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Asymmetric scattering and nonorthogonal mode patterns in optical microspirals
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Quasibound states in an open system do not in general form an orthogonal and complete basis. It is,

however, expected that the nonorthogonality is weak in the case of well-confined states, except close to a
so-called exceptional point in parameter space. We present numerical evidence showing that for passive optical
microspiral cavities the parameter regime where the nonorthogonality is significant is rather broad. Here we
observe almost-degenerate pairs of well-confined modes which are highly nonorthogonal. Using a non-
Hermitian model Hamiltonian we demonstrate that this interesting phenomenon is related to the asymmetric

scattering between clockwise and counterclockwise propagating waves in the spiral geometry. Numerical
simulations of ray dynamics reveal a clear ray-wave correspondence.
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I. INTRODUCTION

Dielectric microdisks and spheres have been extensively
studied due to the extraordinarily high quality factors (Q
factors) achieved in such structures [1]. Such a merit is as-
cribed to the formation of so-called whispering gallery (WG)
modes based on total internal reflection upon the surfaces of
circular or spherical cavities [2]. However, these highly sym-
metrical shapes prohibit a directional light output, which is
clearly disadvantageous for practical applications. An obvi-
ous solution is to break such symmetries by deforming the
cavity shape [3-5]. The final goal in this direction is to ob-
tain unidirectional output without degrading the high Q fac-
tor too much [6-10].

Chern et al. experimentally demonstrated unidirectional
lasing from a spiral-shaped microcavity [6], see the sketch in
Fig. 1. The maximum emission comes from the notch of the
spiral at an angle ¢ of about —35° [6,8,11] or some different
angle [12-15]. The possible origins of these different results
are discussed in Ref. [11]. It is clear that one characteristic
feature of the spiral cavity plays a crucial role for the emis-
sion directionality: the chiral symmetry is broken so that the
clockwise (CW) rotation is distinct from the counterclock-
wise (CCW) rotation [6]. Recently, the appearance of pairs
of almost-degenerate modes with mainly CCW character but
also small CW component has been observed [16]. Another
characteristic feature of the spiral-shaped cavity is the exis-
tence of so-called quasiscarred modes [17,18]. These inter-
esting modes seem to be localized along simple periodic ray
trajectories. A careful analysis, however, shows that although
these simple periodic trajectories do not exist in the conven-
tional ray dynamics, they do exist in an augmented ray dy-
namics including Fresnel filtering [19].

Microcavities are open wave systems which are described
not by Hermitian but by non-Hermitian operators [20],
whose distinct properties are that their eigenvalues are in
general complex and the eigenvectors are not orthogonal.
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The imaginary parts of the eigenvalues have the physical
meaning of the decay rates of the modes. The modes of the
spiral cavity can (in principle) be obtained by diagonalizing a
non-Hermitian matrix so that they mutually form a nonor-
thogonal set. Another pronounced feature of the non-
Hermitian matrix is the existence of exceptional points (EPs)
in parameter space. At an EP (at least) two eigenvalues coa-
lesce [21,22] and the corresponding two eigenvectors con-
verge to each other so that the dimension of the eigenbasis of
the non-Hermitian matrix is reduced [27]. It is known that
not only does the nontrivial topology of complex eigenvalues
around the EP exist [23], but also a relation to Berry’s geo-
metric phase which appears when external parameters are
varied adiabatically [24-26]. Recently the non-Hermitian
matrix and the EP have attracted much interest [28—32].

In this paper, we draw a connection from the appearance
of almost-degenerate modes with mainly CCW character
[16] to the broken chiral symmetry by the asymmetric scat-
tering between CCW and CW traveling waves. We show that
an effective two-by-two non-Hermitian matrix is extremely
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FIG. 1. Schematic top view of the spiral-shaped cavity. Clock-
wise (CW) and counterclockwise (CCW) traveling waves are
indicated.
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useful to understand the main characteristics of this relation-
ship. When the effective transition rate from the CCW to the
CW component, i.e., an off-diagonal element of the non-
Hermitian matrix, vanishes, two eigenvalues of the matrix
coalesce to form the EP, at which there exists only one ei-
genvector. The physical meaning of this is transparently re-
vealed in the spiral cavities in the context of the time evolu-
tion of the scattering dynamics.

In Sec. II, we introduce the spiral cavity. Section III re-
ports our numerical results on the properties of optical modes
in this kind of cavity. In Sec. IV we introduce an effective
non-Hermitian Hamiltonian to describe the nonorthogonality.
The time evolution of waves is discussed in Sec. V. The
ray-wave correspondence is the subject of Sec. VI. In Sec.
VII we discuss the dependence of the mode properties on a
shape parameter. A summary is given in Sec. VIIL

II. THE SYSTEM

Microdisk cavities are quasi-two-dimensional systems
with piecewise constant effective index of refraction n(x,y).

In this case Maxwell’s equations reduce to a two-
dimensional scalar mode equation [33]
w?

- VA=) S (1)

with frequency w=ck, wave number k, and the speed of light
in vacuum c¢. The mode equation (1) is valid for both
transverse magnetic (TM) and transverse electric (TE)
polarization. For TM polarization the electric field
E(x,y,t)=(0,0,Re[¢x,y)e ")) is perpendicular to the cav-
ity plane. The wave function ¢ and its normal derivative are
continuous across the boundary of the cavity. For TE polar-
ization, i represents the z component of the magnetic field
vector H,. Again, the wave function ¢ is continuous across
the boundaries, but its normal derivative d,¢ is not. Instead,
n(x,y)~2d,4 is continuous [33]. At infinity, outgoing wave
conditions are imposed which results in quasibound states
with complex frequencies w in the lower half plane. Whereas
the real part is the usual frequency, the imaginary part is
related to the lifetime 7=—1/[2 Im w] and to the quality fac-
tor 0=—Re w/[2 Im w].

If the domain of interest is simply connected then the
mode equation (1) can be written as the following eigenvalue
equation:

2
(— %W) o= . )

In a closed cavity with vanishing wave function along the
boundary the linear operator on the left-hand side is Hermit-
ian. In the case of optical microcavities, however, the opera-
tor is non-Hermitian because of the outgoing wave condi-
tions.

In polar coordinates (r, ¢p) the boundary of the spiral cav-
ity is defined as
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FIG. 2. (Color online) Calculated intensity |i{> of the nearly
degenerate quasiscar modes 1 (a) and 2 (b).

) :R<1 - 2i¢) (3)
'

with deformation parameter e=0 and “radius” R>0 at
¢=0 as shown in Fig. 1. The radius jumps back to R at
¢=27 creating a notch. Note that R is a trivial parameter
which can be scaled away by using normalized frequencies
Q=wR/c=kR. We are left with a one-parameter family of
boundary shapes parametrized by &. As in Ref. [16] we con-
sider TE polarization, an effective index of refraction n=2
for silicon nitride, and, if not otherwise stated, the relative
notch width £=0.04.

III. MODE PROPERTIES

We use the boundary element method [34] to compute the
spatial mode patterns ¢(x,y) and the complex frequencies ().
Figure 2 shows an interesting example, a pair of nearly
degenerate modes, which are of quasiscar type [17,18]. One
of these modes has 0=41.4676-i0.03422, 1ie., a
qualityfactor Q;=606 and, if we assume R=10 um, a
free-space wavelength A\;=1515.2 nm. The other mode has
1=41.4627-i0.03473 corresponding to A,=1515.38 nm
and 0,=597. Not only the resonant wavelength and Q factor
are very similar, but also the mode patterns depicted in Fig.
2. The question arises whether these numerical solutions re-
ally correspond to different modes. That this is indeed the
case can be seen for instance in the far-field intensity patterns
in Fig. 3. We can observe small oscillations with a phase
difference of 7 superimposed on the common envelope.

Following Refs. [6,16] we analyze the mode pattern by
expanding the wave function inside the cavity in cylindrical
harmonics

[’

Ur,d) = 2 a,Jd,(nkr)exp(img), (4)

m=—m.

where J,, is the mth order Bessel function of the first kind.
Positive (negative) values of the angular momentum index m
correspond to CCW (CW) traveling-wave components. In
Fig. 4(a) we can observe that for both modes the angular
momentum distribution |a,,|? is dominated by the CCW com-
ponent, i.e., none of the two modes can be classified as CW
traveling-wave mode. The tiny difference between the modes
can be seen in Figs. 4(b) and 4(c). For negative angular mo-
mentum index both the real and the imaginary part of «,,
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FIG. 3. Magnification of the computed far-field patterns of the
modes in Fig. 2. The solid (dashed) line corresponds to mode 1 (2).
For the definition of the far-field angle ¢ see Fig. 1.

have a different sign for the two modes which is nothing else
than the phase difference of 7 observed in the far-field pat-
tern. That means we can construct superpositions with
a;=(a'V = a!?)/2 being CW and CCW traveling waves, re-
spectively, as can be seen in Fig. 4(d). Experimentally, the
selective excitation of such traveling waves can be done by
coupling light into the cavity via an attached waveguide [35].
It is important to emphasize that these superpositions are not
eigenmodes of the cavity as they are composed of two modes
with slightly different frequencies and Q factors.

The discussed properties of the angular momentum distri-
butions are not restricted to quasiscar modes. Figure 5 de-
picts an example of a pair of “WG-like” modes in the same
cavity. One mode has 2=41.7166—i0.00207, i.e., a quality
factor Q;=10067 and, if we again assume R=10 um, a free-
space wavelength A;=1506.16 nm. The other mode has
01=41.7193-i0.00184 corresponding to \,=1506.06 nm
and Q,=11363. Inspection of the angular momentum distri-
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FIG. 4. (Color online) Angular momentum distributions ag,:)

(solid line) and a(z) (dashed) of quasiscar modes (see Fig. 2) nor-
malized to 1 at maximum: (a) absolute value @quared (b) real, and
(c)i 1mag1nary part (d) Superpositions ¢, —(a(l +a 2))/2 (solid) and
a,=(aV-a?)/2 (dashed, multiplied by a factor of 80).
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FIG. 5. (Color online) Calculated intensity |¢{> of the nearly
degenerate WG-like modes 1 (a) and 2 (b).

butions in Fig. 6 shows qualitatively the same scenario as for
the quasiscars, even though the asymmetry between CW and
CCW components is much weaker.

This kind of almost-degenerate modes in spiral-shaped
cavities have already been observed in Ref. [16]. Here, we
will discuss new features such as nonorthogonality of these
modes and the implication on the time evolution of CW and
CCW traveling waves in such cavities. To quantify the non-
orthogonality we compute the normalized overlap integral of
two modes ¢, and ¢, over the interior of the cavity C,

B [ edxdy i |
_ / _
VS edxdy g\ S edxdy iy

For the quasiscar modes in Fig. 2 we find $=0.972. This
value close to unity means that the modes are nearly collin-
ear. The overlap for the WG-like modes in Fig. 5 is
S=0.481, i.e., the nonorthogonality is weaker but still quite
significant. Note that the overlap of modes from different
pairs, i.e., one mode from Fig. 2 and one from Fig. 5, is
numerically around 1% or below. That means, the modes are
only pairwise nonorthogonal.

We have studied in total 60 modes in this cavity geometry
within various frequency regimes and also for TM polariza-
tion. We always find that the modes come as strongly non-
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FIG. 6. (Color online) Angular momentum distributions a(l)
(solid line) and ae(2) (dashed) of WG-like modes (see Fig. 5) nor-
malized to 1 at maximum: (a) absolute value squared, (b) real, and
(c) 1mag1nary2part. (d) Superpositions a,:?:(afn'uaff ))/ 2 (solid) and
a,=(aV=a!?)/2 (dashed).
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orthogonal pairs. We therefore conjecture that this is a ge-
neric property of optical modes in the spiral microcavity.

IV. EFFECTIVE NON-HERMITIAN HAMILTONIAN

In this section we demonstrate that the discussed behavior
of the pairs of modes can be modeled by a simple toy model,
the two-by-two non-Hermitian and nonsymmetric matrix

H_(EO o) (1‘ v) ;
_0E0+77V*F. (6)

The eigenvectors of the first matrix on the right-hand side
belong to the C£W and CW traveling waves with equal
wave number VE, € C in the absence of any coupling be-
tween them. The first matrix suffices to describe the situation
for the circular cavity (¢=0). In the general case of & >0 the
second matrix accounts for coupling effects which can be
interpreted as scattering between CCW and CW traveling
waves. The diagonal elements are given by the total scatter-
ing rates I' which are assumed to be equal for simplicity. The
off-diagonal element V=|V|e?® e C describes scattering from
a CW traveling wave to the CCW traveling wave. The other
off-diagonal element 7nV* describes scattering from a CCW
traveling wave to the CW traveling wave. The latter scatter-
ing is assumed to be weaker, i.e., 0= <1, which is reason-
able because of the geometry of the system, see Fig. 1. The
complex eigenvalues of the matrix (6) are given by

E.=E,+T +g|V|. (7)

The right eigenvectors turn out to be

A )
a+ = . . 8
- \'E< + V/I]e_”S ®

These eigenvectors directly explain the mode structure dis-
cussed in Sec. III. The weight of the first component (corre-
sponding to CCW traveling waves) ~1 is much larger than
that of the second component (corresponding to CW travel-
ing waves) ~ 7, cf. Figs. 4 and 6.

The two eigenvectors in Eq. (8) are nonorthogonal in the
case of asymmetric scattering (7# 1),

|&i'07— 1-7

)

lalal =1+

Applying Eq. (9) to the pair of quasiscars in Fig. 2 with S
~0.972 yields %' ~71. This high degree of asymmetry in
the scattering is consistent with the scaling factor of 80 in
Fig. 4 using the connection to the mode structure in Eq. (8).
In the case of the WG-like mode in Fig. 5 with S~0.481 we
obtain 777! ~2.8. This lower degree of asymmetry in the scat-
tering is in agreement with the fact that the CW component
is only by a factor of about 2 smaller than the CCW compo-
nent in Fig. 6.
The left eigenvectors of the matrix (6) are given by

PHYSICAL REVIEW A 78, 053809 (2008)

> 1 1
+=—/—<l,i?e“§>. (10)
V2 7

Left and right eigenvectors are orthogonal to each other, i.e.,
B+-a==0and B+-a.=1, as can be easily verified. Note that
B, # a..

A remark is in order. In an open resonator the laser line-
width is increased with respect to the well-known Shawlow-
Townes formula by the so-called Petermann factor K
[36-38]. At an EP the Petermann factor is expected to di-
verge [39]. For the discussed non-Hermitian Hamiltonian the
Petermann factor K is obtained as

K=<l8i|ﬂi><ai|2ai>:l(l+l>(l+77), (11)
(Bl 4 7

which diverges as 7— 0. This property originates from the
nonorthogonality of eigenstates of the non-Hermitian matrix.
Interestingly, the Petermann factor K here depends solely on
the degree of asymmetry 7 of the scattering between CW
and CCW traveling waves.

V. TIME EVOLUTION OF CW AND CCW TRAVELING
WAVES

The time evolution of waves is determined by the time-
dependent Maxwell’s equations which for a quasi-two-
dimensional system can be written as

V=-HV. (12)

Being of second-order this two-component differential equa-
tion has four independent solutions proportional to the eigen-
vectors of H. Two solutions a.e™5=" with positive fre-
quency, Re VE. >0, and two of the same kind with negative
frequency. The solutions with negative frequency are not
considered here separately as they come naturally into play
when the real part of the wave function is taken to determine
the z component of the magnetic field as

H_(x,y,1) = Re[¢(x,y)e™""] (13)

1 . .
* E[l//(x,y)e"“” + lx,y)*e™]. (14)

From Eq. (8) it is clear that at »=0 we have an EP: the
two right eigenvectors . collapse into a single vector
(1,0)7, where the superscript T represents the transpose of
the matrix. This eigenvector represents a pure CCW traveling
wave. One can then ask the following questions: What is its
physical implication? What happens if the initial state is cho-
sen as (0,1)7, i.e., normal to the eigenvector? To address
these questions we rewrite the differential equation (12) in
the following form by using ¥'=(a,b)":

i=-Ea~-Vb, (15)

b=-Eb, (16)

where E=E,+I". One solution is obviously
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which exhibits an exponential decay in time, i.e. |, |~e,
where y=-Im VE>0 and Re VE>0. Note that the solution
in Eq. (17) is proportional to the eigenvector (1,0)7 of the
Hamiltonian. One then expects (0,1)7 could be another ei-
genvector. However, it is not true. When (0,1)7 is chosen as
the initial condition, one obtains

i+FEa=—Ve'E, (18)

where the right-hand side comes from Eq. (16), which is
independent of a. It is easy to see that

\% =
. /Ete—szt (19)
IAY

a(r) =
is a solution of Eq. (18). Finally, one obtains

vilQiNE)\ . =
v, = ( ( ll\ ) )e_”Et. (20)

Note that W, is not an eigenvector of H nor a simple har-
monic function of time, but satisfies (0,1)7 at =0. Again
there is an analog solution with negative frequency which is
not considered here. One conclusion drawn from our analysis
is that the differential equation (12) has two independent
solutions (plus two with negative frequency) also at the EP,
even though the eigenspace of the Hamiltonian H has only
one dimension in this case.

The physical meaning of the two solutions (17) and (20)
is clear in the spiral cavity. For W, the state is initially pre-
pared in the CCW traveling wave, so that it cannot make any
transition to the CW since the corresponding transition rate is
zero in the =0 case. This is also intuitively acceptable be-
cause the CCW traveling wave experiences much less scat-
tering than the CW traveling wave; see Fig. 1. For ¥, the
state is initially prepared in the CW traveling wave, and it
exhibits the transition to the CCW leading to nonexponential
time dependence. The scattering upon the notch gives rise to
the transition from the CW to the CCW traveling wave so
that the initial linear increase of the amplitude, see Eq. (20),
comes into play. Such a nonexponential decay has been pro-
posed in different context [40] and experimentally observed
in a microwave cavity [31]. Slightly away from the EP with
n=0 the two eigenvectors still have considerable overlap.
One can therefore expect a similar behavior to occur also in
the vicinity of the EP.

To confirm the discussed scattering scenario, we consider
superpositions of modes which can be interpreted as pure
CW or CCW traveling waves. As an example we take the
quasiscar modes presented in Fig. 2. The modes evolve ac-
cording to their complex frequencies w;=ck; computed with
the boundary element method. The first kind of superposition
we consider is given by
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FIG. 7. Time evolution of CCW (solid lines) and CW (dashed)
traveling waves. The traveling waves are superpositions of the qua-
siscar modes with frequencies ); and (), depicted in Fig. 2. The
upper (lower) panel contains the dynamics starting with a pure
CCW (CW) traveling wave. Time is measured in units of 7T
=21r/Re Q] .
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For the coefficients a; we choose as a rough approximation
the maximal coefficients of the angular momentum distribu-
tion in Figs. 4(b) and 4(c): a;=1 and a,=0.1+i0.07. For
t=0 the superposition is purely CCW traveling as y*=«, and
x =0. The upper panel of Fig. 7 shows the evolution of the
superposition. We observe only a weak scattering into the
CW component as it is expected from the two-by-two matrix
(6) with small 7. The second kind of superposition is

"\ 1« A I[-a .
e
X 2\a, 2\

Initially, this superposition is a pure CW traveling wave
since x*=0 and Y~ =a,. The lower panel of Fig. 7 shows the
evolution of this superposition. Here we observe a strong
scattering into CCW components with a linear increase of
the amplitude as predicted by Eq. (20). In conclusion, the full
mode calculation near the EP demonstrates very similar dy-
namical behavior as the effective non-Hermitian Hamiltonian
at the EP. This clearly shows that at the EP nothing dramatic
happens to the dynamics, even though the eigenspace of H
collapses.

VI. RAY-WAVE CORRESPONDENCE

Our previous considerations have revealed that the pecu-
liar time evolution of CCW and CW traveling waves plotted
in Fig. 7 is related to the nonorthogonality associated with an
EP. As the EP is an intrinsic wave phenomenon one would
not expect to find a ray-wave correspondence in such a situ-
ation. Our numerical ray simulations, however, prove that
this intuitive expectation fails. The upper panel of Fig. 8 has
been computed by starting 10 000 rays uniformly at the
boundary of the cavity with initial directions corresponding
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FIG. 8. Time evolution of amplitude (defined as square root of
intensity in arbitrary units) corresponding to CCW (solid lines) and
CW (dashed) propagating light rays. The upper (lower) panel shows
the dynamics starting with a set of pure CCW (CW) propagating
rays in full analogy to the wave dynamical considerations in Fig. 7.
Time is proportional to the geometric length of ray trajectories.

to initially CCW propagation in the regime of total internal
reflection. During the time evolution the rays can partially
leave the cavity by refraction whenever the angle of inci-
dence becomes smaller than the critical angle for total inter-
nal reflection. The transmission is given by Fresnel’s laws.
Moreover, rays can change their sense of rotation to CW
propagation whenever they hit the notch. However, hitting
the notch is very unlikely for CCW propagation rays as it is
intuitively clear from Fig. 1. Therefore, practically all rays
have completely left the cavity before they can change the
sense of rotation. This is very different when the rays start
initially in the CW sense of propagation as can be seen in the
lower panel of Fig. 8. Here, rays can easily hit the notch and
thereby change their sense of rotation. Comparison of the ray
dynamics in Fig. 8 and the wave dynamics in Fig. 7 uncovers
a striking correspondence. We believe that this unexpected
ray-wave correspondence has two reasons: (i) In both cases
the time evolution is governed by the asymmetric scattering
between CW and CCW traveling components, and (ii) at the
EP nothing special happens to the wave dynamics, despite
the collapse of the eigenspace of H.

There are several facts which could explain the quantita-
tive differences between the wave and ray dynamics: (i) The
wavelength in the material N/n is about 0.075R which is
larger than the notch width eR=0.04R. This is illustrated in
Fig. 9. (ii) Diffraction at the corners is not included in the ray
dynamics. We expect that for the WG-like modes diffraction
at the corners can be important as the field intensity is larger
at the corner than at the notch itself; see Fig. 9(b). Since
diffraction at the corner is more uniform than direct scatter-
ing at the notch, see Ref. [41], diffraction explains why WG-
like modes show less asymmetry (nonorthogonality) if com-
pared to the quasiscar modes. (iii) The considered pair of
modes are not uniformly distributed in phase space. (iv) For
the coefficients «; we have chosen only a rough estimation.
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FIG. 9. (Color online) Magnification of the intensity pattern |¢/{?
near the notch. (a) Quasiscar mode 2, as in the right panel of Fig. 2.
(b) WG-like mode 2, cf. the right panel of Fig. 5.

VII. DEPENDENCE ON THE NOTCH WIDTH

In this section we discuss the dependence on the (relative)
notch width e. Let us first consider the trivial case e —0, i.e.,
the circular cavity. Here, pairs of modes are exactly twofold
degenerate. As a consequence the small decay rates —Im (),
are equal and the level splitting AQ=|Re (};—Re ,| van-
ishes. The two modes with angular dependencies ~sin(m o)
and ~cos(me) are obviously orthogonal, i.e., the overlap
integral § is zero.

Figure 10 shows the dependence of the decay rates, the
level splitting, and the overlap integral as function of . As
expected, the decay rates and the level splitting increase with
increasing notch width €. The overlap integral is close to
unity, i.e., 1-S is small, in a broad parameter range. This
robust behavior is an interesting finding since usually two
parameters have to be carefully adjusted to an EP in order to
obtain a significant effect. The degree of nonorthogonality
increases as the scattering becomes more and more asymmet-
ric with increasing notch width. At first glance, the fact that
both nonorthogonality and level spacing increase with in-
creasing & seems to be in contradiction with our claim that
the nonorthogonality is related to an EP where the level split-
ting is expected to go to zero. A closer inspection of Egs. (7)

0.05
0.04
0.03
0.02
0.01

0
1

), AQ

Q

-Im(

»n 0.1

0.01

©
(e
(e
=
<
(e
)
(=
[
o}
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FIG. 10. The upper panel shows the individual decay rates
—Im Q; (circles) and the level splitting AQ=|Re ; —Re | (scaled
by a factor of 5, squares) vs notch width . The corresponding
overlap integral S computed from Eq. (5) is plotted in the lower
panel. The lines are a guide to the eyes. The pair of modes for the
particular case of £=0.04 is the pair of quasiscars depicted in Fig. 2.

053809-6



ASYMMETRIC SCATTERING AND NONORTHOGONAL MODE...

and (8), however, shows that there is no contradiction. Ac-
cording to Eq. (8) the EP is approached as 7(e) is decreased.
The level splitting, however, can increase as long as |V(e)|
increases faster than 1/ v’%. Roughly speaking, the
strength of the scattering increases faster with the notch
width than the asymmetry of the scattering.

Figure 10 clearly reveals the direct link between the
almost-degenerate pairs in the spiral for finite & and the exact
degenerate pairs of modes with angular momentum number
m# 0 in the circular cavity. This is another indication that
the appearance of nonorthogonal pairs is a typical feature in
the spiral cavity. Only very short-lived modes which belong
to m=0 modes of the circle may not follow this scenario.

VIII. SUMMARY

We have demonstrated the appearance of highly nonor-
thogonal pairs of modes in optical microspiral cavities. With
the help of a non-Hermitian Hamiltonian we have related this
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remarkable effect to exceptional points in parameter space.
While usually two parameters have to be adjusted to come
close to such a point, a broad interval of the natural shape
parameter of the spiral geometry exhibits significant nonor-
thogonality. The physical mechanism behind this effect is the
asymmetric scattering between clockwise and counterclock-
wise propagating waves. Simulations of ray dynamics have
demonstrated a clear and unexpected ray-wave correspon-
dence.

We believe that our work is of general importance for the
understanding of open quantum and wave systems, in par-
ticular for microcavity lasers.
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