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We present a theoretical framework to describe the collective emission of light by entangled atomic states.
Our theory applies to the low-excitation regime, where most of the atoms are initially in the ground state, and
relies on a bosonic description of the atomic excitations. In this way, the problem of light emission by an
ensemble of atoms can be solved exactly, including dipole-dipole interactions and multiple light scattering.
Explicit expressions for the emitted photonic states are obtained in several situations, such as those of atoms in
regular lattices and atomic vapors. We determine the directionality of the photonic beam, the purity of the
photonic state, and the renormalization of the emission rates. We also show how to observe collective phe-
nomena with ultracold atoms in optical lattices and how to use these ideas to generate photonic states that are
useful in the context of quantum information.
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I. INTRODUCTION

In the last years, the field of atomic, molecular, and opti-
cal physics has witnessed an impressive advance in the de-
velopment of setups to trap atoms under different conditions,
such as, for example, ions in electromagnetic traps and ultra-
cold atoms in optical lattices. Furthermore, the quantum state
of these systems may be engineered by performing quantum
operations such as as quantum gates between ions �1� or the
excitation of neutral atoms under the dipole blockade �2,3�.
In this way one can create deterministically collective en-
tangled states, such as the completely symmetric states with
a single excited atom ��W� states� �4�. In addition, those are
systems where atoms can be coupled to light in a very con-
trolled way. Since some of the atomic entangled states which
may be created in those setups play an important role in the
description of the interaction of atomic ensembles with light,
an important question arises: namely, can we use our control
on the states of trapped atoms to generate useful quantum
states of light? If so, which are the properties of such states
in terms of photon directionality, purity, or photon entangle-
ment?

A preliminary study of these ideas was recently presented
in �5�. The understanding of this problem requires a theoret-
ical framework to describe the emission of light by collective
atomic states under a variety of trapping conditions. Related
problems have been indeed a subject of investigation since
the seminal work by Dicke �6�. Nevertheless, the experimen-
tal systems that we have in mind share a few peculiarities
which demand a new approach for their description. First,
ultracold atoms are trapped in ordered arrangements such as
Coulomb crystals or optical lattices, where the distance be-
tween atoms, d0, is comparable to the wavelength of the
light, �. This situation is very different from Dicke superra-
diance, where � is larger than the size of the whole system. It
also differs from the case of crystals, where ��d0 as con-
sidered, for example, in �7�. Also, we study a situation in

which atoms are initialized in a collective state, which is not
necesarilly created by the absorption of a photon. Thus,
rather than the more traditional description in terms of light
scattering, we need a theoretical model of the mapping be-
tween atomic collective excitations and photons.

In its more general form the above-described situation
poses a very complicated many-body problem. A crucial sim-
plification is achieved by considering the low-excitation sec-
tor of the atomic Hilbert space, which in the Holstein-
Primakoff �HP� approximation can be described in terms of
bosonic spin waves �8�. This approach has been used in pre-
vious works, for example, to study Dicke superradiance �9�,
slow propagation of light �10�, and atom-light interfaces with
atomic vapors �11�. Also, the emission of light by ensembles
of harmonic oscillators was studied in �12�, although in a
different regime of trapping conditions than those considered
here.

In this paper we make use of the HP approximation to
describe the collective emission of light as a mapping be-
tween spin-wave excitations and photons. For atoms placed
at fixed positions this mapping is a Gaussian completely
positive map �13�, and we present a method to get explicit
expressions of the photonic modes into which light is emit-
ted. Furthermore, we extend this formalism to study the case
of atomic vapors. We obtain the following results: �i� For
atoms trapped in a regular lattice, there is a regime in which
photons may be emitted in a collimated beam, which re-
quires that ��2d0. In this regime, there is a renormalization
of the emission rates, leading to a classification of the low-
excitation atomic Hilbert space in terms of superradiant and
subradiant spin waves. Superradiant states decay with a rate
that is enhanced by a factor �, which depends on the dimen-
sionality of the lattice. In one dimension and 3D we deter-
mine the values �1D�� /d0 and �3D� �� /d0�2�L /d0�, respec-
tively, with L the length of the lattice. This effect is related
but not equivalent to Dicke superradiance. �ii� In the case of
atomic vapors the collective character in the emission of
light is determined by �en�N�� /L�2, where N is the total
number of atoms. The directional regime requires �en�1,
and the emission rate is enhanced by �en. �iii� Some of these
effects, such as the renormalization of the emission rates and
the directionality, could be observed in a relatively simple
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experiment with atoms in optical lattices. �iv� By making use
of coherent effects, photonic entangled states could be gen-
erated by trapped ions or neutral atoms. Photons that are
generated in this way could be collimated and in a pure state
and thus be useful in the context of quantum information.

II. THEORETICAL FRAMEWORK

Our first task is to describe the collective emission of light
by an ensemble of atoms. First, we focus on the situation in
which atoms are placed at fixed positions. At the end of the
section we discuss the effect of atomic motion.

A. Atom-photon map in the Holstein-Primakoff approximation

We consider an ensemble of N atoms trapped by harmonic
potentials with trapping frequency � and internal levels
forming a � scheme �see Fig. 1�. Two ground states �g� and
�s� are coupled by means of a laser with Rabi frequency �L
and wave vector kL through an auxiliary level �a�. We define
atomic operators 	 j = �g� j�s� and 	 j

ss= �s� j�s�, which fulfill the
commutation relations

��	 j,	l
†�� = 
 j,l�1 − 2�	 j

ss�� . �1�

Under the condition that the excitation probability of each
atom be low, �	 j

ss��1, we replace atomic operators by HP
bosons, 	 j→bj.

The HP approximation allows us to recast the atom-light
Hamiltonian as a bosonic quadratic Hamiltonian. After adia-
batic elimination of the upper level �a�, our system is de-
scribed by

H = H0 + Hlm + Hmot. �2�

H0=�k�kak
†ak, with �k=ck. We consider, for the sake of

clarity, a scalar model for the electromagnetic field, since our
conclusions do not change when including the dipole pattern,
as we show later. However, the photon polarization can be
included straightforwardly in our formalism. Hlm is the atom-
light interaction Hamiltonian in the rotating-wave approxi-
mation �14� �we set 
=1�,

Hlm = �
j,k

gkbj
†akei�k−kL�·rj+i�Lt + H.c.,

gk =
�L

2�


�k

2�0V
dga. �3�

V is the quantization volume of the electromagnetic field, �0
the vacuum permitivity, and dga the dipole matrix element of
the �g�-�a� transition. Hmot is the Hamiltonian describing the
motion of the atoms during the emission process, whose en-
ergy scale is given typically by the trapping frequency �.
Equation �3� is obtained under the assumption ���L ,�n̄,
with n̄ the mean vibrational occupation number. In the reso-
nant case �=0, the validity of the adiabatic elimination of
�a� requires that the decay rate from �a� to �g�, �ag, satisfy
�ag��L ,�n̄, and a similar coupling as �3� is obtained. The
spontaneous decay of �a� back to �s� is neglected in the fore-
coming analysis. This is justified either when collective ef-
fects enhance the �a�-�g� channel or by choosing �a�-�g� to be
a cycling transition �see Appendix D�. We deal first with the
simplest case, in which atoms are placed at fixed positions
and the motion of the atoms can be neglected. This is a good
approximation in the Lamb-Dicke regime �kLx0�2�2n̄+1�
�1, where x0 is the ground-state size in the harmonic trap.
The effect of the motion is considered in the last subsection.

This work relies on the observation that H0+Hlm gener-
ates a beam-splitter transformation between atomic states
and photons. The evolution of the atom-photon system can
thus be understood in terms of a Gaussian completely posi-
tive map �13�. In the low-excitation regime, any atomic state
can be expressed in terms of bosonic excitations,

���at = �
n1,. . .,nN

�n1,. . .,nN

�b1
†�n1

	n1!
. . .

�bN
† �nN

	nN!
�0�at. �4�

We consider the initial state

���0�� = ���at�0�ph, �5�

where �0�ph is the photon vacuum. Our goal is to find the
photon state ���ph at a time t longer than the atomic decay
time,

���t�� = U�t����0�� = �0�at���ph, �6�

where U�t�=e−iHt and H is the total atom-system Hamil-
tonian. Together with the beam splitter form of �3� this im-
plies that the problem is reduced to finding the exact form of
the transformation,

U�t�bj
†U�t�† = �

k
gjk�t�ak

† + �
l

hjl�t�bl
†. �7�

Taking into account that U�t�†�vac�=0, with �vac�= �0�at�0�ph,
then gjk�t� can be found by using the relation

gjk�t� = �vac�akU�t�bj
†�vac� = �vac�ak�t�bj

†�vac� , �8�

where ak�t� is the photon operator in the Heisenberg picture.
Also,

hjl�t� = �vac�blU�t�bj
†�vac� = �vac�bl�t�bj

†�vac� , �9�

which shows that hjl�t�=0 for t longer than the atomic decay
time. gjk�t� is thus the only interesting term, since it deter-
mines the photon mode into which light is radiated. Its de-
termination can be readily done by means of the Heisenberg

FIG. 1. � scheme.
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equation of motion for the photonic operators, which yields

gjk�t� = − igke
−i�kt�

l



0

t

d�

�e−i�k−kL�·rl+i��k−�L���vac�bl���bj
†�vac� . �10�

This equation is our starting point for the exact determination
of the photonic modes.

B. Photonic modes

To find the mapping between atomic and photonic modes,
we need to solve the master equation to calculate the time
evolution of the atomic correlator in Eq. �10�. In general, this
is a difficult many-body problem, but in the bosonic limit it
can be described exactly. In terms of HP bosons, the master
equation which describes the atomic dynamics reads �15�

d�

dt
= �

i,j
�Jijbj�bi

† − Jijbi
†bj� + H.c.� , �11�

where Jij include multiple light scattering and dipole-dipole
interactions,

Jij = �
k

gk
2


0

�

ei��k−�L��+i�k−kL�·�ri−rj�d� . �12�

This expression is evaluated by using the identity �d� ei��

=�
���+ iP�1 /��, which yields the result

Jii =
1

2
�̄ ,

Jij =
1

2
�̄e−ikL�ri−rj�� sin�kL�ri − r j��

kL�ri − r j�
− i

cos�kL�ri − r j��
kL�ri − r j�



��i � j� , �13�

where

�̄ =
1

3�
��L

2�

2 �L

3

�0c3dga
2 �14�

is the single-atom decay rate. The inclusion of the photon
polarization would change the spatial dependence of the cou-
plings Jij. However, as we show later, the collective phenom-
ena would be the same. Note that we are not including the
single-atom Lamb shift, which may be simply absorbed into
the laser frequency �L. Since Eq. �11� is quadratic in bosonic
operators, it is readily solved by defining eigenmodes which
diagonalize the atomic quantum dynamics in the low-
excitation limit,

bj = �
n

M jnbn,

�M−1JM�nm = Jn
n,m. �15�

The matrix Jij is not Hermitian, and thus canonical commu-
tation relations are not conserved, �bn ,bm

† ��
n,m. However,
the evolution of averages takes a simple form given by

�bl���� = �
n

Mlne−Jn��bn�0�� . �16�

Thus, the spin-wave dynamics is governed by the eigenval-
ues Jn. The latter contain the collective decay rates �n and
the collective energy shifts �n,

�n = 2 Re�Jn�, �n = 2 Im�Jn� . �17�

Conservation of the trace under the transformation �15� leads
to the sum rules

�
n

�n = N�̄, �
n

�n = 0. �18�

Note that whenever collective effects induce a renormaliza-
tion of �n, the sum rule implies the existence of super- and
subradiant states.

By application of �15� and �16� and the quantum regres-
sion theorem, we determine the two-time atomic average in
�10�. In the limit that t�1 /�n we get

gjk�t� = ie−i�ktgk�
ln

�M−1�nje
−i�k−kL�·rlMln

i��k − �L� − Jn
, �19�

which yields the explicit form of the atom-photon mapping.
By means of this relation it is possible to determine the
many-photon state emitted by any initial atomic state like
�4�.

To get insight into the characteristics of the photonic
states emitted by the collective atomic states, from now on
we focus on the mapping to a single photon. To clarify the
notation, let us define ��n�at, the n-spin-wave state with a
single excitation,

��n�at =
1

Nn
�

j

M jnbj
†�0�at,

Nn = 	�
j

M
jn
* M jn. �20�

N has to be included due to the non-Hermiticity of Jij. We
determine ��n�ph, the single-photon state into which ��n�at is
mapped,

��n�t��ph = �
k
�n,k�t�ak

†�0�ph,

�n,k�t� = i
gke

−i�kt

Nn
�

l

e−i�k−kL�·rlMln

i��k − �L� − Jn
. �21�

Although these results allow one to solve exactly the prob-
lem of collective emission of light including the effects of
reabsorption, aditional insight can be gained by considering
the case of a system with periodic boundary conditions. This
will be a good approximation for a finite system, provided
that the number of atoms in the volume is much larger than
in the surface—that is, L /d0�1. In this case we get the
matrices
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M jn =
1

	N
eiKn·rj . �22�

The spin-wave state n is then defined like

��n�at =
1

	N
�

j

eiKn·rjbj
†�0�at. �23�

The vector Kn is the momentum of the collective atomic
state. The resulting photonic mode is defined by the expres-
sion

�n,k�t� = igke
−i�kt

1
	N

�le
−i�k−kL−Kn�·rl

i��k − �L� − Jn
, �24�

such that collective effects and dipole-dipole interactions en-
ter through the dependence of the collective emission rate Jn
on the mode number n. Note that by using periodic boundary
conditions, the matrix M defines an unitary transformation,
and thus the sets ��n�n=1,. . .,N and ��n�n=1,. . .,N form an or-
thogonal basis of spin waves and photonic modes, respec-
tively.

C. Angular photon number distribution

We determine now the properties of the emitted photonic
modes. In particular, let us define

I��� =
V

�2��3

0

�

�ak
†ak�k2dk , �25�

the average photon number per solid angle. Consider an ini-
tial atomic state with a single excitation,

���at = �
j

� jbj
†�0�at. �26�

The emitted photon distribution is

I��� = �
j,j�

�
j
*Ijj����� j�,

Ijj���� =
V

�2��3

0

�

g
j,k
* gj�,kk2dk . �27�

Upon substitution of �19� in the expression for Ijj���� and
under the condition that �n /c�1 /L �see Appendix A�, we
get

Ijj���� =
�̄

4��
n,n�

B��� jn
1

J̄
n
* + J̄n�

B��� j�n�,

B��� jn = �M−1�
nj
* �

l

M
ln
* ei�kLn�−kL�·rl, �28�

where u� is a unit vector pointing in the direction of the
solid angle �. In spherical coordinates, � is determined by
�� ,��, such that u�= �sin � cos � , sin � sin � , cos ��.

The general recipe for calculating the photon distribution
probability involves the following steps: �i� Calculate the

coefficients of the master equation and find the eigenvalues
and eigenvectors of Jij. �ii� Use Eq. �28� to calculate Iij. �iii�
Use the latter to calculate the emission spectrum with the
wave function of any given initial atomic state expressed in
terms of bosonic spin waves. In the plane-wave approxima-
tion �22� we can get closed expressions for the photon dis-
tribution. We focus again on the single-photon case and de-
fine In��� as the photon number distribution corresponding
to the photonic mode emitted by ��n�at. By using Eq. �28� we
get

In��� =
1

4�

�̄

�n
�
j,j�

ei�k�−kL−Kn�·�rj−rj��. �29�

This result has a clear interpretation in terms of interference
of light emitted by the atomic system �16,17�. Equation �29�
not only allows one to calculate the angular emission
probabilty, but also, due to the normalization condition
�In���d�=1,

�n

�̄
=
 d�

1

4��
j,j�

ei�k�−kL−Kn�·�rj−rj��. �30�

This expression provides us with a simple way to determine
the collective rates under the plane-wave approximation.

D. Effects of the atomic motion

Finally, we discuss the effect of the atomic motion on the
light emission. In the most general case, the inclusion of the
motional degrees of freedom poses a very complicated prob-
lem which goes beyond the scope of this work. Two time
scales determine this problem. The first is �mot, the time scale
of the motion of atoms in the trap. In the case of trapped
particles, �mot=1 /�, with � the trapping frequency. We can
extend this discussion to the case of atomic vapors and con-
sider that in this case, �mot=L /v, with L the length of the
sample and v the atom velocity. �mot is to be compared with

the radiative decay time 1 / �̄, or more specifically, the set of
collective decay times 1 /�n. Based on the comparison be-
tween these time scales we define two limits in which the
application of our theoretical framework is particularly
straightforward.

�i� Slow-motion limit �mot�1 /�n. Since the emission pro-
cess is much faster than the motion of the particles, we can
assume that atomic positions are frozen. The system is in the
initial state

���0�� = ���at�0�ph��m�mot, �31�

where �m�r1 , . . . ,rN� is the initial wave function in terms of
the atomic positions, which in this limit does not evolve
during the emission time. The atom-photon mapping can be
still applied to this system by solving it for each value of the
atomic positions,

���at�0�at → �0�at��r1,. . .,rN�ph, �32�

where ��r1,. . .,rN�ph is the photonic state obtained under the
assumptions that atoms are located at positions r1 , . . .rN. Any
photonic observable O is then obtained upon averaging with
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respect to the wave function �m—for example,

�O� = �
r1,. . .,rN

��r1,. . .,rN�O��r1,. . .,rN���m�r1, . . . ,rN��2.

�33�

This method can be readly extended to the case of a mixed
motional state.

�ii� Fast-motion limit �mot�1 /�n. In this case, we are
assuming that trapped atoms move along the sample in a
time that is smaller than the emission time. This case is par-
ticularly relevant, since it describes hot atomic vapors. We
notice first that condition �mot�1 /�n implies that the atomic
positions are not correlated with the atomic operators in Eq.
�10�. Thus, we can describe the atomic radiative decay inde-
pently of the evolution of atomic positions rl in �10�. This
can be done by using a master equation with averaged coef-
ficients,

Jij = ��
k

gk
2
��k − �L��ei�k−kL�·�ri−rj��mot. �34�

In the case of a harmonic trap, ri are position operators and
�¯�mot is the average with the atomic motional state. This
situation can be extended to describe hot atomic vapors by
replacing the atomic positions ri by a set of random variables
with a given probability distribution, �m�r1 , . . . ,rN�, and per-
forming the corresponding average to get Jij.

Once the atomic dynamics is solved, our results on the
atom-photon mapping can be used to describe the emitted
photons. A general atomic state is mapped now onto a mixed
photonic state. For example, consider the atomic state ��n�at,
defined by Eq. �20�, which is obtained by the diagonalization
of the master equation with �61�. The atom-photon mapping
yields the following photon density matrix after the emission
process:

�ph�t� = �
k,k�

��n,k�t��
n,k�
* �t��motak

†�0�ph�0�ak, �35�

and this expression is easily generalized to the multiphoton
case. Note that the solution of the fast-motion limit seems
similar to the case of slow motion. However, the crucial
difference is that in the fast case, we are allowed to solve the
radiative emission problem and to perform subsequently the
spatial average in �35�. We will study in more detail this
situation later in the case of the collective emission proper-
ties of atomic ensembles.

III. ATOM-PHOTON MAPPING IN A SQUARE LATTICE

The situation in which atoms are arranged in a crystal is
found in experimental setups such as ultracold atoms in op-
tical lattices and Coulomb crystals of trapped ions. The re-
sults presented in the previous section are applied here to
study the collective emission process in these systems. We
obtain analytical results by using the plane-wave approxima-
tion.

A. General discussion

Let us study for concreteness the case of 1D or 3D square
lattices, although our results are easily generalized to differ-

ent lattice geometries. Assuming periodic boundary condi-
tions, the allowed wave vectors are

Kn =
2�

d0
�
�

n�
N�

�̂ . �36�

In the 1D case we consider that the atom chain is aligned in
the z direction. Thus, in �36� and the forecoming expressions,
� runs over �=z in 1D and �=x ,y ,z in 3D. �̂ is a unit vector
in the direction �, and N� is the number of atoms along
�̂. Considering, for concreteness, the case of even N�, each
wave vector is determined by the set of integers n�
=−N� /2, . . . ,N� /2−1. By applying Eq. �29� we determine
the photon number angular distribution for the photonic state
emitted by a spin-wave excitation with momentum Kn,

In��� =
1

4�

�̄

�n

1

N�
�

sin2��kLu�
� − kL

� − Kn
��d0N�/2�

sin2��kLu�
� − kL

� − Kn
��d0/2�

.

�37�

In��� shows a series of diffraction maxima at solid angles �
at which the sin2 function in the denominator vanishes. Note
that by including the photon polarization, we would have
obtained an additional function of � multiplying the photon
distribution In���, which would correspond to the single-
atom dipole pattern. The latter would induce the suppression
of diffraction peaks if they are in a direction forbidden by the
dipole pattern. Since we are specifically interested in collec-
tive effects, we do not consider this effect in the discussion
that follows.

To get a quantitative description of the photon distribution
we notice first that

1

N

sin2�Nx�
sin2�x�

� �
m

fN�x − m��, if N� 1, �38�

where the function fN�x� describes the shape of each of the
diffraction peaks,

fN�x� = Nsinc2�Nx�, − �/2� x��/2,

fN�x� = 0, otherwise. �39�

Thus, in the limit N��1, one can approximate the emission
probability as a sum over Bragg scattering contributions,

In��� = �
m

In
�m���� ,

In
�m���� =

1

4�

�̄

�n
�
�

fN�� kLd0n�
�

2
−

kL
�d0

2
−

n�
N�

� + m��
 .

�40�

Each term in the sum is labeled by the vector m and corre-
sponds to a different diffraction peak. The probability that
the spin wave n emits a photon in the m diffraction peak is
given by

pn
�m� =
 d�In

�m���� . �41�
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Equation �40� has a clear interpretation in terms of mo-
mentum conservation. In��� has a maximum whenever there
is a value of m such that

kLu�
� = kL

� + n�
2�

d0N�

+ m�

2�

d0
, ∀ � . �42�

That is, the linear momentum of the emitted photon has to
match the sum of three contributions: the momentum of the
incident laser, kL; the initial momentum of the spin wave,
n2� / �d0N��; and the contribution from the lattice periodic-
ity, which enters through the reciprocal wave vector
m2� /d0. In 1D, condition �42� has to be satisfied only by the
�=z component of these vectors; that is, only the projection
of the momentum on the chain is conserved. In 3D, on the
contrary, the equality has to be satisfied by all vector com-
ponents. Relation �42� determines the maxima in the emis-
sion pattern depending on d0 and �, but it also determines the
collective rates, through the normalization condition on
In���; see Eq. �30�.

Since −1�u�
� �1, if ��2d0, there is at most a single

value of m, for which condition �42� can be fulfilled for
some vector u�. Thus, ��2d0 is the directional regime in
the emission of photons, whereas in the case ��2d0, we
cannot ensure that photons are collimated in a single direc-
tion. In the following two subsections, we will study these
regimes in 1D and 3D. In particular, we will be interested in
determining ��, the angular width of the photon beam in the
directional regime, and �n, the collective emission rates.
These quantities will be studied as a function of dimension-
ality, d0, �, and N.

B. Atom chains

We consider for concreteness that kL points in the z direc-
tion, parallel to the chain axis. The vectors n and m are
reduced now to scalars n and m, which correspond to the
projections on the chain axis. Due to the symmetry of the
problem, the photon distribution emitted by a spin wave n
depends only on the angle � through u�

z =cos �,

In��� =
1

4�

�̄

�n

1

N

sin2��kLd0�u�
z − 1� − n

2�

N

N/2�

sin2��kLd0�u�
z − 1� − n

2�

N

/2� .

�43�

Taking the limit N�1 and using �38�,

In��� = �
m

In
�m���� ,

In
�m���� =

1

4�

�̄

�n
fN� kLd0

2
�u�

z − 1� − n
�

N
+ m�
 . �44�

The peaks in the photon distribution correspond to the emis-
sion of photons such that the z component of momentum is
conserved,

u�
z − 1 =

�

d0

n

N
−
�

d0
m; �45�

that is, there is a maximum whenever there is a value of m
which satisfies this relation. In the directional regime �
�2d0, there is at most a single value of m which satisfies
�45�. However, in this case, momentum conservation only
determines the value of � at the emission maximum, which
implies that, in general, photons are emitted in cones
spanned by different values of �. Only when the maximum
happens at �=0 or �=� are photons collimated in the
forward- or backward-scattering directions, respectively �see
Fig. 2�.

Let us study first the case n=0—that is, the emission
properties of the completely symmetric state. The forward-
scattering contribution I0

�0� has an angular width given by
��1D=1 /	kLd0N. The contribution to the emission pattern
from each of the Bragg terms is

p0
�0� =
 d� I0

�0���� =
�̄

�0

�

4d0
,

p0
�m� = 2p0

�0�, m � 0. �46�

Condition �45� leads to the result that the number of emis-
sion cones with m�0 is given by int�2d0 /��. A calculation
made without resorting to the plane-wave approximation
yields the same results, even for relatively small atom num-
bers �N=20� �see Fig. 3�. However, the shape of the photon
angular distribution in the exact calculation shows a depar-
ture from the sinc2 shape predicted by Eq. �45� �see Fig. 4�.
By using the normalization condition for I0���, we deter-
mine the probability of emission in the forward-scattering
direction,

p0
�0� =

1

1 + 2 int�2d0

�

 . �47�

Thus, in the directional regime ��2d0, all the diffraction
peaks but the forward-scattering one are suppressed. The col-
lective emission rate is given by

k
L

K
n

k

k K
z z z
= +

n
k

L

k K
z z z
= + +

n
m d��

0
k

L

k

z

� �

FIG. 2. Photon emission by a spin wave with linear momentum
Kn in an atomic chain. The maxima in the photon distribution are at
angles � such that momentum along the chain is conserved up to
reciprocal lattice wave vectors.
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�0

�̄
=
�

4d0
+
�

2d0
int�2d0

�

 , �48�

where int�x� stands for the integer part of x.
Finally, we calculate the emission rate for all the 1D spin-

wave states. They can be written as an integration over the
contributions coming from different diffraction peaks
through the normalization condition; we have

�n

�̄
=

1

4��
m



−1

1

dx fN� kLd0

2
�x − 1� − n

�

N
+ m�
 . �49�

The collective rates are thus determined by the number of
diffraction peaks which appear in the emission pattern of
each collective state n. Considering the limit in which
kLd0N�1—that is, the 
 limit for each of these peaks—we
get the following distribution of emission rates:

�n

�̄
= �1D����−

n

N

��2d0

�
+

n

N

 + int�2d0

�
+

n

N


� ,

�50�

with �1D=� / �2d0� and ��x� is the Heaviside function. This
expression describes quite well the emission rates calculated

without assuming periodic boundary conditions—that is, by
diagonalizing the matrix Jij given by �14� �see Fig. 5�. In the

limit d0��, we recover �n= �̄. On the contrary, if � is com-
parable to d0, emission rates are renormalized. In the direc-
tional regime ��2d0, some of the states have an enhanced
rate �n=�1D �superradiant�, whereas there are states for
which �n=0 �subradiant� �18�. Due to the relation between
the photon distribution and the emission rates �49�, subradi-
ant states correspond to spin waves whose emission pattern
is not peaked at a given value of �. On the contrary, super-
radiant states are spin waves whose emission pattern does
contain a maximum as a function of �. Note that Eq. �50�
does not describe the case of Dicke superradiance, which

would predict a single superradiant state, with �0=N�̄. The
reason is that we have assumed condition NkLd0�1; that is,
we are always in the regime in which the light wavelength is
much smaller than the size of the chain. Our results for 1D
are consistent with Ref. �19�, where the collective light emis-
sion from an atomic chain is addressed with the quantum
jump formalism. Also, in Ref. �20�, the fraction of subradiant
states of a chain of interacting qubits is studied numerically,
and the result is in agreement with Eq. �50�.

To summarize the situation in 1D, in the directional re-
gime ��2d0, superradiant spin waves emit photons into a
single-emission cone with a rate that is enhanced by �1D.
This effect can be used to generate photons that are colli-
mated along the chain axis. Note that, in general, the atom-
photon mapping induced with the � scheme of Fig. 1 may
compete with other radiative processes, such as the radiative
decay from �a� back to �s� or the radiative decay from �a� to
other atomic levels that are not included in the � scheme.
This problem can be solved by enhancing the atom-photon
mapping rate, choosing �1D�1. Since �1D does not depend
on the chain size, this implies choosing ��d0. Another way
out of this problem is to use a cycling transition �see Appen-
dix D�.

C. Three-dimensional atom lattices

Contrary to the 1D case, in 3D it is not simple to obtain
closed expressions to describe the emission in the plane-

0 0.5 1 1.5 2
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I 0(Ω
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λ= d
0

λ=5 d
0

FIG. 3. Angular photon distribution of the photonic mode emit-
ted by the completly symmetric spin wave in a chain of N=20
atoms. We have used the exact egenvalues of the density matrix and
followed the method described in the previous section.
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FIG. 4. Angular photon distribution of the photonic mode emit-
ted by the completly symmetric spin wave from a chain of N=20
atoms, �=5d0, calculated assuming periodic boundary conditions
�solid line� and performing an exact diagonalization of the master
equation �dashed line�. The distribution in the exact case shows a
departure from the sinc2 shape due to collective effects.
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FIG. 5. Calculation of the collective rates of a chain with N
=20 atoms. Solid squares: result predicted by the plane-wave ap-
proximation �50�. Open circles: eigenvalues of the matrix Jij de-
fined by �14�. In the last case, to each eigenvalue of Jij we assign a
wave number n, which corresponds to the maximum Fourier com-
ponent of the corresponding eigenvector.
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wave approximation. In order to get a simpler picture, we
replace the sinc function in the definition �38� by a Gaussian
which is normalized in the same way,

fN�x� � 	�Nxe
−x2N2

. �51�

This approximation is justified in the limit in which the dif-
fraction peaks are narrow enough, such that they do not
overlap—that is, N�kLd0�1. Assuming that the length of the
lattice is the same in any spatial direction, Nx=Ny =Nz, then
the angular photon distribution for a state n is given by

In��� = �
m

In
�m���� ,

In
�m���� =

1

4�

�̄

�n
�3/2Ne−��kLd0/2�u� − kLd0/2 − �n/N − �m�2Nx

2
.

�52�

A given term In
�m���� has a non-negligible contribution only

if

�kLd0 + 2�n/N + 2�m�
kLd0

= 1, �53�

since, otherwise, there are no photons which satisfy energy-
momentum conservation.

Let us study first the directional regime ��2d0. In this
case we find the following two possible situations.

�i� Superradiant states—spin waves for which there exists
a value of m, say, mc, such that �53� is satisfied. The condi-
tion ��2d0 ensures that there is a single possible value of
mc. Thus, the photon distribution can be simplified,

In��� = In
�mc���� , �54�

and there is a single-emission peak in the direction of

u�max
=

kLd0 + 2�n/N + 2�mc

kLd0
. �55�

Photons are collimated in a beam with width ��3D
=1 / �kLd0N1/3�. From �54� and the normalization condition,
we can determine the emission rate,

�n

�̄
=

N

4�

 d��3/2e−��kLd0/2�n� − kLd0/2 − �n/N − �mc�2Nx

2

=
1

	�
Nx� �

2d0

2

= �3D. �56�

Thus, superradiant states have a decay rate that is enhanced
by the optical thickness, �3D.

�ii� Subradiant states—spin-waves for which there is no
value of m which satisfies �53�. In this case, there is not a
single dominant contribution m such that directionality in the
emission of photons is not guaranteed. Also, the normaliza-
tion condition on In��� leads directly to the result �n=0
�18�.

From this analysis, we conclude that superradiant spin
waves are interesting in the context of quantum information,
since they emit collimated photons with an enhanced emis-

sion rate. However, the emission direction is determined by a
value of mc, which has to be calculated for each particular
spin wave. There are two relevant cases in which this situa-
tion becomes simpler, since energy-momentum conservation
ensures that the only Bragg contribution is mc=0. The first
one is the case ��4d0, because

�kLu�
� − kL

��� 2kL,

�n�
N

2�

d0
+ m�

2�

d0
� � 1

2

2�

d0
�if m � 0� , �57�

and thus for values ��4d0 the energy-momentum conserva-
tion condition �42� is only fulfilled by mc=0. Second, as-
sume that the spin wave is created by the absorption of a
photon within the � configuration of Fig. 1, such that the
spin-wave linear momentum can be written like Kn=q−kL,
with q=kL. Then, the energy-momentum condition is now

q + k = m
2�

d0
, �58�

which is satisfied only by mc=0 if ��2d0. Indeed, the spin
wave created in this way is always superradiant, since Kn
automatically satisfies Eq. �53�. A similar result is obtained
in Refs. �21,22� for the case of a cloud of atoms with a
Gaussian density distribution, where the rate of spontaneous
emission of a state created by the absorption of a photon is
shown to increase with the optical thickness.

To summarize the situation in 3D, in the directional re-
gime ��2d0, superradiant spin waves emit collimated pho-
tons with a rate enhanced by �3D. Contrary to the situation
found in 1D, in 3D lattices �3D�Nx, and thus it can be in-
creased by increasing the size of the system. In this way, the
atom-photon mapping could be much faster than other com-
peting decay channels.

IV. EMISSION OF LIGHT BY HOT ATOMIC ENSEMBLES

The formalism presented in the previous section can be
extended to situations in which atoms are not at fixed posi-
tions in space. In this case, one expects the photonic state not
to be a pure state, but a mixed one. This is relevant to the
description of hot atomic vapors. We follow the discussion
presented in Sec. II D, and consider the case of fast motion
��mot��n�. The results presented here are in agreement with
Ref. �23�, where the photonic mode emitted by an atomic
ensemble is studied. Our first task is to reformulate the prob-
lem of photon emission by finding the master equation that
describes this situation.

A. Master equation for atomic ensembles

In the fast-motion limit, particle positions may be de-
scribed as a set of independent random variables �r j�. We
choose for simplicity a Gaussian distribution probability

��r� =
1

�3/2L3e−�r/L�2
. �59�

The particle positions fulfill the following identity, which
will turn out to be the basis for the following calculations:
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�e−iq·�rj−rl��mot = 
 jl + �1 − 
 jl�e−q2L2/2, �60�

where �¯�mot is an average over the atomic positions.
To calculate the coefficients of the master equation we

start from Eq. �12� and perform the average,

Jij = ��
k

gk
2
��k − �L��ei�k−kL�·�ri−rj��mot, �61�

were we have neglected the Cauchy principal value contri-
bution, since it leads to an energy shift that does not play any
role in the discussion that follows. After using �60�, integrat-
ing over k, and taking the limit kLL�1, we get

Jii = �̄/2,

Jij =
�̄

4�kLL�2 �i � j� . �62�

One can readly diagonalize the matrix Jij and obtain the
eigenspaces of the master equation. The first is the com-
pletely symmetric state �n=0�,

M j0 =
1

	N
, J0 =

�̄

2
��en + 1� , �63�

where �en= �N−1� / �2�kLL�2� is the optical thickness of the
atomic ensemble. Note that in the limit N�1 and defining
the atom density nat=N /L3, the optical thickness can be re-
cast in the more familiar form �en=nat�

2L /2. The second
eigenspace is spanned by the spin waves orthogonal to M j0,

�
j

M jn = 0, Jn =
�̄

2
�1 −

1

2�kLL�2
, if n � 0. �64�

Collective effects happen if �en�1. In this case, there is a
single superradiant spin-wave mode, corresponding to the
completely symmetric state, and N−1 states which decay

with the single-atom emission rate Jn= �̄ /2.

B. Single-photon state

The spin-wave mode n=0 is the only one to show collec-
tive effects, and it is the collective state which can be created
in experiments with atomic vapors. For these reasons, we
focus on the radiation properties of these modes. First, we
consider the emission of light by the initial atomic state with
a single excitation,

��0�at =
1

	N
�

j

bj
+�0�at. �65�

The atom-photon mapping can be extended to this situation
by considering first that the atomic state is mapped onto a
given photonic state and then by performing the average over
the atomic positions. This gives as a result a photon density
matrix

��0�at�0�ph�0� → �0�at� ,

� = �
k,k�

�kk�ak
+�0�ph�0�ak�. �66�

Note that the mapping is now from a pure to a mixed state.
Unfortunately, with the statistical properties of the atomic
positions considered here, it is not possible to ensure that this
is still a Gaussian map. We can, however, use Eqs. �24� and
�60� to get

�kk� = ��0,k�0,k�
* �mot = �1 − ���̄0,k�̄0,k�

* + ��̄ ,

� =
1

1 + �en
. �67�

We work, for clarity, in the interaction picture with respect to
Hlm. The coherent component of the photon density matrix is
the pure state ��̄0�ph,

�̄0,k =	1 +
1

�en

	N − 1gk
e−�k − kL�2L2/4

− i��k − �L� + J0
, �68�

whereas �̄ is a normalized mixed state which describes the
incoherent �isotropic� component,

�̄kk� =
�1 + �en�gkgk�e

−�k − k��2L2/4

�− i��k − �L� + J0��i��k� − �L� + J0�
. �69�

Under the condition �en�1, the main contribution to the
photon density matrix is the pure one ��0�ph. The parameters
which describe the directionality in the photon emission can
be readly evaluated. The emission pattern has both coherent
and incoherent contributions

I0��� = I0
coh��� + I0

inc��� ,

I0
coh��� = �1 − ��

N − 1

4��en
e−�kLu� − kL�2L2/2,

I0
inc��� = �

1

4�
. �70�

Thus, photons are collimated in the forward-scattering direc-
tion, with angular width ��en=1 / �kLL�. The deviation of the
photon emission from directionality is determined by the
probability of emission out of the forward-scattering cone,
E=�d� I0

inc���=�.
Finally, we calculate the purity of the photon state, which

is defined as

P = Tr��2� = �1 − ��2 + �2Tr��̄2� + 2��1 − ����̄0��̄��̄0� .

�71�

This quantity is very relevant when using photons in quan-
tum information processing, since it describes the efficiency
in the process of interference of photonic modes in a beam
splitter, being P=1, the case corresponding to a pure state.
To calculate P, we notice first that
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Tr��̄2� = �
k,k�

��k,k��
2 =

1

2�kLL�2 . �72�

Also, because of the Cauchy-Schwartz inequality, this im-
plies that

���0��̄��0��2 � Tr��̄2� , �73�

such that

P = Tr��2� = �1 − ��2 + O�1/kLL� � 1 − 2/�en. �74�

Thus, in the limit kLL�1, the purity of the photon state is
solely determined by �en.

C. Multiphoton state

We study now the properties of the multiphoton case. The
mapping is from a state with M atomic excitations in the
completely symmetric state to a multiphoton mixed state,

1
	M!

� 1
	N

�
j

bj
†
M

�0�at�0�ph → �0�at� . �75�

We assume the low-excitation limit �M�N�. In Appendix B,
we show that the mixed photonic state can be written like

� = �1 − ��M���ph��� + �̃ ,

���ph =
1

	M!��k
�̄0,kak

+
M
�0�ph. �76�

That is, it is a sum of a pure state consisting of M photons in
the photonic mode defined by �68� and the �not normalized�
mixed state �̃. In order to determine the purity of � we
should study the mixed contribution, which is here far more
complicated than in the single-photon case. Instead, we no-
tice that

P = Tr��2�� �1 − ��2M , �77�

which allows us to obtain a lower bound for the purity.

V. IMPLEMENTATIONS

A. Collective light emission in ultracold atoms
in optical lattices

Ultracold atoms in optical lattices are an ideal system for
the observation of the effects described in this work. For
example, atoms in a Mott phase �24� would be ideally suited
to study collective light emission from a square lattice. In
this setup, atoms are placed at distances that are comparable
to optical wavelengths, since potential wells in a standing
wave are indeed separated by d0=�sw /2, with �sw the wave-
length of the counterpropagating lasers that create the lattice.
The conditions for the directional regime are met by using an
optical transition such that ���sw. Under this condition, ul-
tracold atoms in optical lattices are ideal to form an atom-
light quantum interface �11,25,26�, where the quantum state
of light can be indeed manipulated, as shown recently in
�27�. The properties of the emitted light may also be used to

measure the properties of quantum many-body phases in op-
tical lattices �28�. Our theory can also be applied to the col-
lective matter-wave emission in optical lattices proposed in
Ref. �29�.

We propose now an experiment in which the renormaliza-
tion of the collective rates may be observed by performing
the following steps �see Fig. 6�.

�i� First, we use a protocol to initialize the atomic quan-
tum state of the lattice. Assume that all the atoms are initially
in the ground state �g�. The � scheme of Fig. 1 may be used
for the initialization by shining the lattice during a short time
T with two lasers with wave vectors kL,A, kL,B, and Rabi
frequencies �L,A, �L,B, and detuning �, such that
�L,A ,�L,B��. Under these conditions, a coherent state of
spin waves with momentum K=kL,A−kL,B is created,

���at� e−i��ABT/2�bK
†
�0�at,

bK
† =

1
	N

�
j

eiK·rjbj
†, �78�

where �AB=�L,A�L,B /� and the condition �ABT�1 has to
hold in order to ensure that the system is in the low-
excitation regime.

�ii� After the creation of the collective atomic state, this
can be realeased by a second laser with momentum kL in the
� scheme considered along this work. The analysis pre-
sented in Sec. III can be applied to study the emission of
photons by setting Kn=kL,A−kL,B. For example, if kL
=kL,B, then the spin wave emits a photon in the direction

kL,A, with a superradiant rate �3D�̄. On the contrary, if Kn
does not satisfy the condition �53�, then the emission rate
will be suppressed, up to finite-size effects.

B. Deterministic generation of entangled states of photons

An application of our ideas to generate photons in a de-
terministic way requires a system where experimentalists are
able both to reach the directional regime of collective light
emission and to initialize the atomic system in a given spin-
wave state. This idea may find useful applications in quan-
tum cryptography �30�, quantum computation �31�, and
quantum litography �32�.

kL,A

k K k= + L

kL,B

K k= -L,A kL,B

kL

K k= -L,A kL,B

� �g� �g

� �a� �a

k

�

kL L, �

� �s� �s� �g� �g

� �a� �a
�

� �s� �s

kL,A kL,B

(i)(i) (ii)(ii)

FIG. 6. �i� Creation of a spin wave with linear momentum
kL,A+kL,B in an optical lattice. �ii� Mapping from the spin wave to
a photonic mode.
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Before going into the description of particular experimen-
tal setups, we discuss how to extend our formalism to gen-
erate photons that are entangled in polarization. For this, we
consider the double-� scheme of Fig. 7, in which there are
two excited levels �s1�, �s2� and a ground-state level �g�. The
atom-photon mapping is described in the same way, by de-
fining the corresponding Holstein-Primakoff operators b1,j,
b2,j. Assume that the �s1�, �s2� states decay by emitting pho-
tons with different polarizations and creation operators a1,k

† ,
a2,k

† . If the conditions for momentum conservation explained
along this work are fulfilled, then entangled spin waves will
be mapped onto entangled photons in polarization. For ex-
ample, consider the initial spin-wave state

���at =
1
	2

�b1,KA

† b2,KB

† + b1,KB

† b2,KA

† ��0�at, �79�

where we have used the notation b	,K
† = �1 /	N�� je

iKrjb	,j
† .

After the atom-photon mapping, the following photonic state
is created:

���ph =
1
	2

�a1,KA+kL

† a2,KA+kL

† + a1,KB+kL

† a2,KA+kL

† ��0�ph.

�80�

In this way, the ability to generate entangled spin waves is
equivalent, by virtue of the atom-photon mapping, to the
ability to generate entangled photonic states. We propose
three experimental setups where this is possible and discuss
the conditions that are required for the implementation of
this idea.

1. Trapped ions

This system is especially appealing from the point of view
of the creation of entangled states, since quantum gates allow
us to create deterministically any collective state. This idea
has been demonstrated in the creation of the K=0 �W� state
in �4�. The first issue that we have to deal with is whether
conditions for forward scattering of photons hold here. Usu-
ally ions are arranged in chains, with the peculiarity that the
distance between ions is not constant. However, if condition
d0

av�� /2, with d0
av the average distance, we still get light

emission in the forward-scattering cone only. We show this
fact by performing a calculation of the emission pattern of a
single atomic excitation in the K=0 state using the theory
presented in the previous sections �see Fig. 8�. Note that
directionality is achieved even for a relatively small number
of ions �N=10�. The main difficulty for the implementation

of this idea with ions lies in the fact that ion-ion distances are
usually in the range of a few  m, and thus condition d0

av

�� /2 is not fulfilled when considering optical wavelengths
�33�. A way out of this problem is to use optical transitions
which lie in the range of �!5  m, such as, for example,
��2D3/2− 2P1/2�=10.8  m in Hg+ or ��2D3/2− 2D5/2�
=12.5  m in Ba+. A particularly interesting initial atomic
state is the spin wave �79� with kA=0 and kB=−2kL �all
vectors in the direction of the atomic chain�, since it leads to
the emission of an entangled photon pair in the forward- and
backward-emission directions.

2. Ultracold atoms in optical lattices

We have shown above that optical lattices are well suited
to reach the regime of directionallity in the emission of pho-
tons. The main issue here, contrary to the case of trapped
ions, is to find a way to create efficiently the initial spin-
wave states in a deterministic way. Although one could think
of peforming quantum gates between ultracold neutral atoms
to generate collective atomic states �34,35�, this procedure
faces the difficulties of quantum computation in this system,
such as, for example, how to achieve single-atom address-
ability.

More efficiently, one could avoid the use of quantum
gates by using the dipole-blockade mechanism with Rydberg
atoms, which allows us to generate W states, as well as states
which emit Fock states with a number M of photons �2�.
Interactions between excited atomic states, such as those that
take place in Rydberg atoms, can be also used to generate
photons entangled in polarization. This can be achieved in a
single experimental step, without the need for quantum
gates, if the proper configuration of atomic interactions is
chosen. As an example, consider the level configuration
shown in Fig. 9 and interactions between excited states such
that atoms in levels �s1� and �s2� interact strongly only if they
are in the same excited state—that is, U11=U22=U, but
U12=0. We apply two lasers with wave vectors kA,B and
Rabi frequencies �A,B, detuned with respect to the �g�
− �sa,b� transition, such that �A=−�B=�. If condition �A,B
��A,B is fulfilled, then the lasers induce a two-photon tran-
sition with Rabi frequency �eff=�A�B /�. Furthermore, if
�eff�U, states with two atoms in the same excited state are
not populated. Under these conditions there are two possible

� �g� �g

� �a1� �a1

k, �
�

�

kL L, �

� �s1� �s1

� �a2� �a2

kL L, �
k, �

�

� �s2� �s2

FIG. 7. Double-� scheme for the generation of photons en-
tangled in polarization. 0 0.5 1 1.5 2

0

2

4

6

8

1 − cos(θ)

I 0(Ω
)

λ = 2.5 d
0
av

λ = 1 d
0
av

FIG. 8. Angular photon distribution of the photonic mode emit-
ted by the completely symmetric spin wave in an ion chain with
N=10 ions.
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excitation channels, depicted in Fig. 9, which give rise to the
linear combination �79�.

3. Atomic ensembles at room temperature

The very same techniques which can be applied to Ryd-
berg atoms in an optical lattice can also be used in the case
of hot ensembles. On the one hand, this setup has the advan-
tage that atoms do not need to be cooled and placed in an
optical lattice. On the other hand, it can be described by a
statistical distribution of particles and thus suffers from the
fact that high efficiency in the release of photons is achieved
under more severe conditions of particle density and atom
number, as discussed above. However, densities which are
high enough to fulfill the requirement E�1 have been re-
cently reported in �36�.

C. Photon up-conversion

Finally, the ideas presented in this work find an intereset-
ing application in the efficient up-conversion of photons. For
example, transitions between the states �g� and �s� are typi-
cally in the range of 1 GHz. Application of the � scheme of
Fig. 1 provides a way for up-conversion of the microwave
photon to an optical photon. Also, by using several lasers,
one could induce N-photon transitions from �g� to �a� and
emit a single high-frequency photon. By using the ideas pre-
sented in this work, this could be done in such a way that the
up-converted photons are collimated and, thus, they can be
efficiently collected.
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APPENDIX A: VALIDITY OF NEGLECTING
PROPAGATION EFFECTS

When performing the integration in k in Eq. �27�, we have
to deal with the following factor inside the integration:

ei�k−kL�·�rj−rj��

�− i��k − �L� − J̄
n
*��i��k − �L� − J̄n��

, �A1�

which can be evaluated in the following way:

1

�− i��k − �L� − J̄
n
*��i��k − �L� − J̄n��

= − � 1

− i��k − �L� − J̄
n
*

+
1

i��k − �L� − J̄n�



��J̄
n
* + J̄n��

−1

� − 2�
��k − �L�
1

J̄
n
* + J̄n�

,

where we have aproximated

Re� 1

− i��k − �L − �n� − �n/2
 � �
��k − �L� . �A2�

This approximation is justified by the following argument.
The left-hand side of �A2� is a function of k with width �n /c.
The latter has to be compared with the dependence on mo-
mentum of the exponential in �A1�, which is, roughly, 1 /L.
Thus, the approximation holds in the limit �n /c�1 /L—that
is, whenever the emission time is shorter than the propaga-
tion of the photon through the sample, something that is well
justified in the trapping setups considered in this work. The
energy shift can also be safely neglected, since condition
�n��L is well justified by the atomic transitions used in
cold-atom setups.

APPENDIX B: MULTIPHOTON STATE EMITTED
BY AN ATOMIC ENSEMBLE

Our starting point is the atom-photon mapping defined in
Eq. �75�. By applying our method we get

� =
1

M!

1

NM���
j,k

ei�k−kL�·rj

i��k − �L� − �0/2
ak

†
M

�0�ph�0�

�� �
j�,k�

e−i�k�−kL�·rj�

− i��k� − �L� − �0/2
ak�
M�

mot

. �B1�

After expanding the contents of the two parentheses to the
power of M we can reexpress this equation as a sum of 2M
products of exponentials of the argument i�k−kL�r j. There
are � N

2M � terms such that all the random variables are differ-
ent. These terms can be summed up to a contribution which
yields a pure state, such that � is the sum of a pure and a
mixed state,

� = �̃pure + �̃ , �B2�

where �̃pure and �̃ are not normalized. The pure contribution
has the form

�A

kA A, �

� �s1 i� �g j� � � �s g1 i j

�B

� �g i� �g j� � � �g gi j

� �ig s� �1 j� � � �g si j1

kA A, �

� �is s1 2� �j� � � �s s1 2i j

kB B, �

kB B, �

FIG. 9. Scheme for the generation of entangled spin waves by
using the Rydberg blockade.
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�̃pure =
1

M!

1

NM� N

2M

��

k

gke
−�k − kL�2L2/4

i��k − �L� − �0/2
ak

†
M

�0�ph�0�

���
k�

gk�e
−�k� − kL�2L2/4

− i��k� − �L� − �0/2
ak�
M

, �B3�

which is a pure state with M photons. To normalize this state,
we use the limit � N

2M � /NM =NM �N�M� and obtain the final
result �76�.

APPENDIX C: 3D LATTICE, LIMIT �™d0

In the case of atoms in a 3D square lattice, in the limit
��d0, there are in principle many diffraction peaks which
contribute to the emission pattern. In the following we show
that, at least for the completely symmetric state, if the size of
the system is large enough, the forward-scattering contribu-
tion is the most important one.

Recall the definition of the probability that the spin wave
0 emits a photon in the m Bragg scattering peak, p0

�m�, Eq.
�41�. The forward-scattering contribution m=0 is given by

p0
�0� =

�̄

�0
�3D. �C1�

We consider for concreteness kL=kLẑ. To determine the
probability of scattering out of the forward direction, E, we
calculate the sum over the contributions with m�0,

E = �
m�0

p0
�m�

=
�̄

�0
�

m�0

N

4�

 d��3/2e−�u� − ẑ − ��/d0�m�2�kLd0Nx/2�2

.

�C2�

Considering the limit kLd0Nx /2�1, the angular integral
yields

E = �
m�0

�̄

�0
�3/2 N

�kLd0Nx�2e−�1 − ���/d0�m + ẑ��2�kLd0Nx/2�2
.

�C3�

In the limit d0��, we can replace the sum by an integration
over m and get the result

E =
�̄

�0
. �C4�

Together with the normalization condition �mpm=1, this
leads to

E =
1

1 + �3D
,

�0

�̄
= 1 + �3D. �C5�

Thus, as long as the optical thickness is large, the completely
symmetric state is superradiant and photons are collimated in

the forward-scattering direction. Note that the regime �
�d0 is very different than the directional regime, in the
sense that there is always a nonzero probability of emission
out of the forward-scattering cone. In the fully directional
regime ���2d0�, on the contrary, E=0, up to finite-size ef-
fects.

APPENDIX D: CYCLING TRANSITION

Up to now we have neglected the decay form the auxiliary
level �a� back to the excited state �s�. This process can be
suppressed by considering, for example, a level configuration
like the one presented in Fig. 10.

�s� and �g� could be two hyperfine states of the electronic
ground-state manifold and �a� be chosen such that �a�-�g� is a
cycling transition. For example, these levels could be found
in 87Rb: �s�→ �S1/2 ,F=1,mF=1�, �g�→ �S1/2 ,F=2,mF=2�,
and �a�→ �P1/2 ,F=3,mF=3�. Spontaneous emission from �a�
to �s� is forbidden by selection rules on mF, but atoms decay
from �a� to �g� with a rate �ga. Fields with Rabi frequencies
�1, �2, and detunings �1, �2, are coupled to the transitions
�s�-�g�, �g�-�s�, respectively. Under some conditions, lasers
induce a two-photon transition that is equivalent to a � con-
figuration such as the one considered in this work with �L
=�eff=�1�2 /�1.

We consider two situations.
�i� �2��ga. The atom-photon mapping is possible under

the conditions �eff��2 �adiabatic elimination of the level
�a��, 	N�1��1 �to avoid real transitions from �s� to �g��, and
�ga��eff /�2�2�N�ga��2 /��2, or equivalently, �1 /�2�	N,
to avoid the dephasing induced by the transfer of atoms from
�g� to �a�.

�ii� �2=0 �resonant case�. Conditions: �eff��ga �adia-
batic elimination of �a��. �1 /�2�	N, and �ga��eff /�ga�2

�N�ga��2 /�1�, or equivalently, �1
2�N�ga

2 �same reasons as
�i��.

� �g� �g

�1

� �a� �a

� �s� �s

�1

�2

�2

�ga

FIG. 10. Level scheme for the implementation of the atom-
photon mapping, avoiding incoherent processes.
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