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Quantum theory of optical temporal phase and instantaneous frequency
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We propose a general quantum theory of optical phase and instantaneous frequency in the time domain for
slowly varying optical signals. Guided by classical estimation theory, we design homodyne phase-locked loops
that enable quantum-limited measurements of temporal phase and instantaneous frequency. Standard and
Heisenberg quantum limits to such measurements are then derived. For optical sensing applications, we
propose multipass and Fabry-Pérot position and velocity sensors that take advantage of the signal-to-noise-
ratio enhancement effect of wide-band angle modulation without requiring nonclassical light. We also gener-
alize our theory to three spatial dimensions for nonrelativistic bosons and define a Hermitian fluid velocity

operator, which provides a theoretical underpinning to the -current-algebra approach of quantum

hydrodynamics.

DOI: 10.1103/PhysRevA.78.053820

I. INTRODUCTION

Frequency modulation (FM) radio sounds better than am-
plitude modulation (AM) radio, because by encoding a mes-
sage in the instantaneous frequency, defined as the rate of
change of the signal phase, FM uses more transmission
bandwidth to improve the signal-to-noise ratio (SNR) [1-3].
In optical communications, FM and phase modulation (PM)
techniques have also received significant attention and can
offer higher SNRs in photonic links than standard intensity
modulation [4]. Quantum statistics is expected to play a ma-
jor role in the performance of coherent optical communica-
tion systems [5-7], but although a treatment of digital FM
quantum noise was briefly mentioned by Yuen [7], a more
fundamental quantum theory of temporal phase and instanta-
neous frequency is not yet available. In optical sensing, on
the other hand, a considerable amount of research has been
devoted to the study of ultimate quantum limits to phase
[8—11] and velocity [12] measurements. A quantum descrip-
tion of temporal phase and instantaneous frequency is again
needed to deal with any rapid change in the measured pa-
rameters. For example, in laser Doppler velocimetry, which
has been widely used in fluid dynamics [13] and blood flow
diagnostics [14], the velocity of the interrogated sample ac-
tually shifts the instantaneous frequency of the reflected op-
tical signal and not the average frequency directly, so the
quantum limits to velocity measurements derived in Ref.
[12] are no longer accurate when the velocity changes
rapidly.

A rigorous quantum description of the optical phase is,
unfortunately, not trivial even for one optical mode, and has
been a subject of long-running debate [9,15-21] since the
issue was first raised by Dirac at the birth of quantum elec-
trodynamics [22]. The difficulty of defining a phase operator
is shared by the superfluid and Bose-Einstein condensate
community [23], where the fluid velocity in Landau’s formu-
lation of quantum hydrodynamics [24] is often related to the
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phase gradient of an order parameter. Beyond the Bogoliu-
bov approximation, while Landau has proposed a fluid ve-
locity operator [24], many have argued against its existence
[25].

In this paper, we show how the temporal phase and the
instantaneous frequency of a slowly varying optical signal
can be treated consistently in the quantum regime. By limit-
ing the bandwidth of the optical Hilbert space, we discretize
the continuous time domain into orthogonal “wave-packet”
modes via the sampling theorem. This crucial step allows us
to apply previous studies of discrete-mode quantum phase to
the time domain. To enable quantum-limited temporal-phase
measurements in practice, we use estimation theory to design
homodyne phase-locked-loop measurement schemes, similar
to adaptive phase measurements [27-29]. Standard and
Heisenberg quantum limits to the accuracy of temporal-
phase and instantaneous-frequency measurements for coher-
ent states and squeezed states are then derived. For sensing
applications, we propose multipass and Fabry-Pérot position
and velocity sensors that take advantage of the SNR en-
hancement effect of wideband angle modulation. Finally, we
generalize our time-domain formalism for optics to three
spatial dimensions for nonrelativistic bosons and define a
Hermitian fluid velocity operator, which provides a theoreti-
cal underpinning for the current-algebra approach to quan-
tum hydrodynamics [23-26].

II. QUANTIZATION OF BAND-LIMITED OPTICAL
FIELDS

To describe a typical free-space or fiber optical experi-
ment, propagating modes are usually quantized in terms of
the frequency, transverse momentum, and polarization de-
grees of freedom [6,30,31]. We shall consider a plane wave
of a certain polarization in free space or one fiber mode at an
observation plane along the optical axis, and allow only the
frequency degree of freedom for simplicity. In the slowly
varying envelope regime, one can regard the optical fields as
a one-dimensional nonrelativistic many-boson system and
quantize accordingly [6,30-32]. The positive-frequency
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FIG. 1. (Color online) sinc B(t—t').

electric-field operator can then be approximated as

EW(1) < A(t)exp(= i2mfyt), (2.1)

where A(t) is the envelope annihilation operator and f is the
carrier optical frequency. We shall make the physically rea-
sonable assumption that our ability to create, manipulate,
transmit, and measure the optical fields is limited to a certain
bandwidth B near the carrier optical frequency f;,. We can

then express A(t) as the band-limited Fourier transform of
the frequency-domain annihilation operator d(f),

B/2
Al = f dfa(fexp(- i2f1). (2.2)
-B/2

In other words, we only need the set of operators d(f) and
a'(f) for which f falls within the band (|f] <B/2) to describe
our experiments. To satisfy the slowly varying envelope ap-
proximation, we require B/2 << f,,. The commutation relation
between d(f) and the corresponding creation operator a'(f) is

[a(f).a" (1= & - 1), (2.3)

which leads to the following time-domain commutation rela-
tion:

[A(1),A(+')]=B sinc B(t—1'), (2.4)
where the sinc function is defined as
sin(7x
sinc(x) = ( ). (2.5)
X

We make the important observation that the time-domain
commutator given by Eq. (2.4) goes to zero at discrete inter-
vals, as shown in Fig. 1, when r—t' is a nonzero-integer
multiple of 1/B. If we discretize time into such intervals, that
is, let

t,=ty+jot, (2.6)

where j is an integer and
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1
o= —, 2.7
3 2.7)
the commutator at these sampled times becomes
o) A" 3
[A(#), A ()] =By =—. (2.8)

ot

The sampled times have become orthogonal “wave-packet”
modes, as described qualitatively but not substantiated in
Ref. [5]. The operators can be renormalized to give the con-
ventional discrete-mode commutator,

and the continuous-time and continuous-frequency operators
can be reconstructed using the sampling theorem,

o)

A()=\B Y, a; sinc B(—1), (2.10)
j:—oo
. | - , B
af) = '_E > a;exp(i2mft;) for |f] < 5 (2.11)
D j=—w

By virtue of the sampling theorem, the use of the discrete-
time operators on the band-limited Hilbert space is com-
pletely equivalent to the use of continuous-time or
continuous-frequency operators.

The band-limited Hilbert space can be spanned by
photon-number states in discrete wave-packet modes,

[P
In); = —=(a))"0);, |n)=®[np);,
| A'
vn;! J

(2.12)

1=2 |n)nl, (2.13)

where n; is the number of photons in the wave-packet mode
at time £ and for convenience we use boldface n to denote
the vector {...,n;,n,,...}. Appendix A lists other notations
that we shall use to describe algebra in the discrete time
domain. For a pure state |¥), the photon-number representa-
tion 1s

Cln]=@m|V), X|Cln]=1. (2.14)

Another way of spanning the Hilbert space is via nonor-
thogonal — multiphoton  time-measurement  eigenstates
[19,31,32],

| o
= — AT o AT
|7, oo Ty) \’—N!A (1) -+~ AT(7y)|0), (2.15)

1= dry...dry|1, ..., T X7, . oTy]. (2.16)
N=0

The multiphoton wave function is then

/NG 7N P), (2.17)

Ty =(T1, ..
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2 dTl.“dTN|17//N(7-19°--7TN)|2:19 (218)
N=0

which is related to the photon-number representation by [32]

lrllN(Tl’ ’TN) = E C[n]CDn(Tl,

n,Zjnij

,Ty), (2.19)

D, (7, ...,7y)

HAn-!)”2 N = e (T —t;
_ o . Py(r)) ])
( 201 IT sine{ =—— |,

NN S
=1 rj:E{{ 1"1<+1

(2.20)

where P/(r;) is an element of a permutation of {r|,...,ry}
and the sum over [ is over all N! possible permutations so
that ®,, is symmetric. The inverse relation is

N1oN A\ 12
C[n]= (pN(“"tj’""tj’tj+1""’tj+1’"')’
T n il -2
J n; terms Njy1 terms
(2.21)

where N=2X M- For example, a coherent state can be defined
in the continuous-time domain as

|A(1) = exp|:— g + fe th(t)AT(t)] [0y, (2.22)

—00

ADJAMDY = AD|A@), N= f dil A, (2.23)

where A(t) is a band-limited envelope function and N is the
average photon number. In terms of the wave-function rep-
resentation,

—-N2
(i) = SREND Y A, (229)
VN!

Using Eq. (2.21), we obtain the photon-number representa-
tion for a coherent state,

exp(—|a;*2
Cln)= ] 22122 ,|—'| )a;?f, a;= A)ar, (2.25)
Jj \!l’lj

which shows that any coherent state can be written as a col-
lection of independent coherent states in wave-packet modes.

III. CANONICAL TEMPORAL-PHASE MEASUREMENTS

For each wave-packet mode at time t;, we can define the
nonunitary Susskind-Glogower exponential-phase operator
[15] as

|
r/ A4 aj = ~ IS
vadl " NAGAT()

& Alr)). (3.1)

Since & ; depends only on the field operators at time 7;, it can
be regarded as an instantaneous phase operator. Despite the
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nonunitary nature of £ J» its eigenstates form a nonorthogonal
basis of the Hilbert space,

|y = 2 explin - ¢)|n),

n

dy<Pp< py+2m, (3.2)

i- [ poiona. pe=11%4 63

The Susskind-Glogower eigenstates can thus be used to de-
fine a temporal-phase positive operator-valued measure
(POVM), also called a probability operator measure (POM)
[9,20,21],

[ p] = |pX ). f Dl ¢]=1, (3.4)

which corresponds to a measurement of instantantaneous op-
tical phases {...,¢;, .1, ...} at times {...,;,2;,1,...}. It can
be shown, by generalizing the single-mode treatment in Ref.
[21], that the POVM given by Eq. (3.4) corresponds to the
optimal temporal-phase measurements for any periodic cost
function with non-negative Fourier coefficients. Following
Leonhardt et al. [18], we shall refer to the phase POVM
measurement as the canonical phase measurement. In the
single-mode case, an experimental canonical phase measure-
ment scheme has been proposed by Pregnell and Pegg [33].
While generalization of their scheme to the time domain is
conceivable, it is beyond the scope of this paper to investi-
gate experimental canonical temporal-phase measurement
schemes in detail.
The canonical temporal-phase probability density is

ple] = Tr{pll[ S}, f Dgplpl=1. (3.9

For a pure state, one can define a temporal-phase represen-
tation as the discrete Fourier transform of the photon-number
representation,

Clepl = (W) =2 exp(-in - $)Cln], (3.6)

the magnitude squared of which gives the probability density
().

One can also extend the Pegg-Barnett formalism to the
time domain by considering a Hilbert space spanned by
finite-photon-number states |n) with 0<n <s. The commu-
tator for d; and flj. becomes

[&j,di] = 5jk[1 - (Sj+ 1)|Sj>j<5j|], (3.7)
although applying the commutator to physical states in the
s;— limit recovers the usual commutator [d;,d;],= 6. A
unitary Pegg-Barnett exponential-phase operator can be de-

fined in the photon-number basis as
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exP(“?’j) => |”j - 1>j<”j| +expli(s; + 1)¢0j]|sj>j<0|-
nj=1

(3.8)

By taking the limit s;—o at the end of calculations, the
Pegg-Barnett theory predicts the same phase statistics as the
canonical phase statistics governed by Eq. (3.5), and the two
theories can be regarded as equivalent and complementary
[9].

To define an instantaneous-frequency operator, consider
the classical definition

1 d
Ft)=———— (1) (3.9)

¢(t) can be multivalued or even undefined when the intensity

is zero, so to avoid this ambiguity we write the instantaneous
frequency in terms of exp[i(z)],

Fl) = fm{exp[wm]g expl- i(1)] - }

14
2adt’

, (3.10)

t'=t

sin[ (1) — (1) ]

where c.c. denotes complex conjugate. In the quantum re-
gime, we can discretize F(z) and express it exactly in terms
of the Pegg-Barnett operator,

N 1 n n
F.=—> d;_y sin(g; — ),

= 3.11

PO 1 N A
sin(¢p; — ¢y) = Z[exp(id)j —i¢y)—-Hcel]. (3.12)

H.c. denotes Hermitian conjugate, and d;_; is called the dif-
ferentiator [34], the discrete impulse response that corre-
sponds to differentiation,

_ j—k . .
d,_k={( D774 - k), ].;& k, (.13
0, j=k.

F ; is Hermitian and well defined in the finite-photon-number
band-limited Hilbert space, but given the difficulty of ca-
nonical phase measurements in practice, it might be even
more difficult to measure the instantaneous-frequency opera-
tor, unless approximations are made.

IV. MAXIMUM A POSTERIORI ESTIMATION

It is difficult to perform canonical phase measurements,
and first-order field measurements, such as homodyne detec-
tion and heterodyne detection, are often preferred in practice.
Statistics of heterodyne detection and its variants [17] are
governed by the Q distribution [18,35-37], which is broader
than the Wigner distribution that governs homodyne detec-
tion [35,36], so ideally one would like to use only homodyne
detection to measure the phase and instantaneous frequency.
In this section, we would like to show how this can be done
from the perspective of estimation theory, which naturally
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leads to the use of homodyne phase-locked loops to perform
angle demodulation.
The Wigner distribution is defined as [36]

W[x,y]Ebe exp(b*-a—b-a*)x[b], (4.1)

&’b; 1
Db = 1}1 ?L a= E(x +iy), (4.2)
X[b]=Tr{pexpd-a" -b*-a)}, (4.3)

which governs the statistics of operators that can be ex-
pressed in Weyl-ordered quadrature operators [19,36],

VST = f DeDyflxyWixyl,  (44)
i=d+d’, y=—il@-a"), 4.5)
(4.6)

DxDy = H dxdy;,
J

where the superscript (W) denotes Weyl ordering. In the fol-
lowing, we shall consider only quantum states that have non-
negative Wigner distributions, and assume that measure-
ments of Weyl-ordered quadrature operators can always be
realized. The Wigner distribution is then a qualified classical
probability distribution that we can use in classical estima-
tion theory.

If the range of phase modulation exceeds 27, one must
unwrap the measured phase to unambiguously decode the
message contained within. Phase unwrapping can be done
only if one has a priori information about the message, be-
cause otherwise one would have no other way to distinguish
¢; from ¢;+2n, n being an arbitrary integer, in a measure-
ment. To incorporate a priori information in angle demodu-
lation, we shall use maximum a posteriori (MAP) estimation
[1,2]. Given an a priori probability distribution of the mes-
sage P[m]:P(...,mj,miH, ...), MAP estimation seeks the
message that maximizes the a posteriori probability distribu-
tion

_ Wixylm]P[m]

]

for a set of measurements in terms of x and y, and is asymp-
totically efficient. Taking the logarithm of the a posteriori
distribution and differentiating with respect to m, we arrive
at the vectorial MAP equation, the solution of which gives
the MAP estimate m,

P[m

(4.7)

(V,, In Wx,y|m] +V,, In P[m]),,_, =0, (4.8)
where the gradient operator V,, is defined as
d d
dm; dmij,

The MAP equation (4.8) can be significantly simplified if the
probability distributions are Gaussian. We therefore model
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the message m as a zero-mean Gaussian random process,

P[m] « exp(— %m K, ~m) , (4.10)
K,, = (Am ® Am), (4.11)

where K, is the message covariance matrix. In angle modu-
lation systems, the mean phase is a linear transformation of
the message,

d=H m, (4.12)

where H is a real impulse response. For example, the im-
pulse response for PM is

H=4lI, (4.13)

where 3 is called the modulation index and I is the identity
matrix, and the impulse response for FM is

i
Hjy=- 277]—"f dt sinc B(t—1,), (4.14)

where F is called the frequency deviation. Although the
Wigner distribution is Gaussian for squeezed states [36], we
shall first study the simpler coherent states.

A. Coherent states

To derive the Wigner distribution for a coherent state, let
us start with that for the vacuum,

1 1
Wolxo.yo] = exp| - 2%0 %0~ 2Y0 Yo - (4.15)

A coherent state with mean phase ¢ and constant mean am-
plitude |a/ is obtained by displacing the vacuum along the x
quadrature followed by phase modulation. The resulting
Wigner distribution is

W[x’y (_f’]=W0[x0[x,J’],}’0[x,J’]], (416)
Xy =X cos ¢ +y sin p—2|al, (4.17)
Yo=—xsin ¢+y cos ¢, (4.18)

which can be used as the conditional distribution in the MAP
equation (4.8). After some algebra, the MAP equation be-
comes

n=2laK, -H -p, (4.19)

where p is a quadrature field that depends linearly on the
complex field a and nonlinearly on the estimated message in,

p=-ilaexp(-idp)—a*exp(i})]. d=H-in.

(4.20)

The nonlinear MAP equation (4.19) can be represented
conceptually by a block diagram, as shown in Fig. 2, but
cannot be solved analytically in general. Although the block
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vac ~ _ ~
Ivac)__| D(|a]) xp i —> 2lalp = H” = K m

¢ [u

FIG. 2. (Color online). A block diagram that represents the MAP

estimation process. D( a|) denotes displacement of the vacuum
along the x( quadrature, and exp i¢p denotes phase modulation.

diagram seems to suggest that homodyne measurements of
the quadrature p in a feedback system can be used to produce

the estimated message i, p depends recursively on ¢, and
the impulse response matrix H-K,,-H' that transforms p to
¢ is not necessarily causal. Even if one attempts to solve the
MAP equation numerically, one needs the values of both
quadratures of a at all times, so one would have to perform
heterodyne detection and start with the Q distribution instead
of the Wigner distribution.

To solve Eq. (4.19) approximately, let us linearize it so
that the right-hand side of Eq. (4.19) depends linearly on m
and we can use well-established linear estimation techniques
to perform MAP estimation. Writing the complex field a in
terms of x, and y, as

- +1
a:exp(i¢)<|a|+x—0 2%), (4.21)
P can be rewritten as
p=2|alsin(¢~ @) +2, (4.22)

where we have defined another quadrature field z, as

20 =X sin(¢p— ) +y, cos(p— ¢b). (4.23)
Quantum noise enters the MAP estimation through the z,
quadrature. Because the vacuum Wigner distribution given
by Eq. (4.15) is invariant with respect to rotations in phase
space, any quadrature in terms of x( and y, has the same
Gaussian statistics as x or y, and its statistics are indepen-

dent of ¢ or ¢. z,, can, therefore, be regarded as an indepen-
dent noise term. To linearize p, we assume that the estimated
phase is at all times close to the mean phase of the field in
the mean-square sense,

(p- @) <1, (4.24)
so that we can make the first-order approximation
p=2ld(dp- ) +2z. (4.25)
A linearized MAP equation can thus be obtained,
ﬁzz4|a|2Km-HT-<Fp-65+%>. (4.26)
o

In this linear regime, the MAP estimation is efficient. Let us
define
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d=p+-2 e=¢-b, (4.27)

2]a

so that the linearized MAP equation (4.26) can be written as
a pair of equations,

m=4|a’K,,-H" - €, (4.28)

d-H im=e. (4.29)
Multiplying Eq. (4.28) by H and adding it to Eq. (4.29),
¢=4|a’H K, -H +1) - €. (4.30)

Comparing Eq. (4.30) with Eq. (4.28), we find that 7,2 can be
written as a linear transformation of ¢,

m=G- ¢, (4.31)
where G is the solution of the following equation:
G- (4la’H-K,,-H +1)=4|a|’K,,-H". (4.32)

To solve this equation, we assume that the message covari-
ance matrix K,, is stationary, so that we can write

(Km)jk = Km,j—ks

and define its power spectral density as

S, (f) = 2 K, expl(i2mft)).
J

(4.33)

(4.34)

If H is time-invariant,
Hy=Hp . H()=2 Hjexp(2mft), (435
J

we can solve Eq. (4.32) by Fourier transform and obtain a
time-invariant solution for G,

A|af’S,.(HH*(f)
4o, (NIHANP +17

G(f) = (4.36)

L
Gji= EJ dfG(flexpl—i2mf(t; - 1,)].

-B/2

(4.37)

G, is called the optimum filter in linear estimation theory
[1,2]. In the next section, we shall show how the optimum

filter can be implemented by a homodyne phase-locked loop.

B. Phase-locked loops as angle demodulators

Consider the homodyne phase-locked loop shown in Fig.
3. The output of the homodyne detection is given by

p'=—ilaexp(-ip') —a* exp(idp')] (4.38)
=2|alsin(¢p— ') +z’, (4.39)

where z’ is another quadrature field defined as
7 =xysin(¢p— ') +y,cos(Pp— '), (4.40)

which, like z,, has Gaussian statistics independent of ¢ and
¢’ . If we again linearize p’ by making the assumption, to be
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RN

L"

FIG. 3. (Color online) A homodyne phase-locked loop. LO de-
notes local oscillator.

justified later, that the local-oscillator phase ¢’ is at all times
close to the mean phase of the incoming field ¢,

(p- ")) <1, (4.41)
p' is given by
’ ’ — Z’
p' =2lal(d-¢"), d=dd+5—. (4.42)
2|al
¢’ is related to p' by the causal loop filter L,
¢ =L-p'=L-2a(¢p-¢'), (4.43)

and ¢’ can be written in terms of ¢ and a closed-loop filter
L',

¢ =L ¢, (4.44)
where the closed-loop filter satisfies the equation
(I+2|alL)-L" =2|a|L. (4.45)

To minimize ((¢p— ¢')?) and ensure that Eq. (4.41) holds, we
demand ¢' to be the minimum-mean-square-error estimate
of ¢, using only past and present values of p’ to ensure
causality. For stationary ¢, ¢, and z’, L' is simply the
Wiener filter and can be solved by a well-known frequency-
domain technique [1,2], as briefly described below. L}—k is
the solution of the discrete Wiener-Hopf equation,

> LU =V, (4.46)

k=0
U=4|a]’H K, -H +1, (4.47)
V=4|olH -K,,-H". (4.48)

The Fourier transform of U;_; can be factored into the form

U(f) =X(HX*(f).

where X(f) and 1/X(f) are causal filters, if U(f) is a rational
spectral density. Defining

V('f) = l o ! V(f’) - . ,
{X*(f)lr: BJ—B/Z df X*(f,)jg() expli27(f - f")t;],

(4.49)

(4.50)

the Fourier transform of LJ’._k is given by
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v L V)
“0= 555 . a0
and the loop filter is then
Y
0=l - @2

It can be shown that the loop filter L is also causal given a
causal L' [1,2]. After passing through the phase-locked loop
and the post-loop filter L”, the output estimated message be-

comes
m~L"-L . (4.53)

This equation is the same as the linearized MAP equation
(4.31) if

G=L"-L'. (4.54)

The post-loop filter in the frequency domain is thus given by
G()

L'(f)=—. (4.55)
L'(f)

To make the post-loop filter realizable, we allow delay in the
estimated message, that is, we let

¢;= % Hi_ imyyq,  Pj= % H;_jmyq, (4.56)
and L"” can be made causal in the limit of infinite delay d
[1,2]. In practice, d&t only needs to be a few times larger
than the correlation time of the message for L” to be well
approximated by causal filters. Hence, the homodyne phase-
locked loop is able to realize the MAP estimation for coher-
ent states, provided that the approximation given by Eq.
(4.41) is valid and the local-oscillator phase follows closely
the mean phase of the incoming field at all times. This result
is hardly surprising, because a coherent state can be regarded
as a classical signal with additive white Gaussian noise, in
which case it is well known that the homodyne phase-locked
loop realizes the optimum angle demodulator [1,2]. Our
analysis so far closely mirrors that in classical estimation
theory, except that we have worked with discrete time for
consistency with previous sections. It is straightforward to
take the continuous limit of our analysis in this section, if
one so desires, by redefining some of the quantities and tak-
ing the limit B— oe.

C. Squeezed states

The MAP estimation analysis shows that quantum noise
enters the estimation through the z, quadrature, which de-
pends on both x, and y,. If we squeeze the z, quadrature of
the vacuum before displacement and phase modulation, the
noise entering the measurement of p can be reduced. The
squeezed-vacuum Wigner distribution is

1 | 1 |
Wolx.y0] = exp —EQ)'KT 'go—EZO'KE “Zo |

(4.57)

Ly=xycos(p— ) -y, sin(p— ), (4.58)
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FIG. 4. (Color online) MAP estimation for squeezed states.
S(zy) denotes squeezing of the z, quadrature.

29=X sin( - ) +y, cos(dp— ), (4.59)
K, =({{H® &), K, =(zg®z). (4.60)

The MAP equation becomes
n=2|aK, -H'-K,' p, (4.61)

as shown schematically in Fig. 4. The linearized MAP equa-
tion is the same as Eq. (4.31), but G now also depends on K,

G- (4a)’H -K,,-H +K,) =4|a)’K,,- H'. (4.62)

A homodyne phase-locked loop, with redesigned loop and
post-loop filters L and L” according to the G given by Eq.
(4.62), can again be used to realize this MAP estimation, as
shown in Fig. 5, although one must feed the local-oscillator
phase ¢’ back to the quantum-state preparation stage in or-
der to squeeze the right quadrature of the vacuum. The time
delay of the feedback path must be much shorter than the
time scale at which the phase modulation varies.

If the feedback of ¢’ and the z’-quadrature squeezing is
not feasible in practice, another option is to use an ideal
phase-squeezed state and squeeze the y, quadrature of the
vacuum before displacement and phase modulation. The
squeezed-vacuum Wigner distribution is

1 -1 1 1
Wolx.y0] = exp _ExO'Kl 'xo—?’o'sz Yo /-

(4.63)

The MAP equation becomes
m=K, H -y, (4.64)

where
n=qK;' -p)+p[Ki"- 2la| - )], (4.65)
g=aexp(-id)+a*exp(id), (4.66)
@

|[vacy T I ™

FIG. 5. (Color online) A homodyne phase-locked loop that re-

alizes the MAP estimation for squeezed states. .SA‘(z’) denotes
squeezing of the z’ quadrature.
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FIG. 6. (Color online) A homodyne phase-locked loop for
phase-squeezed states.

p=—ilaexp(-id)—a*exp(id)]. (4.67)

The MAP equation now depends quadratically on two
quadrature fields ¢ and p. Realizing this MAP estimation
would require some nontrivial second-order field measure-
ments of 7 in a Weyl-ordered operator form for the statistics
to obey the Wigner distribution.

If we insist on using the homodyne phase-locked loop for
phase-squeezed states, the noise term of the homodyne de-

tection z' in the first order of small ((¢p— ¢p’)?) is given by

2 =x)(p— ') +yp. (4.68)

The y, quadrature is squeezed, but the antisqueezed x,
quadrature also enters the phase-locked loop through the
phase-sensitive term xo(¢p— '), the magnitude of which var-
ies depending on the difference between the mean phase and
the local-oscillator phase. If the magnitude of x,(¢p— ') is
much smaller than the magnitude of y,, however, we can
assume that z’ is approximately y,,

Z, =Y, (469)

and the homodyne phase-locked loop can still be used, as
shown in Fig. 6, with the same filters as those designed for
the G given by Eq. (4.62).

Because z’ passes through the loop filter L before entering
the system, the approximation z’ =y, requires

- (L -yo)*)

- < .

(@- 00 < 20

If the constraint given by Eq. (4.70) is violated, z' cannot be

regarded as a phase-insensitive noise term, and the phase-

locked loop is no longer an accurate realization of MAP

estimation for phase-squeezed states. It might still be pos-

sible to heuristically adjust the parameters of the phase-

locked loop to compensate for the phase-sensitive noise and

minimize the estimation error, but Eq. (4.70) sets a rough

limit on the right amount of squeezing, beyond which stron-
ger squeezing is no longer useful.

If one is able to perform canonical temporal-phase mea-
surements, then the homodyne detection in the phase-locked
loop shown in Fig. 6 can be replaced with measurements of
sin(¢p— '), where ¢ is the canonical phase of the incoming
field a. Canonical phase measurements are not sensitive to
the antisqueezed photon-number noise, so the squeezing con-
straint given by Eq. (4.70) is not needed, although the con-
straint given by Eq. (4.41) is still required for the estimation
to remain efficient in the linear regime.

(4.70)
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The adaptive temporal-phase measurement scheme pro-
posed by Berry and Wiseman [29] is essentially a first-order
homodyne phase-locked loop, with an integrator as the loop
filter and no post-loop filter. While the first-order phase-
locked loop is indeed the optimal demodulator when the
mean phase is a Wiener random process [2], it is clear from
the preceding discussion that, at least for stationary mes-
sages, one should use a more complicated loop filter as well
as a post-loop filter according to the a priori message statis-
tics to minimize the estimation error. In this paper, we focus
on stationary messages and the use of MAP estimation to
design angle demodulators. For nonstationary messages, it is
more appropriate to use a state-variable approach and
Kalman-Bucy filters [2,38], although it is beyond the scope
of this paper to study the latter case.

V. QUANTUM LIMITS TO ANGLE DEMODULATION

To calculate the mean-square error in the estimated mes-
sage by MAP estimation, consider the linearized MAP equa-
tion

!

=G -¢=G-H m+G ——. (5.1)
2|
The mean-square error is
<(ﬁz—m)2>zdiag{(G-H-1).K,,,-(G.H—I)T
! G K, -G" (5.2)
+ K- , .
4o

where diag(4);=A}; is the diagonal vector component of A.
Equation (5.2) can be further simplified in the Fourier do-
main to give

- B l B2 Sn()S(f)
oF = (0~ m;)*) = Bf_m Vol DIHPOP + 5,
(5.3)

where S,(f) is the power spectral density of the z' quadra-
ture. This expression is well known in linear estimation
theory and called the irreducible error [1,2]. Assuming that
the message has unit variance <m12->=1 and a flat spectral
density with bandwidth b,

B/b, |fl <b/2,

5.4
0, |f=nn2. 5.4)

Sm(f) = {

If S,(f) is also flat over the bandwidth b, the mean-square
error for PM becomes

1 1
=——~——, [A>I, 5.5
PMT 2N L1 BA B (5.5)
where we have defined the parameter A as
4|a)?s,,(0
A= 212lSn©) (5.6)
5,(0)

The SNR is then
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(SNRpy) = %ﬁ ~ BPA. (5.7)
PM
For FM, defining the equivalent modulation index as
2F
B= (5.8)
the mean-square error is
Ot =1-VBA tan™! \’ﬁlTA ~ 3;312/\’ BAS 1,
(5.9
and the SNR is
(SNRpy) = 38°A. (5.10)

The parameter A depends on the ratio of the message spec-
tral density to the quadrature-noise spectral density.

A. Standard and Heisenberg quantum limits

For a coherent state with average optical power

P = hfyB(a'a) = hf,B|al* (5.11)

and a quadrature-noise spectral density

S,(H=1, (5.12)

A is

4P P
A=——=4 = —
hfob N N hfob’

where N is the average number of photons in a period of
1/b, and the o~ 1/ dependence is an analog of the usual
standard quantum limit (SQL) in single-parameter estimation
[10]. We can then write the SNR at SQL as

(5.13)

(SNRPM)x%(SNRFM)~4,82N (SQL). (5.14)

This linear dependence on N may not hold for non-band-
limited message spectral densities. For example, if we let the
message spectral density be Lorentzian,

B b

PO 2 w2y

(5.15)

the PM SNR for a coherent state in the limit of B>b is

8B°N

(SNRpy;) = +1, (5.16)

which scales with \;'N instead of V. A similar | A scaling is
also observed by Berry and Wiseman for their adaptive
temporal-phase measurement scheme with the nonstationary
Wiener process as the mean phase [29]. In the following, we
consider only the band-limited message spectral density
given by Eq. (5.4) for simplicity.

For squeezed states, it is shown in Appendix B that

PHYSICAL REVIEW A 78, 053820 (2008)

S,(f) =exp(=2r) for |f] < %, (5.17)

where r is the squeeze parameter and B, is the squeeze band-
width. We should therefore make B, at least as large as the
message bandwidth b. The average power of a squeezed state
is

P = hfyB|al* + hfyB, sinh? r. (5.18)

Assuming B,=b,

A =4(N = sinh? r)exp(2r), (5.19)

the SNRs become

(SNRpy) = %(SNRFM) ~ 48%(N - sinh? r)exp(2r).

(5.20)

The optimal exp(2r) at which the SNRs in Eq. (5.20) are
maximum is given by

exp(2r)=2N+1, (5.21)

and the maximum SNRs become

(SNRpyp) = %(SNRFM) ~4B°N(N+1) (Heisenberg).
(5.22)

The N? scaling can be regarded as an analog of the Heisen-
berg limit in quantum single-parameter estimation [10].

B. Threshold constraint

It must be stressed that the preceding derivation of quan-
tum limits is accurate only in the linear regime, when the
constraint given by Eq. (4.41) is satisfied. Beyond the linear
regime, the phase-locked-loop demodulator is no longer an
efficient estimator, and the SNR is expected to drop abruptly
when the quantum noise is larger than a certain threshold.
Physically, the abrupt drop in SNR below threshold is due to
the periodic nature of p’ with respect to ¢p—¢’, which can
cause ¢’ to differ from ¢ by multiples of 27 when the noise
is large. To ensure that the estimation is efficient, Eq. (4.41),
which we now call the threshold constraint in accordance
with classical theory, should be observed. Since we have
assumed that the z’-quadrature spectral density is flat over
the message bandwidth, an expression for ((¢;— b; )?) can be
borrowed from well known results for classical signals with
additive white Gaussian noise [1,2]. For the flat message
spectral density,

b/2

2 — (A _ A2 zi 2
A= G- )h= 1| drmll+AHOP)

(5.23)

The threshold constraint for PM becomes
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%111(1 +BPAN) <1, (5.24)

while the constraint for FM is
! In(1+ BA) +28VA t -'( ! ) <1. (5.25)
—| In(1 + +opviatan | —=] | < 1. (0.
A B\“’A

In practice, it has been determined numerically for classical
signals with additive white Gaussian noise that 0'20$0.25 is
sufficient to satisfy the threshold constraint [1,2], so a similar
constraint on 0,(2) can be used for coherent states or
z'-quadrature-squeezed states.

C. Squeezing constraint

For phase-squeezed states and the homodyne phase-
locked loop depicted in Fig. 6, one should also apply the
squeezing constraint (4.70) for the SNR to be given by Eq.
(5.20). The order of magnitude of the right-hand side of Eq.
(4.70) is calculated in Appendix B and is roughly exp(—4r).
The constraint becomes

4
%(r) In(1+B2A) <1 (5.26)
for PM and
exp(4r) ) — _1( 1
——— | In(1 A) +2BVA — || <1
A n(l + B°A) +2BVA tan B\R
(5.27)

for FM, where A is given by Eq. (5.19). The squeezing con-
straint is much more stringent than the threshold constraint
and more so for stronger squeezing, because the former con-
straint requires the enhanced noise in the antisqueezed x
quadrature to be negligible.

The squeezing constraint also prevents the homodyne
phase-locked loop with phase-squeezed states from reaching
the Heisenberg limit given by Eq. (5.22). Consider, for ex-
ample, the left-hand side of Eq. (5.26) at the Heisenberg
limit,

QN+ 1)?

INV+ D) (5.28)

In(1 +48°N\?),

which is much smaller than 1 only when 48°N?><1 and the
exact SNR approaches its lowest possible value 1, the

a priori SNR. If we let exp(2r) be a small parameter \ times
N instead,

exp(2r)= N, N<1, A=4\N?, (5.29)

Eq. (5.26) becomes

4 2

N (TN N (5:30)

for 4882N2>1 and In N’>In(2\AB). The SNR for PM is
therefore limited by
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8B°N*
In

(SNRpy) = 4NBN? < (5.31)

in the limit of large N. The limit on the FM SNR can be
derived using a similar argument, and is given by

248°N°

(5.32)

in the limit of large N. The N?/In N scaling is analogous to
the ultimate limit to adaptive single-mode phase measure-
ments [28].

D. SNR enhancement by wideband angle modulation

Apart from the quantum enhancement by squeezing, the
SNRs above threshold can be enhanced quadratically for a
band-limited message spectral density simply by increasing
the modulation index B. This SNR enhancement is achieved
at the expense of bandwidth resource, as is well known in
classical communication [ 1-3]. The SNR enhancement effect
for discrete FM in the quantum regime has also been sug-
gested by Yuen [7]. A good approximation of the optical
signal bandwidth B when the phase or instantaneous fre-
quency of a monochromatic wave is modulated by a message
with unit variance (m%): 1, bandwidth b, and modulation in-
dex B is provided by Carson’s rule [3],

B=(B+1)b. (5.33)
The modulation is described as narrowband when B<€1,
wideband when 8~ 1, and ultrawideband when B> 1. For
squeezed states, because they already have an inherent band-
width B before phase modulation, Carson’s rule should be
modified to read
B=B,+(B+1)b. (5.34)
For a given A, B is also limited by the threshold constraint
given by Egs. (5.24)-(5.26), or (5.27), since 0'20 increases
logarithmically with 8. Thus B cannot be increased indefi-
nitely even if enough optical bandwidth is available.

VI. OPTICAL SENSING OF POSITION AND VELOCITY

The preceding analysis can be applied directly to optical
sensing of position and velocity, if the phase modulation is
due to reflection off a classical moving target. Consider the
setup shown in Fig. 7. A light beam, which can be a coherent
state or squeezed states, shines on a reflecting target and
bounces back and forth between the target and a perfectly
reflecting mirror for M times before leaving the apparatus.
The phase modulation due to the movement of the target is
then estimated using canonical temporal-phase measure-
ments or a phase-locked loop. The mean phase of the output
light beam is given by

@(1) = (2M cos 9)2—77x(t) (6.1)
o
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FIG. 7.
Sensor.

(Color online) Multipass position and velocity

=(2M cos 0)m di'v(t'). (6.2)
c

—00

The quantum limits derived in the preceding section are also
applicable here, if we assume that the target position and
velocity are stationary random processes and define the nor-
malized PM and FM parameters in terms of the sensing pa-
rameters as

G20
B=2M cos 0—27m<x (I)>, (6.3)
0
B x(1)
m(t) = \/W (64)
for position sensing, and
[52(1)y
F= (M cos 91 6.5)
c
[ 200
B=(2M cos H)M, (6.6)
bc
v(1)
= = 6.7
m(t) \,'W ( )

for velocity sensing. The power spectral densities of the po-
sition and velocity are related to each other by

1
Q2mf)?

so one should calculate the mean-square errors for position
and velocity estimations separately using Eq. (5.3). It is ap-
parent from Eq. (5.3) that increasing B and therefore H(f)
can at best reduce the mean-square errors of the estimations
quadratically. Even though the parameters (x*(1)), (v’(z)),
and b are given for each target, it is still possible to enhance
the SNR by increasing M, the number of times the target is
interrogated. In practice the maximum achievable M is lim-
ited by the threshold constraint as well as other experimental
constraints. For instance, the total interrogation time of the
light beam with the target should be much shorter than the
time scale at which the position and the velocity changes, or
in other words,

S(f) = S, (6.8)

PHYSICAL REVIEW A 78, 053820 (2008)

a < <

—D >

boa(t)

FIG. 8.

Sensor.

(Color online) Fabry-Pérot position and velocity

2iM-1)L 1
2M-DL 1

. 6.9
ccos 6 b 6.9)

The target size, shape, and reflectivity also limit the maxi-
mum achievable M in practice.

The multipass setup may be regarded as a continuous-
parameter generalization of multipass single-parameter quan-
tum estimation schemes [10,11]. For single-parameter esti-
mation, the multipass SNR enhancement is achieved at the
expense of time, whereas for continuous-parameter estima-
tion the enhancement effect utilizes both time and bandwidth
resources. Squeezing becomes useful when such resources
are limited, and the experiment can be highly controlled to
eliminate decoherence, such as that caused by the imperfect
reflectivity of the target or other optical losses in the system.

To achieve a large effective M, one may also use a Fabry-
Pérot setup, as shown in Fig. 8, similar to the interferometric
gravitational wave detector with Fabry-Pérot arms [39].
cos 6 becomes 1, and the effective M at resonance is

=
1+\rR

=—F. 6.10
1—\& ( )

Because the resonance condition is sensitive to the phase
shift by the target, the Fabry-Pérot configuration is useful
only in the narrowband modulation regime S<< 1. Apart from
this restriction, the preceding discussion on the multipass
configuration applies to the Fabry-Pérot setup as well.

VII. FLUID VELOCITY OPERATOR FOR
NONRELATIVISTIC BOSONS

We now apply the time-domain optical formalism de-
scribed in Secs. II and III to nonrelativistic bosons in three
spatial dimensions. In momentum space, the boson annihila-
tion and creation operators obey the commutation relation

[a(k),a"(k")]= & (k- k). (7.1)
If we regard the nonrelativistic theory as an effective theory
that ceases to be accurate beyond a certain range of mo-
menta, we can explicitly impose a momentum cutoff to the

Hilbert space, analogous to the bandwidth limitation on op-
tical fields in Sec. II,
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k.|, k] |k | < K, (7.2)
so that we can discretize space as
X[ =Xo+jOr, j=je +ke +le, Ox= % (7.3)

We can then define the space-domain operator as

. 1 K K K
AX)=—=> dk dk, dk.a(k k- Xx),
(X) (277)3/2J_K xf_K )J_K za( )eXP(l X)

(7.4)

and the discrete wave-packet-mode annihilation operator as

a;= A(x;)(80)*?, (7.5)
with the commutator
A At

[aj’ajl] = 5jj’o (76)

The Hilbert space can be spanned by Fock states,

o (@)
)y = > ,Jf 0);, ) = ®ny);. (7.7)
n=0 \n! j

Unlike photons, the total number of massive bosons is con-
served and usually fixed, so it is physically justifiable to
impose upper limits to the boson numbers, so that the Hilbert
space consists only of finite-boson-number states,

s

1= |n)n|, (7.8)

n=0
where s={....s;, ...} and for simplicity we let s; be the total
number of bosons N.

With the finite-momentum and finite-boson-number Hil-
bert space, we can now apply the Pegg-Barnett theory [16]
and define the unitary exponential-phase operator as

N
exp(idhy) = > |nj = 1)(n;] + expli(N + 1) ;] |IN);€0].
nj=0

(7.9)

Most importantly, the action of this operator on the vacuum
state is uniquely defined as

exp(ihy)|0); = exp[i(N + 1) ;]| N);. (7.10)

which makes the operator unitary and distinguishes it from
the nonunitary Susskind-Glogower operator.

The creation and annihilation operators can be rewritten
as

dy=explid)\iiy,  al = iexp(=idy).  (7.11)

Since the Hamiltonian is a function of d; and é}', the unphysi-
cal jump from the vacuum state to the maximum-number
state indicated by Eq. (7.10) due to the action of the Pegg-
Barnett operator cannot occur directly in the dynamics.

The commutation relation between the Pegg-Barnett op-

erator and the number operator 7; Ed;dj is

PHYSICAL REVIEW A 78, 053820 (2008)

[exp(idy).ij]1=[1 - (N + D)|N)i(N|lexp(idy). (7.12)

To define a fluid velocity operator, consider the semiclassical
definition of a superfluid velocity field [23],

h
v(x) = —V,é(x), (7.13)
m
where m is the mass of each boson. Because ¢(x) can be a
multivalued function and is undefined where the fluid density
is zero, Eq. (7.13) is ill-defined even in the semiclassical

regime. An alternative is to consult the definition of the cur-
rent density [25,26],

J(x) = %[A*(X)VXA(X) -AX)V,A*(x)] (7.14)

and define the analogous fluid velocity in terms of the
exponential-phase function,

h
V() = 5 —{expl= i(x)]Vy explichx)]

—expligp(x)[Vy exp[ - i(x)]} (7.15)

h

=; VX’ sin[¢(x’) - ¢(X)]|x’=x7 (7.16)
which is equivalent to Eq. (7.13), where ¢(x) is continuous,
and the sine function is always single-valued where ¢(x) is
defined. But we have not yet solved the problem of defining
¢(x) where the density is zero. This can be done by regard-
ing ¢(x) as a random function, or in the quantum regime, an
operator. In the discrete space domain, we can define the
fluid velocity operator as

Q’J = E Dj_jr Sin($j/ - $.])’

J

(7.17)

where

X X 1 . R

D;_; is the discrete impulse response that corresponds to the
gradient operator,

1
Dj—j' = g(dj_ﬂ 5kk’ @l,ex + dk—k’ 5jjl 5”,ey + dl—l' 5”/ 5kk/ez),

(7.19)

where d;_;: is the differentiator given by Eq. (3.13). Neglect-
ing the (N)j(N | term in the commutator in Eq. (7.12), which
is important only in the highly unlikely event that all bosons
are in the same spatial wave-packet mode, we arrive at the

following velocity-number commutation relation:

- N 54
[Uj,nj/] == l;Dj—j’ COS(¢j/ - d)‘]) (720)

In the limit of ox—0,

(7.21)

Q.] — G(X),
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A — op(x), (7.22)
D — &’V S (x—x'), (7.23)
cos(y — dy) — cos[p(x") — p(x)], (7.24)

we have
f . .
[V(x),p(x")] =~ - i;Vx53(X —x")cos[p(x") - p(x)]

%—iﬁvx53(x—x’), (7.25)
m

the last expression of which agrees with the commutation
relation proposed by Landau [24]. Thus, we have shown that
it is possible to rigorously define Landau’s fluid velocity op-
erator, if we start with the physically reasonable assumptions
of finite momentum and finite boson number and take the
continuous limit at the end of a calculation. If the continuous
limit is taken, one does not have to use the Dy defined in
Eq. (7.19), and any D;_;, that possesses the continuous limit
given by Eq. (7.23) will suffice.

The fluid velocity is a physical quantity that can be mea-
sured optically. The bosonic fluid can act as a moving dielec-
tric, in which a propagating light beam can acquire a phase
shift proportional to the fluid velocity in the first order, due
to the Fresnel drag effect [40]. Bosons may also reflect or
scatter light, and the fluid velocity will shift the instanta-
neous frequency of the reflected or scattered light due to the
Doppler effect. Thus, the fluid velocity and the optical in-
stantaneous frequency are closely related physical quantities,
and, as we have shown in this paper, can be described by the
same theoretical formalism in the quantum regime.

VIII. CONCLUSION

In conclusion, we have proposed a quantum theory of
optical phase and instantaneous frequency in the time do-
main. In the formalism, we have introduced an explicit opti-
cal bandwidth cutoff in order to reflect our experimental
limitations, satisfy the slowly varying envelope approxima-
tion, and, most importantly, discretize time domain into dis-
crete modes, the phases of which we know how to define and
measure in principle. Guided by insights from classical esti-
mation theory, we have suggested the use of homodyne
phase-locked loops to perform angle demodulation, and the
quantum limits are derived. We have also shown how the
SNR enhancement effect of wideband angle modulation can
be applied to optical sensing of position and velocity. Given
the recent experimental advances in quantum-enhanced mea-
surements [10,11,41] and the maturity of optical phase-
locked loop technology [42], we expect our theoretical pre-
dictions to be experimentally realizable with current
technology and relevant to future communication and sens-
ing applications. Finally, we have applied the optical formal-
ism to nonrelativistic bosons and we showed how Landau’s
fluid velocity operator can be defined rigorously, thus resolv-
ing a long-standing issue in quantum hydrodynamics. A more
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rigorous formulation of the current-algebra approach to
quantum hydrodynamics based on our theory can be envis-
aged.

ACKNOWLEDGMENTS

This work is financially supported by the W. M. Keck
Foundation Center for Extreme Quantum Information
Theory.

APPENDIX A: ALGEBRA IN THE DISCRETE
TIME DOMAIN

For convenience we adopt the following simplified nota-
tions to describe algebra in the discrete time domain. Bold-
face lowercase letters denote vectors in the discrete time do-
main,

aE{...,aj,aj+1,...}. (Al)

Multiplication and division of components of two vectors are
written implicitly,

ab E{...,Cljbj,aj_'_]bj_'_l, }, (A2)
a_ 4j i1 } (A3)
b { ,bj’bj+1,

A vector of functions of each component of a is written as a
function of the vector,

f(a) = { . '7f(aj)9f(aj+l)’ cee },

while a function of all components is written with square
brackets,

(Ad)

flal=f(....aja;,, ...). (AS5)
The dot product of two vectors is defined as
a-b=2 apb, (A6)
J
The tensor product of two vectors is
(a ® b)jk=ajbk' (A7)

A matrix Aj is written as boldface and uppercase A. The
transpose of a matrix is defined as

AT = Ay (A8)
Dot products of a matrix and a vector are
(A-b); =2 Auby, (b-A); =2 bA,;.  (A9)
k k
Multiplication of two matrices is
(A-B)y = > AjBy.- (A10)
!
The inverse of a matrix, if it exists, is A~!,
A-A'=A"1.A=1, (Al1)

where ;=0 is the identity matrix.
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APPENDIX B: BROADBAND SQUEEZED VACUUM

We shall study the statistics of the squeezed vacuum
[19,43] in the interaction picture. For simplicity, we assume
that the squeezing spectrum is uniform and has a bandwidth
of B,. Starting with the vacuum quantum state, the output
annihilation operator in the frequency domain of a band-
limited squeezed vacuum can be written as

Iu’dvac(f) + VaA\‘/dC(_ f)’ |ﬂ < BS/2’

aif=y", (B1)
avac(f)’ |ﬂ = BS/2’
where u and v are parametric gain parameters that satisfy
|ul? =[P =1, (B2)

and d,,.(f) is the annihilation operator with vacuum state
statistics. Performing the inverse Fourier transform on Eq.
(B1),

1 (B2
a;= ?f dfb(f)exp(- i27ft;), (B3)
VB J_pn

-B

. 1 B/2 .
Ayac,j = /__f dfay.(flexp(= i27Tftj) ) (B4)
VB J_pp

the discrete-time-domain operator for a squeezed vacuum is
a=a,.+T [(w—1)a,, + va. (B5)

vac-?

where I';=T";_; is a low-pass filter defined as

1 (B2
Ir_.= —f df exp[— i2mf(t; - t,)]. (B6)

B -By2
We define the quadrature operators as
Yo=a+a', yjo=-ila-a"). (B7)
The vacuum-state operators have the following statistics:

(yee) = (@l,) =0, (B8)

<&$ac ® &vac> =0, <&vac ® &iac> =1, (B9)

which lead to the following covariance matrices:
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K =& @%)=I-(1-|u+*AT,  (B10)

Ky =Go®@yo)=1-(1-|u-vPL. (Bl
To produce squeezing in the y, quadrature, both w and v
should be real and positive. Writing « and v in terms of the
squeeze parameter 7,

m=coshr, v=sinhr, (B12)
the covariance matrices become
K, =I-[1-exp2r)]T, (B13)
K,=I-[1-exp(-2r]r. (B14)
The quadrature power spectral densities are
exp(2r), |f| <By2,
S.(f) = B15
l(f) { 1’ lf| >B5/2, ( )
exp(-2r), |fl <By2,
S:(f) = (B16)
1, lf| = B,/2.

If X, and y, pass through a low-pass filter L with bandwidth
b < B, their variances become

(L 2)%= 7 exp(2r) (B17)
b
((L-90)) = 3 exp(-2r), (B18)
and their ratio is
(L-50>
(L ED exp(—4r), (B19)

which provides an estimate of the magnitude of the right-
hand side of the threshold constraint given by Eq. (4.70), if
we regard L as a bandpass filter with bandwidth b.
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