled) by the anomalous (normal) dispersion, even-
tually reachlng their steady-state values of Q(Oc (0)
~n /gN0 , after no more than a few tens of round trips. In
Fig. 3(b), oscillations occur as a result of some overpulling,
prior to reaching the steady state. The number and amplitude
of these oscillations increase with the group index. Unlike
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FIG. 3. Evolution of the beat frequency and relative modulation
with cavity round trip for a cavity containing weak (a) anomalous
and (b) normal dispersion. In (a) the beat frequency increases due to
mode pushing, whereas in (b) it undergoes oscillations and de-
creases as a result of mode pulling. In both cases the relative modu-
lation increases due to greater carrier frequency absorption, but it
increases sooner in (a) because the sidebands are pushed away from
the carrier and because the Q is larger.

the beat frequency, the relative modulation does not reach a
steady state, but continues increasing to infinity. This sup-
pression of the central frequencies in comparison to the side-
band frequencies strengthens the beat-note contrast and sup-
presses the gyro dead band.

In Fig. 4, the effective beat frequency is plotted every 50
round trips (which we know from Fig. 3 is a sufficient num-
ber of round trips to reach a steady state, if one can be
achieved), as the initial modulation frequency is varied for
the four regimes of dispersion. The slope of these curves at
any point is determined by Eq. (9). In (a) and (b) the gyro
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m
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FIG. 4. Four regimes of gyroscopic response for a laser gyro
containing a dispersive element: (a) Increased scale factor sensitiv-
ity due to weak anomalous dispersion, (b) decreased scale factor
sensitivity due to weak normal dispersion, (c) bistability due to
strong anomalous dispersion, and (d) bifurcation to periodic oscil-
lations due to strong normal dispersion. The dotted line is the gyro
response in the absence of the dispersive element (and in the ab-
sence of lock in). The dashed line represents the upper limit on the
sensitivity enhancement 1/ gNg’ ),

FIG. 5. Evolution of the beat frequency with cavity round trip
for (a) weak anomalous dispersion, (b) weak normal dispersion, (c)
strong anomalous dispersion, and (d) strong normal dispersion. The
modulation frequency is changed in increments of Aw,,=100 kHz
every Ap=50 round trips. But the dispersion causes deviation from
a perfectly sharp step of (QE,APH' )—Qip))zAwm. In (a) (QE,APW )
—Q(b”)) >Aw,, due to mode pushing, and in (b) (QZAP P )—Qg’ )
< Aw,, due to mode pulling. The nonlinear effects are so large in (c)
and (d) that a steady state cannot be reached, resulting in bistability
and continuous oscillations, respectively.

scale factor is modified by the factor nc/gNg’) at resonance.
In (c) and (d) the strong dispersion leads to bistability and
continuous periodic oscillations, respectively.

Figure 5 is simply a zoomed-in version of Fig. 4 near zero
beat frequency, i.e., for sideband frequencies close to the
resonance frequency w,. The plot resolution is one round trip
rather than 50, so that time-dependent effects can be more
readily resolved. Note that the dispersion causes deviations
from perfectly sharp steps of (Q(bA’””)—Q(b”)):Awm. Closer
to resonance, these deviations become more pronounced, and
the beat frequency takes more round trips to reach a steady
state (the relative modulation also takes more round trips to
increase). In (a) and (b) the dispersion is still sufficiently
weak that the beat frequency reaches steady state values
given by (QEA’””)—Qé”))/Awmznc/gNow. In (c) and (d), on
the other hand, the nonlinear effects associated with the dis-
persion are so large that a steady state cannot be reached. In
Fig. 5(c), the zero in beat frequency is pushed to a larger
value of p as a result of hysteresis, where a jump is observed,
which results in bistability. In Fig. 5(d), the dispersion is
strong enough to drive continuous oscillations, whose ampli-
tude is given by (QA7*7) - QPN 25 .

VI. SUMMARY AND CONCLUSION

In summary, we find that for two-level atoms or under-
coupled optical resonators incorporated into a laser gyro cav-
ity, the amplitude and phase filters work together to enhance
the modulation, simultaneously enhancing the gyro scale fac-
tor via the anomalous dispersion and suppressing the dead
band via the absorption. In fact, we could have used a single

complex phase shift ®(w) to describe the filter, that when
incorporated into the cavity gives rise to a complex effective
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group index ¢N(w) and feedback G(w), which in turn modify

the complex beat frequency ﬁb, which consists of the real-
valued beat frequency and its contrast. Anomalous (normal)
dispersion and absorption (gain) provides a positive (nega-
tive) complex feedback. The scale-factor sensitivity is in-
versely proportional to the effective group index, becoming
infinite at a group index of zero, yet requiring an infinite
number of round trips to reach steady state at this point. In
fact, the time dependency is more likely to limit the achiev-
able performance of a dispersion-enhanced gyro than higher-
order dispersion. Steady-state results are obtained only for
0<*N'P)/n.<2. For 8N*)<0 and *N%)>2 bistability and
continuous oscillations are predicted, respectively. The en-
hancement of gyro sensitivity should be easier to observe for
Doppler-broadened atomic gases than for microresonators,
owing to the velocity distribution.

Furthermore, our analysis shows that not only can a dis-
persive element enhance desirable phase shifts (e.g., due to
rotation), but it can also compensate deleterious phase shifts
(e.g., due to a cavity instability), as shown in Fig. 4(b). The
resonances of inverted two-level atoms or amplifying mi-
croresonators should, therefore, be useful for laser self-
stabilization, simultaneously reducing frequency and ampli-
tude fluctuations, without the need for extracavity feedback.
In fact, modepulling has long been demonstrated as a means
for laser self-stabilization [29], but the development of
highly dispersive media, employed separate from the gain
medium, make these ideas more promising. Indeed, efficient
noise or dead band suppression depends upon materials with
stable high-Q resonances.

The introduction of such a dispersive element into the
cavity will increase spontaneous emission noise. To mini-
mize the increase in pumping and avoid group indices where
nonlinear dynamics occur, narrow yet shallow resonances
(away from critical coupling) should be employed. Note that
Eq. (7) can readily be separated into signal and noise contri-
butions. We have examined the effect of dispersion on the
bandwidth of a white noise input and have found that the
noise bandwidth increases at a rate considerably slower than
the inverse of the group index. The reason for this is that, for
a noisy input that changes each round trip, a steady state is
never reached. Away from the steady state, the beat fre-
quency depends on the history of beat frequencies, i.e., is
path dependent. Therefore, the enhancement of a white noise
input is different (in fact, substantially lower) than that of a
monotonic signal. Hence, the dispersive medium filters out
high-frequency noise in comparison to the signal. Another
way to look at this is that the noise adds a finite bandwidth to
the beat note, and this bandwidth is increased by the disper-
sion, but slower than the inverse of the group index. A simi-
lar result is found in the calculations of the Appendix, where
it is shown that the regenerative gain linewidth remains finite
even for a group index of zero.

We note, finally, the analogy between dispersive and non-
linear optical elements: Just as the saturation of a laser gain
medium compensates intensity variations, a dispersive ele-
ment can compensate phase variations. Fast light media in-
crease phase variations and are therefore analogous to satu-
rable absorbers, which increase the amplitude noise of a
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laser. Slow light media, on the other hand, decrease phase
noise, and are analogous to two-photon absorbers, which de-
crease amplitude noise. For both nonlinear optical and dis-
persive elements, when the system is driven beyond its abil-
ity to assume a steady state, nonlinear dynamic effects such
as bistability can occur.
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APPENDIX: GYRO LOCK-IN CONDITIONS

Let us treat the laser cavity as a regenerative amplifier
below threshold, having only one port for input and output.
The complex transfer function for the electric field is

Gy = Fon_ R=gHwienp(id)

E, 1-RgAw)exp(i})
_ R-grw)
1-Rgr()(1 +i[¢+P(w)])’

(A1)

where ¢=(w—w,)7, is the single-pass phase shift, g is the
round trip gain, R=R exp(i¢) is the complex port reflectiv-
ity, and Rg7(w) is the net gain per round trip. We have as-
sumed the port reflectivity is real (¢g=0), small detunings
[¢+D(w)=0] from resonance, and that there is some strong
frequency dependence near the resonance frequency wy, €.g.,
due to some high-Q filter or hole burning in the gain line,
such that we must include the complex filter function T{w)
=7{(w)exp[iP(w)].

Now, the net gain at the free-running oscillation frequency
wy is clamped at the threshold value Rgm(wy)=1.
Hence, the gain at some other, injected, frequency is
Rgm(w)=Rgnwy) x(w)=x(w), where x(w)=rw)/m(w)
=exp[—-ay(w)7./2] is the transmittance ratio, and a ()
= a(w)—-a(w,) is the loss coefficient difference at the two
frequencies. For small detunings the spectrum is approxi-
mately linear, so that the feedback and sensitivity gains are
equal, ie., @P(w)=-G(w)p=[dP(w)/dP]ld=-5(w)dp.
Hence, ¢+P(w)=4N¢, where the group index N is ap-
proximately independent of frequency. Within this constant-
group-index approximation, the intensity amplification is
then

|g(w)|2 ~ [X(w) - R2]2
[1-x(0) +[x(w)*N¢]
The condition for lock in of the free-running oscillation at

frequency w, and intensity I, by an external injected signal
at frequency w; and intensity [y, is that the output intensity

(A2)

|§(ou1)|2 I, exceeds I, i.e.,
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FIG. 6. (Color online) Regenerative gain line for R=0.95 and no
dispersion (solid curve); $N=1, normal dispersion (dashed curve);
§N=2, anomalous dispersion (dashed curves); éN=(a) 0, (b) 0.5,
and (c) —2. At N=0 the line is broad (but not infinite), and narrows
as N increases or decreases. Note that the widths for N=-2 and 2
are equal. The gain deviates from unity for large detunings because
of the small-angle approximation.

x(w) —Rz)zl_l_ (X(wl) -1
Nx(0)R/ Iy \ *Nx(w))

Without the dispersive filter, i.e., H(w;)=x(w;)=N=1, we
obtain the well-known formula for the injection lock-in fre-
quency detuning,

1-RY)/R |I 1 I
| — wo| < (-F)R \/:“_\/:, (A4)
T, Iy 7, VI

where 7, is the cavity lifetime. The lock-in frequency range
is then twice this detuning, i.e., Aw=2|w, - y|. The disper-
sive filter, however, alters the injection lock-in frequency, as
a result of modification of the regenerative gain line. A plot
of Eq. (A2) is shown in Fig. 6, for various values of éN. For
anomalous dispersions such that |$N|<1, the phase filter
broadens the regenerative gain line, thereby increasing the
lock-in condition. The maximum linewidth and lock-in range
occur for $N=0. On the other hand, for stronger anomalous
dispersions such that $N<-1, or for normal dispersions, i.e.,
§N>1, the phase filter narrows the gain line, decreasing the
lock-in condition.

Now, in a laser gyro a small portion of the internal inten-
sity, ply/(1-R), is scattered into the counterpropagating
beam, where r is the scattering coefficient per round trip.
This internal injection corresponds to an external injection of
ply/(1-R)?>=I,. Substituting into Eq. (A3), we obtain the
transcendental equation for the gyro lock-in range, i.e., the
dead band,

_ 1 1—R2/X(w1)>2£ ( 1 )2}
("SI)Z\W{( -k )R\ X

_ (y(wo v_Z)Z_ <ad<wl)3>2
Ya *N 2 oN/

where  Y(w,)=7y,—ay(w,)/2==(1/7)In[R*/ x(w,)] and
vs=1/7,=—(1/7,)InR*> are frequency-dependent and
-independent cavity loss rates, i.e., with and without the dis-

2
(¢1)2<< ) . (A3)

(A5)
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LHS and RHS

Detuning, ¢ /p'"

FIG. 7. (Color online) Dead band of a laser gryo with R=0.95
and p=0.001, shown as the intersections of the LHS (two solid
vertical curves) and RHS (solid curves) of Eq. (A5). N
=(a) =0.02, (b) *£0.1, (c) £0.5, and (d) *=2. The positive group
index is the wider of the two curves in each case. The dashed
horizontal lines represent the constant-loss approximation of Eq.
(A8). The dead band is well approximated in (c) and (d), but in (a)
and (b) the dead band is smaller than the approximation as a result
of differential absorption. Increasing the scattering coefficient
pushes the solid curves upward, thereby increasing the dead band.

persive filter, respectively, and the approximation holds in
the limit of small cavity couplings (R=1, y,=0), and dif-
ferential losses (y= 1, a;=~0). Again, in the absence of the
dispersive filter, we recover the well-known formula for the
gyro dead band,

—

Aw=-F.

Te

(A6)

To determine how the dead band is altered by the ampli-
tude and phase response of the dispersive medium, i.e., by x
and #N, respectively, we must solve Eq. (A5), which is tran-
scendental. In Fig. 7, the intersections of the right- and left-

Relative Dead-Band
5 S

Group Index

FIG. 8. Suppression of the dead band of a laser gyro with R
=0.95 and p=0.001 by differential absorption. The open symbols
are solutions of Eq. (A5), and the crosses are solutions of Eq. (A7).
For large group indices, the dead band is well approximated by the
constant-loss approximation, indicated by the solid curve, but for
smaller group indices near *N=0, the dead band is suppressed by
differential absorption, and is better approximated by Eq. (A7).
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hand sides of Eq. (A5) are plotted versus the phase detuning
¢ in dispersion-free dead band units Vp. Again, in compari-
son with the dispersion-free case, the dead band is decreased
for [*N|>1, corresponding to narrowing of the regenerative
gain linewidth, and increased for |$N| < 1. Now, provided the
dead band detuning is smaller than a critical detuning, found
from the solution of the transcendental equation,

Vdad(wﬂ) r~
T\ 5, ] <Vp,
( 2’}’(601)

then differential absorption can be neglected, and the dead
band can be approximated by

(A7)

’/_
__Npl7,

Aw = .
MDY

(A8B)

Within this approximation of constant loss, any enhancement
in beat frequency is countered by a concomitant increase in
the dead band, because they both scale as 1/8N. This is cer-
tainly the case for the lower curves of Fig. 7. Here, the dead
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band is considerably smaller than the critical detuning
[which marks the strong departure of the RHS of Eq. (A5)
from the straight line], so that we can neglect the effect of
differential absorption. Hence, in this case, the dead band is
well approximated by Eq. (A8). In contrast, for the upper
two curves of Fig. 7, the dead band is large enough that the
approximation fails, and differential absorption results in
considerable suppression of the dead band. The suppression
of the dead band near éN=0 by differential absorption is
emphasized in Fig. 8, where solutions of Eq. (A5) are di-
rectly compared with the approximations of Egs. (A7) and
(A8), and is clearly related to the fact that the linewidth of
the regenerative gain increases (due to the phase response)
but does not become infinite at $N=0.

We have assumed in this discussion that the dead band is
much smaller than the resonator spectrum such that the ap-
proximation of constant group index holds. For dead bands
comparable to the resonance linewidth, the reduction in dis-
persion in the wings of the resonance will tend to widen the
dead band for normal dispersion and reduce it for anomalous
dispersion.
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