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The multipolar solution of the electromagnetic field is useful in light-matter interactions. Here is presented
a method to control the superpositions of multipolar electromagnetic fields using paraxial beams. This is
applied to orbital angular momentum paraxial modes, which allow us to calculate their total angular momen-
tum. This quantity plays an important role in the control of electronic transitions in atoms and molecules. The
results here can easily be extended to highly focused laser beams.
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I. INTRODUCTION

The transfer of angular momentum from photons to ma-
terial particles is of paramount importance in light-matter
interactions �1�. The angular momentum study of photon-
atom interactions gives rise, for example, to the well known
selection rules in atomic physics. In order to properly under-
stand the angular momentum of a light field, one needs to
use the spherical multipole solutions of Maxwell equations
�2,3�. This set of solutions is highly nonparaxial and extend
all over the space. This poses a problem when trying to ex-
plore multipolar interactions because normal experimental
conditions use paraxial or near-paraxial beams.

Actually, for paraxial beams the work of Allen and co-
workers �4� showed that the spin and the orbital angular mo-
mentum �SAM and OAM� can be controlled separately in a
paraxial beam. This triggered a wide range of applications of
the OAM of light covering areas as diverse as trapping and
rotating microparticles �5�, astrophysical measurements
�6,7�, or quantum information �8�. Also, recently there has
been a renewed interest in the interaction of the OAM of
light with atomic ensembles �9�. In the context of controlling
atomic and molecular transitions with the OAM of paraxial
beams, the subject has been studied by many authors
�10–13�. Most authors restrict themselves to the lowest order
of the multipolar interactions, i.e., the dipole approximation.
In this paper, another point of view for this problem is pre-
sented. I extract the multipolar content of paraxial beams
which will allow us to, for example, easily understand the
atomic selection rules induced by paraxial beams. In this
way, all the possible multipolar transitions are comprehen-
sively studied and analyzed.

Another important application of the method presented
here is the control of the amplitude and phase of the different
multipolar fields with the transversal shape and the polariza-
tion of beams. This could be of importance when one wants
to control specific atomic multipolar transitions, like in some
quantum information implementations with ions �14�.

Also, this approach allows us to answer one question of
importance in the context of light-matter interactions: What
is the total angular momentum of a paraxial beam? In a

paraxial beam we can easily control one component of the
angular momentum �i.e., the component parallel to the
propagation direction� but can we also control the total an-
gular momentum of the beam? The answer to this question is
found by expressing the paraxial beam in the basis of eigen-
states of the total angular momentum, i.e., the multipolar
states.

Let me start by introducing the multipolar solution of an
electromagnetic field. A general electromagnetic field in free
space has two contributions to the angular momentum �J�:
the spin part �hereby denoted by S�, which is related to the
vectorial character of the field, and the OAM �L�, which is
related to the spatial structure of the field �15�. Both parts are
needed to generate rotations in space, and consequently only
the combination of the two components plays a meaningful
role in the rotational symmetries of an electromagnetic wave,
i.e., J=L+S. Multipolar modes are precisely a set of solu-
tions to the Maxwell equations which are eigenvectors of the
square of the total angular momentum J2, one component of
the total angular momentum, i.e., the z component, Jz=Lz
+Sz and the parity operator. The exact form of these fields
can be found, for example, in �2�, whose notation I will
follow. In this paper, I will just use the properties of the
vector potential of the multipolar monochromatic fields in
the solenoidal gauge. The vector potentials of the set of mul-
tipolar fields is A jm

�x�, where x=m represents the magnetic
multipoles and x=e the electric multipoles. Both classes of
multipoles have eigenvalues J2A jm

�x�= j�j+1�A jm
�x� and JzA jm

�x�

=mA jm
�x�, but magnetic and electric multipoles differ in their

parity.
Up to now, the multipolar fields and the paraxial modes

with OAM have been used separately in different regimes. In
this paper I close this gap and calculate the multipolar con-
tent of any paraxial beam and in particular of the OAM
modes. This approach has already been tried numerically
�16� with results which are compatible with those provided
here. I present a fully analytical multipolar expansion of
paraxial beams, which helps us to understand the relationship
between the OAM of paraxial beams and the total electro-
magnetic angular momentum. In order to do so, I will pro-
vide a fully cylindrically symmetric solution of the electro-
magnetic field �17�. I will show that this solution is identical
to the usual OAM modes in the limit of the paraxial approxi-
mation. Finally, I will expand this cylindrically symmetric*gabriel.molina@icfo.es
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solution into multipolar modes, I will show some examples,
and discuss some possible applications.

II. MULTIPOLAR DECOMPOSITION
OF ELECTROMAGNETIC WAVES

In order to fulfill this program, I will first use an electro-
magnetic field which consists of a superposition of rotated
circularly polarized plane waves:

A = �
0

�

sin���d��
0

2�

d�g��,��R��,��ep exp�ikz� . �1�

Here, the original plane wave propagates along the z direc-
tion and is right �left� handed polarized when p=1 �p=−1�.
The altitude and azimuthal rotation angles are given, respec-
tively, by �� ,��. The operator R rotates the vector field in the
usual manner: R�� ,��ep exp�ikz�=M−1ep exp�ikẑ · �Mr��.
This rotated plane wave is, of course, another plane wave
propagating in the direction k�=sin���cos���x
+sin���sin���y+cos���z, with a circular polarization perpen-
dicular to the propagation direction. Then, the sum �1� is an
exact solution of the Maxwell equations. In particular, it can
be used to describe beams highly focused with aplanatic
lenses �18�. The function g�� ,�� controls the relative ampli-
tudes of the plane waves.

Our next step consists in finding a family of fields using
suitable functions g�� ,��, which in the limit of paraxiality
can be identified with the usual OAM modes. Let me then
develop the rotation operator to the lowest orders in the
angle � to obtain

R��,��epeikz � eik�� cos��−��+ikz−i��k��2/2k�z�e−ip�ep −
�

�2
ẑ	 ,

�2�

where cylindrical coordinates �� ,� ,z� are used. Compare
this result with a circularly polarized paraxial field of the
kind A=Fl�� ,z�exp�ikzz�exp�il�� /�2�ep, which can be writ-
ten in its Fourier components as

A = �2��−1�
0

�

krdkr�
0

2�

d�kf l�kr�exp�il�k�

�exp�ikrr cos�� − �k��exp�ikz − ikr
2/�2k�z�ep

. Any paraxial beam can be expressed as a convenient super-
position of this kind of modes �19�.

It is clear from inspection of Eqs. �1� and �2� that if we do
the correspondence

kr = k sin���, �k = � ,

g�kr/k,�k� = �2��−1k2f l�kr�exp�i�l + p��k� , �3�

then the two expansions of the paraxial beam, i.e., in Fourier
components and in rotated plane waves, are one and the
same within the paraxial approximation. Then, the set of
functions g fulfilling Eq. �3� defines the sought-after family
of fields. Note that, in general, the functions f l�kr� do not
have to be paraxial. In this way I have defined a fully cylin-

drically symmetric set of electromagnetic fields, which in the
limit of paraxiality are identical to the OAM modes �17�.

This identification is very useful because now I can use
the expansion of a rotated plane wave into multipole waves
�2,3� and perform the integral over the rotation parameters.
The expansion reads

R��,��epeikz = 

j=1

�



m=−j

j

ij�2j + 1�1/2Dmp
j ��,�,0��A jm

�m� + ipA jm
�e�� ,

�4�

where Dmp
j �� ,� ,0� are the matrices of rotation for irreduc-

ible tensors of order j. This matrix can be expressed as
Dmp

j �� ,� ,0�=exp�−im��dmp
j ���, where the reduced rotation

matrices dmp
j ��� can be found in Ref. �2�.

With Eqs. �3� and �4�, the � integral of Eq. �1� is imme-
diate. Then, the following result holds:

A = 

j=�l+p�

�

ij�2j + 1�1/2Cjlp�A j�l+p�
�m� + iA j�l+p�

�e� � ,

Cjlp = k2�
0

�

sin���d�d�l+p�p
j ���f l�k sin���� . �5�

This equation is the main result of this paper. Note that Eq.
�5� is a valid solution of the Maxwell equations, as f l�kr� is
not restricted to paraxial beams. The normalization of the
function f l implies that 
 j�2j+1��Cjlp�2=2. It can be ob-
served that all the multipolar beams in the superposition
share the same value of m= l+ p. This has the obvious mean-
ing of summing the OAM and SAM in the paraxial approxi-
mation, but in the more general case it only implies that we
have a family of fields with a well defined Jz value, i.e., a
fully cylindrically symmetric solution. This solution is dif-
ferent from that presented in Refs. �4,20,21� and it does not
have to fulfill the angular momentum equations derived
there. Also, it is consistent with the results found in �16�.

III. CONTROL OF MULTIPOLES
WITH PARAXIAL WAVES

On the other hand, this result has another interesting in-
terpretation. As multipole fields only depend on the wave-
length, the multipolar content of a field can be controlled
with only paraxial fields. For the sake of simplifying the
equations, I will consider from now on that k=1, meaning
that all the lengths are scaled by 1 /k. In order to find some
analytical expressions for Eq. �5�, I will step back a little bit
and assume the paraxial approximation again. In this case,
the amplitude of the multipolar field of order �j ,m= l+ p� can
be approximated by

Cjlp = �− �l��j + p�!�j − p�!�j + l + p�!�j − l − p�!�1/2

�

s

�− �s

�j − l − p − s�!�j + p − s�!�s + l�!s!

Ml+2s�f l

2l+2s ,

�6�

where the number Ma�f l
=�0
�krdkrkr

af l�kr� is the momentum
of order a of the function f l.
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Let me now discuss an important class of functions, the
Laguerre-Gaussian �LG� modes. The LG modes are defined
by two indices: the OAM index, which I conveniently call l
and an index stating the number of transversal nodes of the
function, which I call q. The LG modes also depend on a
continuous parameter w0 which represents the transversal
width �or beam width� of the mode. For this set of functions,
the momenta Ma can be calculated analytically and then we
can find an expression for Eq. �6� for the set of LG modes. I
will detail now some examples.

The simplest case is that of a paraxial Gaussian beam with
circular polarization. In this case the following result is ob-
tained:

A = 

j=1

�

ij�2j + 1�1/2Cj0p�A jp
�m� + ipA jp

�e�� ,

Cj0p = �− � j+1�j + p�!�j − p�!� 1

�j + �p��!

�2w0
−2j−1+2�p�Lj−2�p�

2�p� �w0
2� . �7�

Note the following features of this field. First, it is composed
of multipolar solutions with different total angular momen-
tum, but with the same projection of the angular momentum
in the direction z, which is +1 or −1 depending on the po-
larization of the field. Also, in both cases the amplitudes of
the multipolar components are the same, as Cj0p does not
depend on the sign of p. In Fig. 1 I plot the different ampli-
tudes of the multipolar components for w0=15, and the field
resulting when sum �7� is numerically performed.

Another interesting case is that of a Laguerre-Gaussian
beam with l= 	1, q=0, and circularly polarized p=−l. I
have shown that, in the general case, all the multipolar fields
have a component of Jz that is equal to m= l+ p. Then, in this
example the projection of the angular momentum in the z
direction of both considered fields is zero, i.e., m= l+ p=0.
The multipolar decomposition gives the following result:

A = 

j=1

�

ij�2j + 1�1/2Cj	1
1�A j0
�m� + ipA j0

�e�� ,

Cj�l=	1��p=
1� = l�− � j��j + 1�!�j − 1�!

�21/2+1w0
−2jLj−1

1 �w0
2� . �8�

Note that the weights of the multipoles of the two fields have
the same magnitude and opposite signs: Cj+1−1=−Cj−1+1. An
example of such fields is found in Fig. 2.

This particular example is very interesting as the two con-
sidered fields are decomposed in the same subset of multi-
polar modes: A j0

�m� and A j0
�e�. This will always be the case of

fields with opposite polarizations and �l=2. However, in this
particular example, both fields share the same weights in the
decomposition. This means that if one produces a superposi-
tion of the kind A=�LG10e−1+
LG−10e+1, a purely transver-
sal electric field can be generated when �=−
 or a pure
magnetic one with �=
. In other cases with opposite polar-
ization and �l=2, one can produce a multipole field with a

well defined parity just in a set of discrete values of j, by
playing with the amplitudes of the superpositions and the
beam widths of the two fields.

IV. THE TOTAL ANGULAR MOMENTUM
OF A PARAXIAL BEAM

An important property of the expansion �5� is that it easily
allows us to calculate the total angular momentum of any
beam of the kind �1� and, in particular, as mentioned earlier
the total angular momentum of paraxial beams. In general,
the radial density of total angular momentum per unit of
energy of the field is the square root of the following quan-
tity:

�j2� =
�A*J2A�
�A*A�

=
1

2

j

j�j + 1��2j + 1��Cjlp�2. �9�

The mean values are taken over a spherical shell of width dr.
This expression can be applied to the LG beams described
earlier. In Fig. 3�a� it is shown how the total angular momen-
tum of several LG beams with different values of the azi-
muthal number l change with the width of the beam. In order
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FIG. 1. �Color online� Multipolar decomposition of a Gaussian
beam. First column: Right circular polarization �p= +1�. Second
column: Left circular polarization �p=−1�. First row: weight of the
multipolar components Cj0p

2 . Second, third, and last rows represent
the different components �respectively, right circular, longitudinal,
and left circular� of the field at z=0, after performing the summa-
tion of the multipole components. Note the different scales of the
components.
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to avoid errors due to the paraxial approximation, I have
used directly Eq. �5� to produce these results. It can be seen
that the total angular momentum of the beam increases lin-
early with the width in the limit of large beam widths. Fits of
the curves show that the total angular momentum of the
beam follows the equation ��j2�����l�+1� /2w0. In Fig. 3�b�
I present the result of the fits of the different curves with
circles and the comparison with the value ���l�+1� /2 in-
ferred from this analysis. One can see that there is almost
perfect agreement between values except for very low values
of the width or very large values of l. The rule for the total
angular momentum works otherwise perfectly when the
beam is fully in the paraxial approximation. Note that the
total angular momentum of a beam does not depend on its
polarization or the sign of the azimuthal index. It is interest-
ing to remark that from the results of Fig. 3 most of the
angular momentum of a paraxial beam is distributed among
the components perpendicular to the z axis.

V. APPLICATIONS

The examples above, and Eq. �5�, demonstrate that we can
control the superpositions of a set of multipolar fields by
using paraxial beams. As considered above, multipolar fields

are the solutions of the electromagnetic field one should use
when treating spherically symmetric problems. For example,
those problems where there is an exchange of angular mo-
mentum between the electromagnetic field and material par-
ticles are particularly well suited to be treated with multipo-
lar expansions of the electromagnetic field. One such case is
the electronic transitions in atoms or molecules. It is well
known that multipolar transitions are increasingly more dif-
ficult to excite �or de-excite� for larger j’s. This is why al-
most all the literature dedicated to the exchange of angular
momentum �or more exactly OAM� treats the problem in the
dipolar approximation. An easy calculation shows that the
probability for a multipolar transition to occur scales as
�a /��2�j, with a being the typical radius of the system in-
volved, and �j the multipolar transition �15�.

Here I explore a different, but related, problem. Let us
consider the case where it is needed to control a certain mul-
tipolar transition. This is the case, for example, when the
system is in certain metastable states, as is the case of
trapped Ca+ ions in quantum information applications �14�.
In those cases the rate of transition is low compared to dipole
transitions, simply due to the small size of the ion, compared
with the wavelength of the field. Nevertheless, one can still
maximize the overlap of the laser beam with the electromag-
netic multipole field associated with this transition. As in
practical applications one has to deal with paraxial or near-
paraxial beams, Eq. �6� can be used to engineer the shape
and polarization of the control beam, to maximize the over-
lap with the desired transition. Importantly, this method al-
lows us to control not only the total angular momentum ex-
change involved in a certain transition, but also the exchange
of Jz. This can potentially lead to lower losses and errors in
some applications, for example, in some quantum informa-
tion protocols. Note that the approach followed here is fully
equivalent to the usual approaches where the overlap of the
electromagnetic field with the multipolar current of the ma-
terial particle is calculated �2,15,22,23�.
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FIG. 3. �Color online� Total angular momentum of paraxial
beams. �a� Dependence of the density of total angular momentum of
a paraxial beam vs the beam width. Open circles represent the cal-
culated value of the angular momentum for a LG beam with right
circular polarization. The label of each set of data is the azimuthal
index l of the LG beam. Continuous line follow the rule of
���l�+1� /2w0. �b� Steepness of the kind of curves shown in �a� with
respect to the azimuthal index of the LG beam. The data are ex-
tracted by a linear regression of the calculated angular momentum.
Open circles: Right circular polarization. Crosses: Left circular po-
larization. Error bars in the linear regression are smaller than the
size of the spot. Continuous line: expected value of ���l�+1� /2.
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FIG. 2. �Color online� Multipolar decomposition of Laguerre-
Gaussian beams. First column: Right circular polarization �p= +1�
and azimuthal index negative �l=−1�. Second column: Left circular
polarization �p=−1� and azimuthal index positive �l= +1�. First
row: weight of the multipolar components: Cj	1
1

2 . In this case
Cj+1−1=−Cj−1+1. Second, third, and last rows are as in Fig. 1.
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The results shown here could also be interesting in the
field of nanophotonics where in some applications one needs
to produce light which closely resembles the symmetry of a
certain system, like, for example, with nanoantennas �24�. It
is likely that our method allows one to introduce new de-
grees of freedom in this kind of applications, considering
that our equation �5� is valid also for highly focused beams.
In the same way, it could be used in optical tweezers appli-
cations to control the transfer of angular momentum to mi-
croparticles �5�. Also, the expansion shown here can be re-
versed and then one can create highly directional beams in
applications where multipolar antennas are more easily avail-
able as, for example, in radio frequencies �25�.

VI. CONCLUSION

In conclusion, this work closes an existing gap between
the descriptions of angular momentum in paraxial and non-

paraxial electromagnetic fields. I have demonstrated that a
paraxial beam with OAM l and polarization p can be decom-
posed into multipolar modes with a fixed component of the
angular momentum m= l+ p and different components of the
total angular momentum j. I have provided analytical rules to
calculate the weight of the superpositions for several inter-
esting cases, thus allowing control over the superposition of
the multipolar fields. These rules could be useful in fields
where the interaction of light and matter has to be controlled
with precision.
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