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We theoretically and numerically study the effect of backscattering on rotating ring lasers by employing the
Maxwell-Bloch equations. We show that frequency shifts due to the Sagnac effect incorporating the effect of
backscattering can be observed without lock-in phenomenon, if the strength of backscattering originating in the
bumps of the refractive index is larger than a certain value. It is also shown that the experimental results
corresponding to the theoretical ones can actually be obtained by using a semiconductor fiber-optic ring laser
gyroscope.
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I. INTRODUCTION

Ring laser gyroscopes �RLGs� operate laser action on
counterpropagating waves and measure their frequency dif-
ference �beat frequency� due to the Sagnac effect �1–3�. The
main problems for operation are caused by the effects of
backscattering and nonlinearity inherent in a gain medium.
For instance, when the rotation rate of the RLG is slow,
frequency-locking effect induced by backscattering occurs
between the counterpropagating waves and eliminates the
beat frequency due to the Sagnac effect �Sagnac beat fre-
quency�, which is well known as the lock-in phenomenon
�2–7�. In conventional He-Ne RLGs, avoiding the lock-in
phenomenon has been one of the important issues in order to
measure the beat frequency at slow rotation rates, and many
investigations have been intensively done for this purpose.

While conventional RLGs utilize a gaseous medium �He-
Ne� as a gain medium, a new type of RLG using solid states
and a semiconductor material have recently received re-
search attention �8–18�. As is well known, the nonlinearity
inherent in these gain media leads to a spatial hole burning
effect and suppresses one of the counterpropagating waves
due to gain competition �in an ideal ring laser without back-
scattering and noise sources�, unlike in the case of gaseous
medium �4,5�. While several theoretical and experimental
works exist for solid-state RLGs, many of the investigations
have so far focused on overcoming or controlling such a
nonlinearity �10,12–14,16�.

In this paper, we theoretically and numerically study the
effect of backscattering on solid-state and semiconductor
RLGs. In the description, we use the Maxwell-Bloch equa-
tions, which consists of the Maxwell equations rewritten in a
rotating frame of reference and the Bloch equations that have
been used as a simple model of solid-state gain media or as a
semiconductor material. We show that the RLGs can have a
property that the Sagnac beat frequencies are observed with-
out lock-in phenomenon if the strength of backscattering
originating in the bumps of the refractive index is larger than
a certain value. In this case, we found that the rotation rate
dependence of the beat frequency cannot be described by a
conventional theory of the Sagnac effect, which gives a lin-
ear relation between the beat frequency and the cavity rota-
tion rate �1,2�. Instead, we demonstrate that it follows a for-
mula of frequency difference including the effect of

backscattering, which has been derived in Refs. �6,19�. In
addition, we report that such rotation rate dependence can
actually be observed without the lock-in phenomenon in a
semiconductor fiber-optic ring laser gyroscope �S-FOG�
�17,18�, which is composed of a semiconductor optical am-
plifier as a gain medium and optical fibers to form a ring
cavity.

This paper is organized as follows: In Sec. II, we start
with the Maxwell equations in rotating frames of reference
and review the eigenmodes of rotating ring cavities with
backscattering to explain the Sagnac effect incorporating the
effect of backscattering. Then, the Maxwell equations
coupled with the Bloch equations �Maxwell-Bloch equa-
tions� are introduced to describe the nonlinear interaction
between the light field and a gain medium. We analyze the
lock-in phenomenon by expanding the Maxwell-Bloch equa-
tions by the eigenmodes of a rotating ring cavity with back-
scattering and derive the critical backscattering strength,
above which the lock-in phenomenon does not occur. In Sec.
III, numerical simulations confirm whether the Sagnac beat
frequency is observed without lock-in phenomenon. The ex-
perimental results of S-FOG are reported in Sec. IV. Finally,
the summary of this paper is provided in Sec. V

II. THEORY

Applying the electromagnetic equation of a naturally co-
variant form �or the general theory of relativity� to rotating
ring cavities yields the Maxwell equations generalized to a
noninertial frame of reference in uniform rotation with angu-
lar velocity vector �6,20–22�. Assuming that the vector is
perpendicular to the plane where there is a ring cavity and
that the light propagates one dimensionally along the ring
cavity, the following equation can be obtained:

� �2

�s2 −
n2�s�

c2

�2

�t2�E�s,t� − 2
R�

c2

�2

�s�t
E�s,t�

= 2��s�
�

�t
E�s,t� +

4�n2

c2

�2

�t2 P�s,t� + F1�s,t� , �1�

where s is the coordinate along the ring cavity in a rotating
frame of reference with angular velocity �. R�=L / �2��� de-
notes the radius of the ring cavity. P�s , t� is the polarization
depending on the nonlinear response of a gain medium inside

PHYSICAL REVIEW A 78, 053822 �2008�

1050-2947/2008/78�5�/053822�8� ©2008 The American Physical Society053822-1

http://dx.doi.org/10.1103/PhysRevA.78.053822


the cavity, whose expression is given in Sec. II B. Noise F1
is phenomenologically introduced in order to represent ther-
mal fluctuation, quantum noise, cavity vibrations and so on;
�F1�s , t��=0 and �F1�s , t�F

1
*�s� , t���=�1��s−s����t− t��,

where �1 is the strength of the fluctuation, and �¯� denotes
a spatial average or a time average. c is the velocity of the
light, and n�s� and ��s�, respectively, denote the refractive
index and the background absorption. Throughout this paper,
it is assumed that the effect of backscattering from one of the
rotating waves to the opposite rotating waves can be de-
scribed by the bumps of the refractive index and absorption.

A. Eigenmodes of a rotating ring cavities with
backscattering

A key to understanding the effects of backscattering and
rotation is to analyze the eigenmode structure of the ring
cavities �19,23�. We here review eigenmodes and the differ-
ence between the eigenfrequencies in a rotating ring cavity
with backscattering, which have been derived in Refs. �6,19�,
since the eigenmode representation is used in Sec. II C to
analyze laser operation of the ring cavity.

The eigenmodes can be described by the following wave
equation derived from the Maxwell equation �1� omitting
absorption �, polarization term P, and noise term F1:

� �2

�s2 + n2�s�
�2���

c2 �U�s� + 2i
R�����

c2

�

�s
U�s� = 0, �2�

where E�s , t� oscillates with frequency ���� as E�s , t�
=U�s�e−i����t+c.c. and U is the wave function of the mode
obtained under periodic boundary condition U�s+L�=U�s�,
where L is the cavity length. Below, it is assumed
that the wave functions satisfy orthogonal relation
1 / �n0

2L�	UiUj
*n2ds=�ij up to the first order of R� /c. In the

above, L is the total length of a ring cavity, and n0 is spatial-
averaged refractive index n0

2=1 /L	n2�s�ds.
In the case of nonrotating ring cavity �=0, Eq. �2� can be

reduced to a usual wave equation ��2 /�s2

+n2�s�� j�0�2 /c2�Uj
0�s�=0, where � j�0� and Uj

0, respectively,
denote the eigenfrequency and the wave function of a non-
rotating cavity. In particular, when the refractive index is
uniformly distributed inside cavity n�s�=n0, it is known that
the solutions of the wave equation are clockwise �CW-� ro-
tating wave function and counterclockwise �CCW-� rotating
wave function with an identical frequency �0= �ck0
= �2�mc / �n0L�, where m is an integer �m=1,2 , . . . �.

However, such modes with identical frequency cannot
generally be described as eigenmodes when the spatial dis-
tribution of refractive index n�s� is nonuniform, i.e., there is
a bump of the refractive index in the ring cavity:
�n2�s��=n2−n0

2��0. In this case, the bump of the refractive
index causes a linear coupling between the CW- and CCW-
rotating wave modes due to backscattering and the wave
functions of the eigenmodes change into two standing waves
�19,23�. Then, the degenerate frequency is split into two fre-
quencies. For instance, when the bumps of refractive index
�n2�1 are so small, the frequency splitting

��0�=�1�0�−�2�0�� can be associated with the strength of
the backscattering which has a conservative nature, as fol-
lows �19,23�:

�f0 =
��0

2�



c

n0�L
�	 , �3�

where 	 is the intensity-reflection coefficient of the backscat-
ters �	�1�. Then the two standing wave modes with the
splitting eigenfrequencies are described as follows:

U1
0�s� = �2 cos n0k0s, U2

0�s� = �2 sin n0k0s . �4�

Moreover, when the cavity is rotated, the rotation affects
the standing wave modes of a nonrotating cavity and causes
shifts of their eigenfrequencies. The effects can be shown by
applying the perturbation theory for nearly degenerate states
typically used in quantum mechanics to Eq. �2� �24–26�.
Based on the perturbation theory, the eigenmodes in a rotat-
ing cavity with backscattering can be represented as the su-
perposition of the nearly degenerate modes as

U = c1U1
0�s� + c2U2

0�s� , �5�

where the ratio of coefficients c1 and c2 is obtained as

c2/c1 = i
Ŝ�


�Ŝ2�2 + ��0
2 − ��0

. �6�

Then frequency � j��� of eigenmode j �j=1,2� newly pro-
duced by cavity rotation up to the first order of R� /c is
described as

�1��� = �0 +
1

2
�Ŝ2�2 + ��0

2, �7�

�2��� = �0 −
1

2
�Ŝ2�2 + ��0

2, �8�

where ��0 is the frequency difference between modes of the

nonrotating cavity and Ŝ is the so-called scale factor, which

can be represented as Ŝ= 1
n0

2c�
� 	U1

0 �
�sU2

0ds�
2�0R / �n0c�
=4�0A / �n0cL�, where A is the area bounded by the ring
cavity �2�. From Eqs. �7� and �8�, frequency difference �f�

= ���2���−��1���� / �2�� can finally be obtained as follows
�6,19�:

�f� =
���

2�
= �S2�2 + �f0

2, �9�

where S= Ŝ / �2�� and �f0=��0 / �2��.
If there are no backscatters in a ring cavity �i.e., �f0=0�,

the eigenmodes are described as CW- and CCW-rotating
waves, and frequency difference �f� is proportional to rota-
tion rate � �1,2�. However, in the case of a ring cavity with
backscattering, as seen in Eq. �9�, the relation between fre-
quency difference �f� and rotation rate � is not propor-
tional, and it is modified by the effect of backscattering 	.
Then as seen in Eq. �5�, the modes are expressed as super-
posed standing waves with the ratio shown in Eq. �6�. This is
the Sagnac effect in a ring cavity with backscattering.
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B. Model of a gain medium

Next, we discuss the case of a ring laser taking into ac-
count the effect of a gain medium in order to examine how
the Sagnac effect is observed in this case.

To describe a gain medium in interaction with the light
field, we use the well-known optical Bloch equations, which
have been employed as a simple model of solid-state gain
medium or as semiconductor gain medium:

�

�t
��s,t� = − �	� + i�t���s,t� − i�W�s,t�E�s,t� + F2�s,t� ,

�10�

�

�t
W�s,t� = − 	
�W�s,t� − W
� − 2i�E�s,t����s,t� − �*�s,t��

+ F3�s,t� , �11�

where it is assumed that the medium is not influenced by
rotation. In the above, � and W denote microscopic polariza-
tion and population inversion, respectively. The two relax-
ation parameters, 	� and 	�, are the transversal relaxation
and longitudinal relaxation rates, respectively. �t is the tran-
sition frequency between two level medium, and W
 is the
pumping power. Noises F2 and F3 are introduced phenom-
enologically in order to represent thermal and pumping fluc-
tuations:

�Fi�s,t�� = 0,

�Fi�s,t�F
j
*�s�,t��� = �i�ij��s − s����t − t�� , �12�

where �i �i=1,2 ,3� is fluctuation strength. The Bloch equa-
tions �10� and �11� are coupled with the Maxwell Eq. �1�
through the following relation between microscopic polariza-
tion � and macroscopic one P:

P�s,t� = N�s����s,t� + �*�s,t���� , �13�

where � is a real number characterizing the electric-dipole
coupling, and N�s� is the atomic number density described as
N�s�=Na��s�, where ��s� is a step function that is 1 inside a
region of a gain medium and zero outside it.

Equations �1�, �10�, �11�, and �13� are the fundamental
ones describing the light field and the gain medium men-
tioned above.

C. Two mode operation in rotating ring lasers

In analyzing the dynamics of Eqs. �1�, �10�, �11�, and �13�
in ring lasers, we expand these equations by the eigenmode
basis of a rotating cavity derived in Sec. II A and derive the
amplitude and the phase equations of the modes, although in
conventional theoretical approaches, CW- and CCW-rotating
wave basis has been frequently used �2–6,11–15�. As dem-
onstrated in Ref. �19,23�, using the eigenmode basis makes it
possible to simply discuss dynamical behaviors of ring la-
sers.

To focus on the effect of a gain medium, we here omit
noise terms Fi �i=1,2 ,3� in the Maxwell-Bloch equations
�1�, �10�, �11�, and �13�, and assume that electric field E�s , t�

are described by two eigenmodes Uj �j=1,2� as follows:

E�s,t� = Ẽ�s,t�e−i�0t + c.c. = �
j=1,2

Ej�t�ei�j�t�Uj�s�e−i�0t + c.c.,

�14�

where Ej and � j �R denote the amplitude and the phase of
the mode j of a rotating ring cavity, respectively. Then we
assume that frequency �0 is close to the transition frequency
�t of the gain medium, ��0−�t� /�t�1.

In this case, solving Eqs. �10�, �11�, and �13� by a pertur-
bational method for small electric field yields P


−i�0ẼW�+c.c. and W=W
�1−�0�Ẽ�2�+O��Ẽ�4�, where
�0=2�Na�2��0 /	� and �0=4�2 / �	�	
�. By substituting
them in the Maxwell equation �1� and using the following
orthogonal relation 1 / �n0

2L�	U
i
*Ujn

2�s�ds=�ij +O��R� /c�2�,
where n0 is the spatial-averaged refractive index, n0

2

=1 /L	n2ds, we can obtain the following equations for am-
plitude Ej:

d

dt
Ej = �gj − sjEj

2 − c12E3−j
2 �Ej − Mj

c cos � − Mj
s sin �

− M̄ j cos�2� + ��� , �15�

where “net-gain” coefficient gj, self-saturation coefficient sj,
and cross-saturation coefficient c12 are given in Table I. � is
the phase difference, i.e., �2−�1. Modulation amplitudes

Mj
c, Mj

s, and M̄ j are described as

Mj
c = ��	12�cos �	 + 3�� j�cos � jEj

2 + ��3−j�cos �3−jE3−j
2 �E3−j ,

�16�

TABLE I. Coefficients in Eqs. �15�–�17� and �19�.

Coefficient Physical content

gj =�0tjW
−	 j j Linear net gain

si=
�0W


n0
2L

	��Ui�4n2ds
Self-saturation

c12=
2�0W


n0
2L

	��U1�2�U2�2n2ds
Cross-saturation

� j =
�0W


n0
2L

	��Uj�2U
i
*U3−j

2 n2ds
Modulation

�=
�0W


n0
2L

	�U
1
*2

U2
2n2ds

Modulation

�0=
2�Na�2��0

	�

First-order factor

tj =
1

n0
2L

	��Ui�2n2ds
Light-medium coupling

	ij =
c2

n0
2L

	�U
i
*Ujds

Dispersive coupling

�0=
4�0�2

	�	


Third-order factor

n0
2=

1

L
	n2ds

Averaged refractive index
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Mj
s = �− 1�3−j��	12�sin �	 + 3�� j�sin � jEj

2

− ��3−j�sin �3−jE3−j
2 �E3−j , �17�

M̄ j = ���E3−j
2 Ej , �18�

where �	, � j, and �� are the arguments of 	12, � j, and �,
respectively.

On the other hand, the dynamics of phase difference
��=�2−�1� is described as

d

dt
� = − ��� + H��� , �19�

where ����=�2���−�1���� is the frequency difference be-
tween the two modes, as shown in Eq. �9�. H, which is a
periodic function of � �period 2��, can be described as fol-
lows:

H��� = �	12�
E1

2 + E2
2

E1E2
sin�� + �	� + ����E1

2 + E2
2�sin�2� + ��� ,

�20�

when amplitudes E1 and E2 are small enough and �1
�
2
*

�1.
The solutions of Eqs. �15� and �19� can be mainly classi-

fied into two: One is a stable stationary solution with con-
stant amplitudes and a constant phase difference, and the
other is with time-dependent phase difference and amplitude
modulating with the phase difference. The distinction can be
clearly made by examining Eq. �19�, which describes the
time evolution of the phase difference.

Note that the form of Eq. �19� resembles with the well-
known locking equation �2–6�. This means that the solution
of Eq. �19� markedly depends on the relative strengths of
��� and max�H����, where max�H���� denotes the maxi-
mal value of �H����, which is obtained by solving the sta-
tionary equations of dEi /dt=0. For instance, in the case of
����max�H����, Eq. �19� has stable fix points given by
the solution of d� /dt=0. According to definition of �, con-
dition d� /dt=0 implies that the frequency difference be-
tween modes 1 and 2 equals zero, i.e., the lasing frequency
of mode 1 becomes identical with that of mode 2, which is
the lock-in �frequency locking� phenomenon. On the other
hand, when condition ����max�H���� is satisfied, the
lock-in phenomenon does not occur. Thus, phase difference
� can be approximately described as ��t�
−���t+�0,
where �0 is an initial phase, while the amplitudes Ej �j
=1,2� of the lasing modes oscillate with frequency ���

through the modulation terms of Eq. �15� �18�.
Here we emphasize that frequency difference ��� in Eq.

�19� not only depends on rotation rate � but also on the
strength of conservative backscattering 	. As shown in Eq.
�9�, ��� never becomes zero even at rotation rate �=0
when there are backscatters inside the ring cavity. This
means that the lock-in phenomenon does not occur even at
rotation rate �=0 if frequency splitting ��0 is large enough
to satisfy condition:

��0 � max�H�����=0 � ��c. �21�

This condition is rewritten using Eq. �3� as follow:

	 � 	c =
n0

2L2

4c2 ��c
2. �22�

Although criterion ��c is too complicated to be analytically
expressed for general cases, it has the simple form for a case
where the wave functions of the two modes can be expressed
by Eq. �4� because of 	�1 and where wavelength 2� /k0 of
the light is shorter than the size of the ring cavity
k0���s�ds�1. Therefore g1
g2=g and s1
s2=s. By solv-
ing equation dEi /dt=0 under such conditions, we can derive
criterion ��c,

��c = 2 max� �	12��K − 1�sin � + g sin 2�

K + cos 2�
� , �23�

where K=s /�+2
5. In the case of �dispersive coupling�
	12�g �linear net gain�, since H��� has maximal value at
�m=� /2�2m+1�, where m is an integer, Eq. �23� is reduced
to ��c=2�	12�, while in the case of 	12�g, it is reduced to
��c=2g /�K2−1 �27�, where H��� takes the maximal value
at �m=m�−1 /2 arctan �K2−1.

It is known that, in the case of conventional RLGs using a
gaseous medium, disappearance of frequency difference is
caused by nonlinear phenomena such as lock-in in low rota-
tion rate regime �2,3,6,7�. However, this result means that, if
conditions �21� or �22� are satisfied, solid-state RLGs will
have a property that the lock-in phenomenon is naturally
avoided. It can be concluded that the frequency difference
��� described by Eq. �9� without the lock-in phenomenon
can be observed even at arbitrary slow rotation rate.

III. NUMERICAL SIMULATIONS

In the preceding section, we derived the amplitude and the
phase-difference equations under two mode operation by ex-
panding the Maxwell-Bloch equations by the eigenmodes of
a rotating ring cavity with backscattering, and discuss the
occurrence of lock-in phenomenon. Note that a perturbation
theory for � and W and several approximations, including
Ei�1, are employed in the derivation. Additionally, noise
terms Fi are omitted. Thus, it is needed to check the validity
of the theoretical predictions obtained in the preceding sec-
tion by the Maxwell-Bloch equations �1� and �10�–�13� in-
cluding noise terms and full-order nonlinearity of a gain me-
dium. In this section, we restrict ourselves to discuss the
lock-in phenomenon by the numerical simulations. Detailed
discussions of the effect of noises on lasing dynamics will be
reported elsewhere.

Note that it will take a very long time to simulation the
Maxwell-Bloch equations because the fast oscillation as well
as the slowly varying envelop of the light field are simulated.
The fast oscillation part of the light field has the constant
frequency, which is very close to the transition frequency �t.
Thus it is possible to separate the slowly varying part from
the fast oscillation part in order to investigate the dynamics
of rotating ring lasers.
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Let us suppose Ẽ and �̃ to be the slowly varying envelope

of the electric field and the polarization field as E= Ẽe−i�0t

+c.c. and �=−i�̃e−i�0t, where the rotation wave approxima-
tion �RWA� is taken into consideration for the polarization.
Applying the slowly varying approximation for time to
Maxwell-Bloch Eqs. �1�, �10�, �11�, and �13� yields the fol-
lowing equations:

�

�t
Ẽ =

i

2
� �2

�s2 +
n2�s�

n0
2 + 2i

�D

n0

�

�s
�Ẽ − �̃Ẽ + ��s��̃ + F̃1�s,t� ,

�24�

�

�t
�̃ = − �	̃� + i�0��̃ + �̃WẼ + F̃2�s,t� , �25�

�

�t
W = − 	̃
�W − W
� − 2�̃�Ẽ�̃* + c.c.� + F̃3�s,t� , �26�

where space and time are made dimensionless by the scale
transformation; �n0�0 /c�s→s and �0t→ t, respectively, and

�̃��c2 / �n0
2�0�, �D�R� /c, ��s���2�Na�� /n0

2���s�, 	̃�

�	� /�0, 	̃
 �	
 /�0, �̃�� /�0, �0���0−�t� /�0. F̃i is
noise with the strength of fluctuation �̃i=c2 / �n0

2�0
2��i.

In our simulations, we chose a ring cavity with �dimen-
sionless� radius R=10 composed of a passive region and an
active region where there is a gain medium. Then we sup-
pose n1 and n2 to be the refractive index of the passive and
active regions, respectively. Length l of the active region is
set as l= �5�2�10−2�L, where L is the total cavity length
2�R. Then we set the values of most of the system’s param-
eters as follows: �̃=0.5, W
=2�10−3, 	̃�=5�10−2, 	̃


=10−3, �̃ j =10−7�j=1,2 ,3�, �0=0, and �̃�s�=�L��s�, where
��s� is a step function that is 1 inside the active region and
zero outside it, and �L=10−3.

Here, note that the conservative backscatters are intro-
duced by the variations of the refractive index in this cavity.
Since the strength of backscattering 	 is related to the varia-
tion as �	� �n2

2 /n1
2−1�, the resonant frequencies of the

eigenmodes of a nonrotating cavity are split into two, follow-
ing Eq. �3�. The solid line in Fig. 1 shows the dependence of
�dimensionless� frequency splitting ��0 /�0 on the ratio of
the refractive index n2

2 /n1
2.

For various values of n2
2 /n1

2, we numerically integrate
Eqs. �24�–�26� to obtain two mode laser operation in the
nonrotating ring laser ��D=0�. The detailed method of the
numerical simulations is shown in the Appendix.

In Fig. 1, we show the n2
2 /n1

2 dependence of the frequency
difference between the two lasing modes by closed circles.
As seen in this figure, it turns out that there is a zone corre-
sponding to the absence of the frequency difference for
n2

2 /n1
2�1.006. This is because of frequency locking between

two modes. The regime �n2
2 /n1

2�1.006� corresponds to the
case when strength 	 of conservative backscattering is
smaller than critical value 	c. On the other hand, the fre-
quency difference can be numerically observed without the
frequency locking phenomenon for n2

2 /n1
2�1.006, and its

value approaches the solid line obtained from Eq. �3�. Below,

we refer to the two regimes, 0�n2
2 /n1

2�1.006 and n2
2 /n1

2

�1.006, as locking and unlocking regimes, respectively.
Typical examples of the rotation rate dependence of the

frequency difference are shown in Figs. 2�a� and 2�b� for the
locking �n2

2 /n1
2=1.005� and unlocking regimes �n2

2 /n1
2

=1.02�, respectively. The frequency difference calculated by
Eq. �9� in each case is represented by the solid line. For the
locking regime, when the ring laser is rotated but the rotation
rate is small, the frequency-locking phenomenon is still
caused and therefore, the frequency difference between the
two lasing modes cannot be observed �Fig. 2�a��. When ro-
tation rate �D is increased, however, the frequency differ-
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where n1 and n2 are, respectively, the refractive index of passive
and active regions in a nonrotating ring laser ��=0�. Frequency
difference is made dimensionless as ��0 /�0. Solid line denotes
frequency difference between eigenmodes calculated following Eq.
�3� in the ring cavity �without a gain medium�, while closed circles
are results obtained by numerical simulations of Eqs. �24�–�26�.
Numerical results show that frequency-locking phenomenon occurs
and frequency difference becomes zero when n2
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2 is less than

�1.006.
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ence starts to increase and approaches the values calculated
by Eq. �9�. The existence of the region corresponding to the
absence of the frequency difference might be qualitatively
similar with so-called deadband �2�. On the other hand, for
the unlocking regime �Fig. 2�b��, as mentioned above, the
frequency-locking effect is not caused even at zero rotation
rate. As the rotation rate is increased, the frequency differ-
ence following Eq. �9� increases without deadband, as shown
in Fig. 2�b�. These numerical results confirm the theoretical
prediction that frequency difference can be observed without
the lock-in phenomenon in a ring laser with conservative
backscattering.

IV. EXPERIMENT

Last, let us examine if the theoretical results can actually
be obtained in a real experiment. For this purpose, we used a
semiconductor fiber optic ring laser gyroscope �S-FOG�
�17,18�. The experimental setup is illustrated in Fig. 3. The
ring laser part of S-FOG consists of a semiconductor optical
amplifier �SOA� as a gain medium and polarization-
maintaining fibers to form a ring cavity. Conservative back-
scattering is mainly caused at the connection point between
the SOA and the optical fibers in S-FOG, because there is an
air region at the connection point, which leads to substantial
changes of the refractive indices at the points �28�. From the
return loss measurements, the value of 	 was approximately
estimated as 10−5�	�10−4. The extraction of the laser out-
put signal from the ring laser part is achieved by a 95:5
coupler, where only 5% energy of the CW-output signal is
extracted. It is detected by photodetector PD, as shown in
Fig. 3. SPA denotes a rf spectrum analyzer that is used to
observe the beat frequency signals of the output signal �29�.
The entire system including power supplies and measure-
ment instruments is mounted on a rotation table.

A. Estimation of �c

To obtain the critical backscattering strength 	c for the
S-FOG, it is useful to estimate the parameters �dispersive
coupling 	12 and linear net gain g� that determine the
	c-value �Eq. �22��.

Dispersive coupling 	12 can be calculated on the basis of
the definitions shown in Table I as 	12

� / �2n0kl��sin n0kl sin ���� / �2n0kl�, where � is the total
loss �typically, 105���106 s−1� of the ring cavity. k0 and l
are, respectively, the wave number of the light and SOA
length �l
1.5 mm�, and � is the parameter related to the
position of the SOA. For the calculations, we used the wave
functions �4� because 	�1. Using the S-FOG’s parameters
�lasing wavelength �
1563.1 nm, n0=1.445, and �

106 s−1� with the above equation yields dispersive cou-
pling 	12�104 s−1.

Linear net gain g of the SOA can be rewritten as g
=g0��−1�, where � is the normalized pumping power de-
fined by �= �W
−Wth� /Wth �Wth is the pumping threshold�,
and coefficient g0 is estimated as g0
1.3�107 s−1 using the
differential gain coefficient of the SOA. When we set nor-
malized pumping strength � as �=1.06 in the ring laser of
fiber length L=4.12 m, linear gain coefficient g is estimated
as g
6.6�105 s−1. Using this value and values 	12
=104 s−1, K=5 with Eq. �22� yields critical backscattering
strength 	c
7.2�10−6, which is smaller than the measured
value of 	�=10−5–10−4�. From these estimations, we expect
that the S-FOG satisfies the condition �22� and generates beat
frequency signals without the lock-in phenomenon.

B. Results and discussions

Figure 4 shows the measured rf spectra obtained from the
PD output signal at normalized pumping power �=1.06,
where the spectrum is time averaged to obtain clear beat
signals. As predicted by the above estimation, a peak corre-
sponding to the beat frequency can be seen in the rf spectrum
even at zero rotation rate ��=0 deg /s�. Then the peak fre-

FIG. 3. Experimental setup of semiconductor fiber ring laser
gyroscopes �S-FOG�: SOA, a semiconductor optical amplifier �its
temperature is kept at 25° by a thermocontroller�; coupler, 95:5
coupler �5% of energy is extracted only from the CW-output signal
inside ring cavity.�; PD, photodetector; SPA, rf spectrum analyzer.
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quency is changed as the rotation rate is increased. Figure 5
shows the rotation rate dependence of the peak frequencies.
The experimental result demonstrates highly linear character-
istics only in cases of high rotation rate, while there is sub-
stantial deviation from an asymptotic line given by the
dashed line for slow rotation rates.

In addition, we confirmed that the similar rotation rate
dependence with that shown in Fig. 5 can be observed even
when changing the length of an optical fiber of the ring cav-
ity part. According to Eq. �3�, the beat frequency observed at
zero rotation rate ��=0� can be controlled by changing the
fiber length. In Fig. 6, we show the dependence of the beat
frequency on the fiber length. We find that the dependence
can be explained by using Eq. �3� with the assumed back-
scattering strength 	=7.0�10−5, which is given by the solid
line in Fig. 6. Assumed 	 value is consistent with the order
of the value 10−5–10−4 obtained from the return loss mea-
surement. Moreover, to explain the rotation rate dependence
of the beat frequency shown in Fig. 5 by using the assumed
	 value, we superimpose Eq. �9� with 	=7.0�10−5 in the
solid curve of Fig. 5. It also turns out that the tendency of the
experimental results is well reproduced by Eq. �9�. Conse-
quently, we conclude that the S-FOGs with 	�	c have a
gyro property that the lock-in phenomenon does not occur.

V. SUMMARY

In summary, we studied the effect of backscattering on
rotating ring lasers by using the Maxwell-Bloch equations
�1�, �10�, �11�, and �13� and showed that the occurrence of

the lock-in phenomenon can be characterized by the strength
of the conservative backscattering that originates in the
bumps of the refractive index. Particularly, we revealed the
existence of critical backscattering strength 	c, above which
the Sagnac frequency shifts described by Eq. �9� can be ob-
served without the lock-in phenomenon. We also showed that
the experimental results corresponding to the theoretical one
is actually obtained in a S-FOG. We believe that the property
that lock-in phenomenon does not occur is not unique for
S-FOGs but universal for RLGs using solid state and semi-
conductor as gain medium.
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APPENDIX: NUMERICAL SIMULATION METHOD

Let us explain the numerical simulation method of Eqs.
�24�–�26�. The approximated Maxwell equation �24� has

identical form to the Schrödinger equation with absorption �̃,

polarization �̃, and noise F̃1; it allows us to use the tech-
niques of the symplectic-integrator method �30� to carry out
numerical simulations of dynamics.

We divide Eq. �24� into wave propagation, polarization,
and noise parts. The time evolution operator of the wave

propagation part is given as U�=e−iĤ�, where Ĥ consists of

the kinetic energy part T̂=−1 /2��2 /�s2+2i�D /n0� /�s� and

the potential part including linear absorption term V̂

=−n2 / �2n0
2�− i�̃ as Ĥ= T̂+ V̂. If time � is very small, the time-

evolution operator can be split based on the symplectic-
integrator method as follows:

U� = e−iV̂�/2e−iT̂�e−iV̂�/2 + O��3� . �A1�

The next time-step value of electronic field Ẽ�t+� ,s� is cal-
culated by operating the split U� on the previous time-step

value Ẽ�t ,s� and including the contribution of the polariza-
tion term and a noise term up to the first-order correction of
�,

Ẽ�t + �,s� 
 U�Ẽ�t,s� + ��s��̃�t,s�� + df1�s,t� , �A2�

where df1= F̃1�.
Equation �A2� can be calculated by the following

procedures: First, potential part e−iV̂�/2 is operated on

Ẽ�t ,s� �Ẽ1�t ,s��e−iV̂�Ẽ�t ,s��. Then the Fourier translation of

Ẽ1�t ,s� is calculated as E1
ˆ �t ,k�= 	 Ẽ1�t ,s�e−iksds. Operating

E1�t ,k�ˆ to e−iT̂� yields the following result:
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Ẽ2�t,s� =
1

2�
� e−i/2�k2+2�D/n0k��Ê1�t,k�eiksdk . �A3�

Then e−iV̂�/2Ẽ2�t ,s���Ẽ3�t ,s�� is obtained. Finally, the next

time step Ẽ�t+� ,s� is obtained by adding polarization term

��s��̃�t ,s�� and noise term df1�t ,s� to Ẽ3�t ,s�. df1 is gener-
ated by converting uniform random numbers generated by
the M-sequence technique to normal distribution random
numbers by using the Box-Muller formula.

For the Bloch equations, the next time-step value of po-
larization �̃�t+� ,s� and population inversion W�t+� ,s� are
calculated by the Euler method,

�̃�t + �,s� = �̃�t,s� +
d

dt
�̃�t,s�� + df2�t,s� , �A4�

W�t + �,s� = W�t,s� +
d

dt
W�t,s�� + df3�t,s� , �A5�

where dfi�t ,s�= F̃i�t ,s�� �i=2,3� are also generated by the
above method.
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