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The statistics of photons emitted by single multilevel systems is investigated with emphasis on the nonre-
newal characteristics of the photon-arrival times. We consider the correlation between consecutive interphoton
times and present closed-form expressions for the corresponding multiple-moment analysis. Based on the
moments, a memory measure is proposed which provides an easy way of gauging the nonrenewal statistics.
Monte Carlo simulations demonstrate that the experimental verification of nonrenewal statistics is feasible.
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The arrival times of photons emitted by single quantum
systems have become a task of routine measurements �1–9�.
Several methods are currently in use for the analysis of the
recorded photon time traces, such as the second-order field-
correlation function �1–3,10,11�, photon-number statistics
�12,13�, exclusive and nonexclusive interphoton probability
density functions �PDFs� �3,14–16�, or Mandel’s Q function
�3,4,13,17�. In a first attempt, the PDF of photon-arrival
times is considered to depend solely on the arrival time of
the previous photon, assuming tacitly that photon emission is
a renewal �semi-Markovian� process �14�. Consequently,
multiple interphoton time PDFs are factorized and cast into
products of one interphoton time PDFs �3,14�. In contrast, a
nonrenewal process indicates a memory, since the photon-
arrival time PDF depends not only on the arrival time of the
previous photon but also on the arrival time of the one before
that, and consequently on the particular realization of the
previous photons’ time trace �15,16,18�.

For ensembles of microscopic photon sources, the photon
statistics is expected to be that of renewal; however, experi-
ments reported on single and coupled quantum dots
�6,19–21�, on single pairs of coupled molecules �8,22,23�, on
two-state dynamics of single molecules �7�, on small collec-
tions of two-level atoms strongly coupled to optical cavities
�24–26�, and on parametric down-conversion �27� could be
considered for the investigation of nonrenewal properties in
the photon statistics. Correspondingly, nonrenewal photon
statistics is rather the norm, and renewal the exception; how-
ever, the nonrenewal photon statistics �NRS� has attracted
little attention in the experimental investigation of photon
streams. Recently, a renewal indicator was introduced for the
study of conformational fluctuations of single molecules
�28�. This indicator is closely related to Mandel’s Q function
and relies on the statistics of the number of photons recorded
in a given time interval. In this paper we consider another
technique which is based on the correlation between con-
secutive interphoton times. We apply a multiple-moment
analysis of consecutive interphoton times and propose a
measure M for deviations from renewal statistics.

The time evolution of a multilevel quantum system inter-
acting with the radiation vacuum can be given in terms of the
reduced density matrix � by ��=1� �11,15�

�̇ = L� = i��,H� + �
i,j

�ij�Si
−�Sj

+ −
1

2
�Si

+Sj
−,��+� , �1�

where the Liouvillian L consists of the Hamiltonian H,
which includes the interaction with the classical driving field,
and of dissipation in the Lindblad form. As usual, Si

− �Si
+� are

lowering �raising� operators for the ith transition. �ij denote
for i= j the spontaneous emission rates and for i� j coopera-
tive decay rates deviating from zero if the difference of the
two involved transition frequencies is smaller than the in-
verse radiation-bath correlation time, ��i−� j � �1 /�c �18�.
Assuming the rotating wave approximation, L does not de-
pend on time so that the evolution of � is given by ��t�
=eLt��0�, where ��0� denotes the state at time zero.

For the description of state collapses upon photon detec-
tion, several theoretical approaches, pioneered by the Monte
Carlo wave function technique �29,30�, have been devel-
oped. These approaches rely on quasi continuous photon-
emission measurements to introduce system states condi-
tioned on whether a photon is detected or not �18,31�.
Accordingly, the Liouvillian is split into two terms �18�

L = Lc + R , �2�

where Lc governs the time evolution of the conditioned and
non-normalized density matrix �c�t�=eLct��0�=Uc�t���0�,
subject to a zero-photon outcome of the measurement up to
time t. The second term in Eq. �2� represents the collapse
�reset, recycling� operator R �18� that resets the density ma-
trix upon a photon detection event �16,32�:

R� = ��
i,j

�ijSi
−�Sj

+. �3�

The dimensionless detection efficiency � is introduced to
account for the fact that a state collapse takes place exclu-
sively when the emitted photon is also detected �16�. Accord-
ing to Eq. �2�, the conditioned Liouvillian Lc=L−R also
depends on � in a unique way. R operating on �c�t� at ran-
dom times generates a stochastic process and thus the aver-
age survival probability P0�t� of no photon detection up to
time t is �11�
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P0�t� = Tr	�c�t�
 = Tr	Uc�t��0
 , �4�

provided that a photon was recorded at time zero. Corre-
spondingly, �0 is the average state just after photon detection
and is given by normalizing the collapsed stationary state,
�0=R�SS /Tr	R�SS
, where the stationary state satisfies
L�SS=0.

Recording the times of state collapses generated by re-
peated application of the operator RUc�t� mimics the time
traces of photon detection in a particular single quantum sys-
tem experiment. The conditional density matrix right after
the nth photon detection of a sequence of exclusive detection
times 	t1 , . . . , tn
 with ti	 ti−1 is then given by

�c�t1,t2, . . . ,tn� = �T+�
i=1

n

RUc�ti − ti−1���0, �5�

where the time ordering operator T+ ensures that the operator
at the latest time is on the far left. The trace of
�c�t1 , t2 , . . . , tn� in Eq. �5� provides the detection PDF of a
particular time sequence,

pn��1,�2, . . . ,�n� = Tr��T+�
i=1

n

RUc��i���0 , �6�

where �i= ti− ti−1 are interphoton times. Furthermore, the
PDF P2�t� of detecting a second photon at time t, given a
detection event at any previous instance, follows from sum-
ming up all possible realizations of two consecutive inter-
photon times �15�,

P2�t� = �
0

t

p2�t − �1,�1�d�1. �7�

Generally, referring to Eq. �6� the PDF Pn�t� of the nth pho-
ton at time t results from the �n−1�-fold convolution of the
operator RUc�t�, where, for completeness, P1�t�= p1�t�. For
the quantitative analysis of pn, we examine the moments to
order mi, i=1, . . . ,n, for n consecutive detection intervals.
These moments can readily be calculated using a moment
generating function technique in several dimensions,


m1,. . .,mn
= ��

i=1

n �
0

�

d�i�i
mi�pn��1, . . . ,�n�

= Tr��T+�
i=1

n

�− 1��mi+1�mi!RLc
−�mi+1���0 , �8�

where recalling the ordering operator T+ ensures that the op-
erator at the latest time is on the far left. Equation �8� allows
for an easy numerical calculation of multiple moments. In
the case of renewal, R��t� does not depend on t; in other
words the state after a collapse is independent of the state
just before the collapse. Consequently, pn��1 , . . . ,�n� of Eq.
�6� can be factorized in terms of the one-interphoton-time
PDF, pn

R��1 , . . . ,�n�=�i=1
n p1��i�, where the superscript R de-

notes renewal. Furthermore, the arrival PDF of the second
photon is P2

R�t�= p1�t�*p1�t�, where * indicates convolution
and the multiple moments reduce to products of individual
moments,


m1,. . .,mn

R = �
i=1

n

��mi� = �
i=1

n


mi
. �9�

Differences between the PDFs pn��1 , . . . ,�n� and
pn

R��1 , . . . ,�n�, P2�t� and P2
R�t�, or between the moments of

Eqs. �8� and �9�, may be used to demonstrate whether the
initial state �0 is recovered after photon emission and the
process is a renewal or whether the state resetting depends on
the current state and the process is a nonrenewal. The devia-
tion from renewal is a signature of the lack of information
about the system state after photon emission and indicates
the memory present in the correlation between consecutive
photon-arrival times. Envisaging the experimental verifica-
tion of NRS we concentrate on two consecutive time inter-
vals and propose the following measure:

M = 
1,1/
1
2 − 1, �10�

which can be determined directly from the experimental time
traces and can easily be predicted using Eq. �8�. M takes on
both signs, and an analysis of bivalued waiting-time se-
quences indicates that tentatively M is negative when
shorter and longer waiting times are likely to occur alternat-
ingly and is positive when both shorter and longer waiting
times are likely to be bunched.

The multiple moments of Eq. �8� and the measure M of
Eq. �10� represent the main results of this paper. We consider
M as a characteristic quantity complementary to other sta-
tistical measures, for instance the two-photon coincidence
�TPC�, i.e., the normalized second-order intensity autocorre-
lation function at time zero, g�2��0�. By relating two consecu-
tive time intervals to each other, M is on equal footing with
the third-order correlation functions. In contrast to M, the
experimental verification of correlation functions requires
binning of the photon-arrival times, which is associated with
shot-noise fluctuations. We studied the covariance of the
functions P2�t� and P2

R�t� �see Figs. 2�b� and 3�d��; however,
because of the time binning this method is less direct for
gaining information about the memory in the photon statis-
tics.

To illustrate the NRS in photon counting we consider a
representative set of level schemes, shown in Fig. 1. For the
three-level � system I renewal applies, because once a pho-
ton is detected the system is reset to the same mixed state, no
matter the state before emission. In this respect, the � system

2

1 3

2

1
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2

1
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3

2

1

(I) (II) (III) (IV)
2

1

FIG. 1. Multilevel systems under consideration: �I� three-level
� system, �II� cascade three-level system, �III� four-level system
motivated by a pair of interacting two-level systems, and �IV� a
two-level system jumping stochastically and with out radiation be-
tween two states. Heavy arrows for laser-light driven and spontane-
ous radiation transitions and light arrows for radiationless
transitions.
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equals a two-level system which always collapses to the
ground state. In contrast, NRS arises for systems II–IV. For
the three-level cascade II, upon the detection of a spectrally
unresolved photon, the populations and coherences of the
states �1� and �2� become proportional to those of �2� and �3�
prior to emission, respectively �18�. In the four-level cascade
�III�, the reset operator ladders populations and coherences
down the levels: �4�→ ��3� , �2��→ �1�. The noncascade sys-
tem IV shows a TLS flipping stochastically between two
states. The flipping may be associated with changes of spec-
tral and dynamical properties so that bunching of short and
long interphoton times and thus NRS result. Summarizing, if
the state after emission depends on the state prior to emis-
sion, the photon time traces obey NRS. The TPC can be
discussed accordingly, namely, for system I it is zero, and is
nonzero for systems II and III. However, for system IV the
TPC is zero although the process is nonrenewal in general.

We next discuss the level schemes II–IV in more detail.
The Hamiltonian in Eq. �1� can be written as H=H0

+�i
1
2i�Si

++Si
−�, where i is the Rabi frequency of the ith

transition resulting from the interaction with the classical
driving field. For level scheme II we write for the zero-order
Hamiltonian

H0
�II� = − �1S1

+S1
− − ��1 + �2�S2

+S2
−, �11�

where S1
−= �1��2� and S2

−= �2��3� are lowering operators with
raising operators defined accordingly. �1=�L−�21 and �2
=�L−�32 are differences between the laser frequency �L and
transition frequencies �ij. Results are shown in Fig. 2 for the
parameters 1=2==2�, �11=�22=�, �12=�21=0, �32
−�21=8�, and �=1. In Fig. 2�a� the excitation fluorescence
intensity IF=Tr	R�ss
, the TPC g�2��0�=Tr	R2�ss
 / IF

2 , and

M are compared as functions of the detuning �= 1
2 ��1+�2�.

The fluorescence shows a maximum located approximately
at resonance with the lower transition ��1�0�, followed by a
peak at ��0, where coherent two-photon absorption and
cascade emission are likely to occur. The intensity at reso-
nance with the upper transition ��2�0� is weak because of
weak pumping of level 2. The TPC indicates photon anti-
bunching in the range of the lower transition and photon
bunching in the range of two-photon absorption and of the
upper transition. In agreement with the above discussion, M
takes on negative values in the range of ��0, where alter-
nating short and long interphoton times are probable. At
resonance with the upper transition, M is weakly positive,
indicating minor bunching of short and long waiting times.
P2�t� and P2

R�t� displayed in Fig. 2�b� deviate considerably
from each other, and similarly a strong asymmetry is appar-
ent in the PDF p2��1 ,�2� upon interchanging �1 and �2 as
demonstrated in Fig. 2�c�. In Fig. 2�d� M is monitored as a
function of � and . A minimum close to ��0 and 
�2� is clearly visible. We have found that �M� drops
roughly as �−2 so that the experimental verification of NRS
requires a high detection efficiency.

Motivated by recent investigations of pairs of identical
and interacting quantum systems �8,21,23�, we studied sys-
tem III. Depending on the parameters the results �not shown
here� were similar to those of system II which is obvious
when states 2 and 3 are superposition Dicke states �31,33�,
so that the behavior is governed by the 1↔2 and 2↔4
transitions or 1↔3 and 3↔4 transitions.

We finally report on the noncascade, jumping two-level
system IV, where the � states indicate, for instance, two
different molecular or lattice nuclear configurations �7,17�,
or two different spin configurations. The dynamics is de-

(a)

0

2

6

2

4

6

0

0.04

0.06

4
��

1

��
2

p ,( )/� � �
12 2

2

0

0.02

�t
2

0.04

0.08

0.12

6 10 144 8 12

1
P t( )/�

0

0

2
P t( )/�

R

2
P t( )/�

�

0.4

0.2

0

-0.2

-0.4
-5 50

I /�F

g (0)/10
(2)

� �/

���

0

2

4

0

-0.2
-0.3

0
2

-2

� ��

�

6
-0.1

(c)

(d)(b)

FIG. 2. Three-level cascade
system. �a� Memory M, TPC
g�2��0�, and fluorescence-exci-
tation intensity IF as a function of
the laser detuning �. The arrow
indicates the � value used in �b�
and �c�. �b� Renewal and non-
renewal second-photon arrival
PDF P2

R�t� and P2�t�, respective-
ly, and one-photon arrival PDF
P1�t�. �c� Two-photon arrival PDF
p2��1 ,�2�. �d� Memory M as a
function of the detuning � and the
Rabi frequency .
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scribed by extending the density operator �= ��− ,�+�T, and
correspondingly the Liouvillian and reset operators �17�

L�IV� = �L− − K− K+

K− L+ − K+
�, R = �R− 0

0 R+
� , �12�

where K� denote the jumping rates between the two states
and L� and R� are the Liouvillian and resetting operators of
the two states. For illustration we assume the fully symmet-
ric case where only the transition frequencies are different
for the two states. Thus the system is described by the
Hamiltonian H�= �−����S�

+ S�
− + 1

2�S�
+ +S�

− �, where � and
� are the laser detuning and frequency displacements from
the transition center, respectively. Furthermore, ��=�, R�

=R, and K�=K. Numerical results are shown in Fig. 3 for
the parameters =2�, �=2�, �=1, K=� /100, except when
they appear as variables or are specially indicated. M is
positive throughout all calculations and peaks close to the
resonances of the two states. Figure 3�b� indicates large posi-
tive M for K�� and for �������. Figure 3�c� shows how
the � dependence of M crosses over to the asymptotic �−2

behavior and how the crossover is shifted to lower values of
� with decreasing K. The second-photon arrival PDFs P2

R�t�
and P2�t� in Fig. 3�d� differ only at longer times, which
indicates that these quantities are not appropriate for provid-
ing evidence of NRS.

To demonstrate the experimental feasibility of measuring
M, we report Monte Carlo simulation results �11,29�.
Choosing a random number r distributed uniformly in �0,1�,

the detection time tn of the nth photon follows from the
condition

Tr	Uc�tn − tn−1��̂c�t1, . . . ,tn−1�
 = r , �13�

where �̂c is the normalized conditioned density matrix of
Eq. �5�. By resetting and normalizing the state at tn, the
initial state of the next interphoton cycle is obtained. Figure
3�e� shows how M converges as a function of the photon
number to the predicted value. Also presented are confi-
dence intervals M��M, which are estimated from the vari-
ance, assuming statistical independence of the moments,
�M

2 =�
1,1

2 /
1
4+4�
1,1 /
1

3�2�
1

2 , where �
1

2 =
2−
1
2 and

�
1,1

2 =
2,2−
1,1
2 .

The experimental investigation of the NRS requires the
measurement of two consecutive intervals, so that the arrival
times of three consecutive photons have to be recorded. De-
pending on the time scale, this can be achieved using a single
detector; however, for time scales shorter than the detectors’
dead time, at least three detectors are needed. A comprehen-
sive description of experimental data has to account for the
detectors’ dead time and for the ubiquitous background pho-
tons.

A point of special attention is given by M=0. While
M�0 clearly indicates that the photon statistics is of
nonrenewal type, the reverse does not necessarily hold
true, that is, for M=0 renewal statistics is not necessarily
obeyed. In this respect M is hampered by the same restric-
tion as Mandel’s Q factor �13�. Q�0 clearly indicates non-
Poissonian statistics, while the reverse does not necessarily
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FIG. 3. Jumping two-level sys-
tem. �a� IF scaled as indicated and
M as a function of the laser de-
tuning, as in Fig. 2�a�. The arrow
indicates ��2�. �b� M as a func-
tion of � and K on linear and
arithmiclog scales, respectively.
�c� M as a function of the detec-
tion efficiency � on a log-log
scale for two values of K. The
dashed line shows the �−2 depen-
dence. �d� Second-photon arrival
time PDFs P2

R�t� and P2�t�. �e� M
and confidence intervals M��M
as functions of the number of de-
tected photons. Wiggly lines indi-
cate Monte Carlo simulations and
dashed lines predictions. The
dash-dotted line gives the pre-
dicted value M=1.04. �=� in
�b�–�e�.
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hold true, that is, for Q=0 Poissonian statistics is not neces-
sarily obeyed. For the TLS radiation, in fact, the parameters
can be chosen such that Q=0, although the TPC probability
is zero, proving that the statistics is non-Poissonian. These
restrictions turn the two indicators M and Q into
pseudomeasures for nonrenewal and non-Poissonian photon
statistics, respectively.

In conclusion, we have shown that NRS is plausible in
the fluorescence of multilevel systems and that the indica-
tor M, proposed for the identification of the nonrenewal

property, is experimentally feasible. For cascade systems M
may be small at low detection efficiency, so that advanced
experimental techniques are required, while for noncascade
multilevel systems M may be large also at low detection
efficiency.
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