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We consider the effect of induced transparency in an ensemble of � atoms controlled by high-power
radiation. We study the case of an optically dense medium where nonlinear interaction between probe radiation
and a Stokes satellite of the drive wave is important. It is shown that the probe radiation and the Stokes satellite
form normal biharmonic modes. Each normal mode is characterized by a fixed ratio between the amplitudes of
different-frequency partial components and that both partial waves have a common absorption coefficient and
a common group velocity. Transparency of an optically dense medium is ensured in the regime of amplification
of one of the normal modes. An exact solution �without considering inhomogeneous broadening� is constructed
for an arbitrary nonuniform distribution of � atoms along the probe radiation path and uniform drive-wave
intensity. A geometric-optical approach is developed for the case of a spatially varied intensity of the drive
field. The obtained solution contains both new results and a generalization of the results of the previous papers.
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I. INTRODUCTION

There have recently been intense studies of the resonant
interaction between multilevel quantum systems and multi-
chromatic radiation. These studies led to a considerable
broadening of the concept of the properties of the radiation
processes. Discovery of the effect of electromagnetically in-
duced transparency �EIT� is one of important achievements
in this field �see review �1��. At present this effect is prom-
ising for the realization of high-resolution spectroscopy and
magnetometry �2–5� and the creation of optical and quantum
memory systems �6,7�. Strong group delay �8� and the so-
called “storage of light” �9–11� have been realized in the EIT
regime.

The simplest model for a theoretical study of such pro-
cesses �see Fig. 1� is the so-called � scheme in a three-level
system �1,12–15�. In this scheme, the frequency �p of the
probe wave �P wave� and the frequency �d of the drive wave
�D wave� satisfy the two-photon resonance condition �p

−�d=�21, where �21 is the frequency of the low-frequency
�LF� transition �2�→ �1�. The occurrence of LF coherence
leads finally to the suppression of the polarization of a three-
level atom at the frequency �p, making the medium trans-
parent for the P wave.

A classical analog of the EIT effect, as is shown in Ref.
�16�, is the effect of dynamic damping in a system of coupled
oscillators, which is known in oscillation theory �17�. The
studies of analogs of the EIT effect in a classical plasma
�18,16,19–22� showed that propagation of the P wave in a
medium that is opaque for it is possible due to the nonlinear
coupling of the P and D waves with any fairly long-lived
mode of collective oscillations of the medium. By analogy
with Ref. �22�, we will call this regime parametrically in-
duced transparency �PIT�. Unlike the standard variant of EIT,
in the PIT regime the condition of synchronism of wave
vectors, which is required for the nonlinear wave processes
�23�, is not fulfilled automatically, but is considerably depen-

dent on dispersion characteristics of the considered waves.1

PIT is different from the standard Raman scattering in that
the medium is opaque for the P wave in the absence of the
nonlinear coupling with other waves.

In some papers �see Refs. �24–26�, and references cited
therein�, their authors investigated experimentally and theo-
retically specific features of the EIT effect in an optically
dense � medium, which are stipulated by the nonlinear cou-
pling of the P wave with a weakly damped Stokes satellite of
the drive field �S wave�. We will show in what follows that in
the � system the S wave can be undamped or can even be
amplified. Thus, induced transparency takes place in this sys-
tem, both due to the excitation of internal degrees of freedom
of a separate three-level atom and the collective electromag-
netic excitation of an ensemble of atoms, which leads to a
combination of the EIT and PIT effects.

The S wave with frequency �s in the � system is excited
under the action of beats between the D wave and the LF
coherence ��s=�d−�21�. Then the beats between D and S
waves excite again the LF coherence, influencing the P-wave
propagation and thus forming the four-wave mixing process.
The corresponding condition of frequency synchronism has
the form

�p + �s = 2�d. �1�

As in Refs. �24–26�, we consider propagation of a pair of
waves �P and S�, coupled by an intense D wave, in a �
medium. Confining ourselves to a relatively simple three-
level model of the medium in the range of standard EIT
parameters, which is adopted in these papers, we studied in
detail the corresponding electrodynamic problem. As a re-
sult, we obtained a fairly common solution containing both
new results and the analytical generalization and interpreta-
tion of the experimental and computational results reported

1For an ensemble of independent � atoms, the LF coherence can
be considered as the wave excitation with zero group velocity,
which ensures automatic fulfillment of the condition of the wave-
vector synchronism in the EIT process.
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in the previous papers. From this solution it follows, in par-
ticular, that the eigenmodes �normal electromagnetic modes�
of the � medium in the presence of a high-power D wave are
biharmonic waves �combinations of P and S waves�, whose
properties are, in many respects, similar to the ordinary and
extraordinary normal waves in anisotropic media �earlier,
such normal modes were found during analysis of propaga-
tion of the radiation under conditions of undulator-induced
transparency �UIT� in a plasma �21��. The main peculiarities
of the experimental data, obtained in Refs. �24–26�, are ex-
plained by the properties of these normal modes. Some quan-
titative discrepancies between theoretical and experimental
results are caused by a number of simplifications of the
theory. The main one is likely that inhomogeneous broaden-
ing of spectrum lines was not taken into account, while it is
the important factor of mentioned experiments. As for con-
tribution to the theory of EIT, the most important results
obtained in the present paper are the following.

The center of the frequency “transparency window” of the
PIT is shifted with respect to that for the EIT due to the
corresponding condition of wave-vector synchronism �this
explains, in particular, why the frequency line of the trans-
mitted P radiation is asymmetric in the case of induced trans-
parency in a dense medium�.

Finally, as the optical depth of the � layer increases, its
induced transparency is always determined by exactly the
PIT regime.

One of the normal biharmonic modes �we call it extraor-
dinary by analogy with the theory of waves in anisotropic
media� can be amplified in an optically dense layer of �
atoms due to transformation of D photons into S and P pho-
tons, namely, ��d+��d⇒��s+��p.

Large group delay that is characteristic of the EIT effect
can also be retained in the PIT regime.

We note that the nonlinear amplification and/or transpar-
ency for bichromatic radiation in a dissipative medium of
multilevel atoms was also considered earlier for the double �
scheme �27�, in which the LF coherence can be excited by
beats between two drive waves. Similar regimes were also
discussed for lasing without inversion �LWI� in quantum
�12–15� and classical �28,29� systems and for acoustically
induced transparency �AIT� in an optically dense ensemble
of resonant two-level atoms �30�. Unlike the case being dis-
cussed, in all the papers mentioned above the biharmonic �or
multiharmonic �30�� combination of waves propagates in a
dissipative medium without absorption �30� or is amplified
�12–15,28,29� due to interaction with the medium-parameter
oscillations excited by some external source.

The paper is organized as follows. In Sec. II we obtain
constitutive equations for a three-level ensemble affected by
the drive field and its two satellites coupled by the frequency
synchronism condition �1�. In Secs. III and IV we obtain
equations for coupled electromagnetic waves and formulate
the procedure of constructing a solution in the form of bihar-
monic normal modes. In Sec. V we consider various regimes
of transmission of the radiation through the � layer in the
approximation of uniform intensity of the drive field and
establish the main dimensionless parameter determining the
realization of a particular regime; we analyze conditions for
possible experimental observation of the most interesting re-
gime of instability. In Sec. VI we compare our calculations
with experimental data, presented in Refs. �24–26�.

II. CONSTITUTIVE EQUATIONS IN A THREE-LEVEL
MEDIUM

Consider the behavior of an ensemble of three-level atoms
in a classical external field �see Fig. 1�:

E� = x0
� E, E =

1

2� �
j=p,d,s

Ej exp�− i� jt� + c.c.	 , �2�

where x0
� is a unit polarization vector, Ed is the amplitude of

the D wave, and Ep,s are the amplitudes of the P and S
waves, respectively. The eigenfrequencies of the transitions
are �31, �32, �21. The wave frequencies are coupled by con-
dition �1�.

Assume that the frequency of the D wave is equal to the
frequency of one of the HF transitions, i.e., �d=�32. Then
the two-photon resonance detuning ��=�p−�d−�21 is
identical to the difference between the frequency of the P
wave and the frequency of another HF transition �p−�31 and
the frequency �s is determined by the relation �s=2�32
−�p. We also assume that the HF transitions are well re-
solved with respect to each other and the characteristic re-
laxation time of quantum coherence in the LF transition is
significantly greater than for the HF transitions. Assuming
also that the frequencies �p,s are close to the corresponding
resonant values, we obtain the following group of conditions:

��p − �31� = ���p − �d� − �21� = ��s − �2�32 − �31��

� �21 � �31,32, �21 � �31,32 � �21, �3�

where 1 /�31,32 are the characteristic relaxation times for the
HF transitions and 1 /�21 is a characteristic relaxation time
for the LF transition.

Within the framework of the simplest approximation for
the relaxation operator, the equations for the off-diagonal
density matrix elements �ik have the following form �see Ref.
�31��:

�31
˙ + �i�31 + �31��31 =

i

�
�d31�N1 − N3� + d32�21�E ,

�32
˙ + �i�32 + �32��32 =

i

�
�d32�N2 − N3� + d31�21

* �E ,

ω s

ω d

ω p

|3〉

|2〉

|1〉

FIG. 1. � scheme with Stokes wave excitation.
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�21
˙ + �i�21 + �21��21 =

i

�
�d32

* �31 − d31�32
* �E , �4�

where N1,2,3=�11,22,33 are the populations of the correspond-
ing levels normalized to the atomic concentration, dik are the
elements of the operator of the dipole moment X projection
�for a standard case of the EIT regime d21=0�.

We will seek the solution of Eqs. �4� in the following
way:

�21 = �21 exp�− i��p − �d�t� ,

�31 = �
j=p,d,s

�31�� j�exp�− i� jt� ,

�32 = �
j=p,d,s

�32�� j�exp�− i� jt� . �5�

Consider the case of relatively weak field E, so that the
population distribution is only determined by the relaxation
processes �d31,32E� /2�	 	�31,32. Often, the EIT effect is dis-
cussed in terms of a simple model corresponding to the lim-
iting case N2=N3=0 ,N1�0 �see Refs. �1,24–26��. A finite
�although small� quantity N2,3 can be of fundamental impor-
tance for one of the Raman schemes of lasing without inver-
sion �LWI��12,14�. In the present paper, we do not consider
the known LWI regimes, so assume N2=N3=0. Substituting
Eqs. �1�, �2�, and �5� into Eq. �4� yields

�21 =
d32

* ��31��p�E
d
* + �31��d�E

s
*� − d31��32

* ��d�Ep + �32
* ��s�Ed�

2��21��l�
,

�31��p� =
d31N1Ep + d32�21Ed

2��31��p�
, �31��s� =

d31N1Es

2��31��s�
, �31��d� =

d31N1Ed + d32�21Es

2��31��d�
,

�32��p� = 0, �32��s� =
d31�21

* Ed

2��32��s�
, �32��d� =

d31�21
* Ep

2��32��d�
, �6�

where �l=�p−�d=�d−�s, �ik�� j�=�ik−� j − i�ik, i ,k
=1,2 ,3, j= p ,d ,s , l.

Taking into account that ��31��p��, ��32��d��
�31,32

��21
��31��d��, ��32��s��,
1
2 ��31��s�� by virtue of condi-

tions �3�, we obtain from Eq. �6� within the framework of the
linear approximation over the Ep,s fields that

�21 =
d31d32

* N1

2�Z
�EpE

d
* + EdE

s
*�31��p�

�31��d�
	 ,

�31��p� =
d31N1

2�Z
�Ep�21��l� +

E
s
*
2

2e2i�

�31��d�
	 ,

�31��s� =
d31N1Es

2��31��s�
, �32��p� = 0,

�32��s� =
d32N1
1

2

2�Z* �Es

�31
* ��p�

�32��s��31
* ��d�

+ E
p
* e2i�

�32��s�
	 , �7�

where 
1,2= �d31,32Ed� /2� are the Rabi frequencies for the
drive field �=Arg�Ed� is the phase of the drive field,

Z = ��21 − �l − i�21���31 − �p − i�31� − 
2
2. �8�

Substituting the obtained solution for density matrix �7�
into relation for the polarization of the medium Px

=2Re�d
31
* �31+d

32
* �32� and then into the expression for the

electric displacement vector D� =E� +4�P� , we obtain the non-
linear �with respect to the field Ed� constitutive equations for
the � medium

Dx��p� = np
2Ep + gpse

2i�E
s
*,

Dx��s� = ns
2Es + gspe2i�E

p
*, �9�

where np,s
2 are the squares of the refractive indexes of the P

and S waves and gps,sp are the coupling coefficients deter-
mining parametric interaction of the waves. Specifying the
expressions for np,s

2 and gps,sp, we consider the following pa-
rameter range which is characteristic of the EIT regime and
corresponds to a significant suppression of the P-wave ab-
sorption �1�

�31�21


2
2 � 1, �10a�

����2, �����31 � 
2
2, �10b�

where ��=�l−�21=�p−�31; Eq. �10b� determines the fre-
quency bandwidth of EIT. For this parameter range, one can
put 
2

2 /Z�−1 and 
1
2 /Z�−�d31�2 / �d32�2 in Eqs. �7�, that
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leads to certain simplifications. In particular, the explicit de-
pendence on the D-wave power in the expressions for ns

2 and
gps,sp is “reduced” �see also Refs. �24–26��. Allowing, to-
gether with Eqs. �10�, for conditions �3�, we have the follow-
ing expressions for np,s

2 and gps,sp:

np
2 = 
0 +

���p − �31�

2 + i���21


2 + �31��p − �31


2 	2
 ,

�11a�

ns
2 = 
0 +

�

2�21
+

���s − �2�32 − �31��
4�21

2 − i�
3�31

4�21
2 ,

�11b�

gps = gsp = g = −
�

�21
, �11c�

where and elsewhere below 
2�
2
2, �=4��d31�2N1 /� is a

characteristic frequency which determines the role of the col-
lective effects �and is expressed through a standard coopera-
tive frequency of an ensemble of two-level atoms �c

2

=8��d31�2
1N1 /� �32��; 
0 is the background dielectric per-
mittivity of the medium, which can be determined by other
levels �not included into the resonant � scheme�, the buffer
gas, the material of the matrix doped with � atoms �in con-
densed media�, etc.

For further analysis we will also need an expression for
the refractive index nd

2 of the D wave, which, in terms of the
adopted model, has the following form:

�nd
2��d=�32

� 
0 +
�

�21
+ i�

�31

�21
2 . �11d�

In the absence of the investigated parametric interaction
of probed and Stokes waves the following regimes take
place. The expression �11a� determines the standard EIT re-
gime. The measured width ����EIT of the EIT ��transparency
window” �see also Refs. �24,33,34�� is determined by the
optical depth of the �-atom layer for the P wave

��p��p=�31+����EIT
− ��p��p=�31

� 1,

where �p=2�0
L�pdz, L is the layer thickness, and �p is the

absorption coefficient of the P wave, which is determined by
Eq. �11a�:

�p �
�p

2c�Re np
2

Im np
2. �12�

As a result, using Eqs. �12� and �11a� we find

����EIT �

2

�31
��res

, �13�

where �res=
�31

c�31
�0

L ��z�
�Re
0�z�dz is the optical depth of the reso-

nant layer in the absence of the drive field.
The propagation of the S wave, when the interaction with

drive wave only is taken into account, is characterized by the
absorption coefficient, determined from Eq. �11b�,

�s �
�s

2c�Re ns
2

Im ns
2 =

�s

2c�Re ns
2�Im 
0 − �

3�31

4�21
2 	 .

�14�

It can be negative for a not too large background absorption
coefficient �Im 
0. This fact is related to another dissipative
instability, namely, the decay of a D photon into an S photon
and a quantum of excitation of the medium at the frequency
of the LF transition ��d⇒��s+��21. From a comparison of
Eqs. �14� and �11d� it follows that the spatial instability
growth rate of the S wave cannot be greater than the absorp-
tion coefficient of the D wave, i.e., �d��d Im nd

2 /2c�Rend
2.

Thus, the possible amplification of the S wave is fairly small
due to the instability since in the optimal case the medium
must be transparent for the D wave. However, it is of prin-
ciple that interaction with the drive field improves at least the
transparency of the layer for the S wave.

III. NORMAL BIHARMONIC MODES IN A THREE-
LEVEL MEDIUM

Consider stationary waves �i.e., waves with real frequen-
cies� propagating along the Z axis. From the wave equation
for the transverse field

c2�2Ex −
�2

�t2Dx = 0

we obtain, together with Eqs. �9� and �11a�–�11c�, the equa-
tions for the Ep,s fields

�−
�2

�z2 −
�p

2

c2 np
2��p�	Ep =

�p
2

c2 gE
s
*e2i�,

�−
�2

�z2 −
�s

2

c2 ns
2��s�	Es =

�s
2

c2 gE
p
*e2i�, �15�

where �s=2�32−�p.
The solution of system �15� can be found in the form of a

superposition of normal biharmonic modes �see also Ref.
�21��. Here, by analogy with normal waves in anisotropic
media, whose polarization is not varied during propagation
in a homogeneous medium, we assume that normal bihar-
monic modes are pairs of waves for which the amplitude
ratio of the partial harmonics is not varied during propaga-
tion in a homogeneous medium.

Assign the wave field in the following form:

Ed = Ad exp�i� + i�
0

z

qddz	, Ep = Ap exp�i�
0

z

kdz,	 ,

Es = As exp�i�
0

z

�2qd − k*�dz,	 , �16�

where the quantities qd and Ad are real �in Eq. �15� we have
�=�+�0

zqddz� and Ap,s and k are complex. We assume that
the possible inhomogeneity of the waves amplitudes is
“smooth” enough for using the geometric-optical approxima-
tion.
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Substituting Eq. �16� into Eqs. �15� and performing com-
plex conjugation of the second equation in system �15�, we
obtain a dispersion equation for determining the quantity k:

�k2 −
�p

2

c2 np
2��p�	��2qd − k�2 −

�s
2

c2 �ns
2��s��*	 =

�p
2�s

2

c4 g2,

�s = 2�32 − �p. �17�

By analogy with the theory of waves in anisotropic media,
we will call the solution corresponding to different roots of
Eq. �17� the ordinary �O� and extraordinary �X� modes. We
choose the indices such that in the transition to vacuum the O
and X modes tend to monochromatic waves with frequencies
�p and �s, respectively, propagating in the direction of the
wave vector of the D wave. The modes in which the direc-
tion of the energy flux is opposite, will be marked by an
additional subscript “-.” Thus, the solutions of Eq. �17� are
k=kJ, where J=O ,X ,O− ,X−. For each biharmonic mode, one
can determine the amplitude ratio of the harmonic compo-
nents

KJ =
A

s
*

Ap

=
c2kJ

2 − �p
2np

2��p�
�p

2g
e−2i�

=
�s

2g

c2�2qd − kJ�2 − �s
2�ns

2��s��*
e−2i�. �18a�

For the Ex field, we obtain a solution in the form of a super-
position of biharmonic normal waves

Ex = �
J=O,X,O−,X−

e−�0
z�Jdz�AJ exp�i�

0

z

qJpdz − i�pt	
+ K

J
*A

J
* exp�i�

0

z

qJsdz − i�st	
 , �18b�

where �J=Im kJ, qJp=RekJ, and qJs=2qd−RekJ. It is seen
that despite the different frequencies and wave vectors of the
partial waves, each biharmonic mode is characterized by a
common absorption coefficient. Taking into account that �p
+�s=const, it can easily be verified that the group velocity
for the biharmonic mode is also common:

VJ
gr = � �qJp

��p
	−1

= � �qJs

��s
	−1

.

Solution �18b� can be used for constructing an exact so-
lution of the corresponding boundary-value problem. For a
homogeneous medium and a homogeneous drive field AJ are
arbitrary constants. In the case of smooth inhomogeneity, the
solution can be constructed within the framework
of the WKB �Wentzel-Kramers-Brillouin� approximation
�geometric-optical approach�. Making use of the procedure
described in Refs. �35,36� for similar equations of the wave
theory in anisotropic media, from Eqs. �15�, �18a�, and �18b�
we find an expression for the geometric-optical wave ampli-
tudes

AJ =
CJ

�kJ − �2qd − kJ�KJ
2e4i�

, �18c�

where CJ are arbitrary constants.

IV. NORMAL MODES IN THE CASE OF A RELATIVELY
SMALL DENSITY OF THREE-LEVEL ATOMS:

THE PIT REGIME

Common relationships �17� and �18a�–�18c� can be sig-
nificantly simplified for the practically important case of a
relatively small effective density of resonant atoms where
�2	 	Re
0�21

2 . Under this condition, the wave numbers of
all three �including the drive� partial waves �Rekj
= �Renj� j /c, j= p ,s ,d� differ only weakly from each other.
Actually, from Eqs. �11a�, �11b�, and �11d� we obtain

�Re kp �
�31

c
n0 +

�p − �31

VEIT
gr , n0 � �Re 
0,

VEIT
gr �

c

n0 +
�p

2n0

� Re�np
2�

��p

�
c

n0 +
��31

2n0
2

,

�Re ks �
�2�32 − �31�

c
ns0 +

�s − �2�32 − �31�
Vs

gr ,

ns0 � n0 +
�

4n0�21
,

Vs
gr �

c

ns0 +
�s

2ns0

� Re�ns
2�

��s

�
c

ns0 +
�2�32 − �31��

8ns0�21
2

,

Re kd = qd �
�32

c
nd0, nd0 � n0 +

�

2n0�21
, �19a�

where n0, ns0, and nd0 are the real refractive indices of the
waves VEIT

gr and Vs
gr are the group velocities of the P and S

waves, and the � signs correspond to the different directions
of wave propagation.

In the considered case of a relatively small effective den-
sity of the � medium, the right-hand side of algebraic equa-
tion �17� is small. Hence, the solutions of this equation can
differ radically from the solutions of the dispersion equations
for partial waves only if both cofactors on the left-hand side
tend to zero simultaneously. Thus, a significant interaction of
P and S waves takes place for such frequencies �p,s=�p,s

0 for
which the dispersion equations of partial waves are compat-
ible with the conditions of the wave vectors and frequencies
synchronism2

2In the considered process of wave interaction the frequency syn-
chronism condition �1� must be assigned by the analogous in form
synchronism condition for the wave numbers �see Ref. �23��, which
is the first of conditions �19b�.
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�Re kp��p���p=�p
0 + �Re ks��s���s=�s

0 = 2qd, �p
0 + �s

0 = 2�32.

�19b�

It is exactly the case that corresponds to the PIT regime �22�.
In the considered situation, the fulfillment of condition

�19b� is possible for the O and X modes and is not possible
for the O− and X− modes.3 We determine the resonant fre-
quencies �p,s

0 , which satisfy synchronism condition �19b�, by
substituting Eq. �19a� into Eq. �19b�. The following relation-
ships are valid:

�s
0 = 2�32 − �p

0,

��p
0 − �31�� 1

VEIT
gr −

1

Vs
gr	 = 2

�32

c
�nd0 − n0�

−
�2�32 − �31�

c
�ns0 − n0�

�
3��

4cn0�21
, �19c�

where

� 1

VEIT
gr −

1

Vs
gr	 =

�

2cn0
��31


2 −
1

2�21
−

n0

ns0

�2�32 − �31�
4�21

2 	
�

��

2n0c
2 �19d�

and ���31,32,p,d,s is a characteristic high frequency.
As a result, we arrive at

�p
0 � �31 + ��PIT, �s

0 � �2�32 − �31� − ��PIT,

��PIT =
3
2

2�21
,

qp
0 = Re kp��p

0� �
�31

c
�n0 +

3�

4n0�21
	 ,

qs
0 = ks��s

0� = 2qd − qp
0 �

�2�32 − �31�
c

�n0 −
�

4n0�21
	 .

�19e�

Thus, the resonant frequencies corresponding to the wave-
number synchronism do not depend on the effective density
N1 of resonant atoms nor the parameter 
0 of the background
medium, although the corresponding values of the “reso-
nant” wave numbers depend on these parameters and, in par-
ticular, can vary in space. We note that the optimal frequency
for the wave synchronism �the center of the PIT line� is
shifted with respect to the EIT line center, which explains the
asymmetry of the frequency transparency window for the P
wave under conditions of the S-wave generation, which was
observed in Ref. �24�.

The dispersion equation for the O and X modes in the case
of a relatively small effective density of � atoms can be
obtained by expansion of common relationship �17� with re-
spect to the small quantity �=k−qp

0 with allowance for
square-law terms. Using Eqs. �11a�, �11b�, �11d�, �12�, �14�,
�19a�, and �19e� and assuming that the parameters
Im 
0 /Re 
0, � /�21, �21 /�, and �31 /�21 are small, we ob-
tain

�� −
��

VEIT
gr − i�EIT − i�0	�� −

��

Vs
gr + i�s − i�0	 + �PIT

2 = 0,

�19f�

where ��=�p−�p
0 =�s

0−�s is the frequency detuning of the
PIT resonances

�PIT =
�p�s

2c2�qp
0qs

0
�g� �

��

2cn0�21
.

The dissipative effects are determined by the following terms
of the dispersion equation �see also Eqs. �12� and �14��: �s
�3���31 /8cn0�21

2 , which is the spatial growth rate of the
S-wave instability, and

�EIT �
��

2cn0
2��21 + �31
��p − �31�2


2 	 , �19g�

which is the absorption coefficient of the P wave on � atoms
in the EIT regime �0�� Im 
0 /2cn0− background absorp-
tion coefficient.

In the weak dissipation limit �i.e., for �PIT��EIT,�0 ,�s�
the dispersion curve ����� determined from Eq. �19f� has a
form characteristic of convectively unstable systems �see
Fig. 2�.

The instability region corresponds to the frequency inter-
val

−
4

3
��PIT � �� �

4

3
��PIT, �19h�

and the maximum spatial growth rate is given by

� − Im ����=0 � �PIT.

For a more detailed analysis, it is useful to obtain the
system of differential equations corresponding to dispersion
equation �19f�. To do this, it is convenient to introduce the
new variables Ip,s:

3In addition, it is worth mentioning that the backward propagating
modes are strongly absorbed in the inhomogeneously broadened
medium.

gr
SV��

��

gr
EITV�

�
��

��

�
PIT��

3
4

�

PIT��
3
4

FIG. 2. The dispersion curve for normal modes of the � system
in the region of convective instability.
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c�qp,s
0 �z�

�p,s
Ep,s�z� = Ip,s�z�exp�i�

0

z

qp,s
0 dz	 . �20a�

The phases of the new complex variables are determined by
the difference of the wave numbers of the partial waves from
the resonant values qp,s

0 , and the absolute values determine
the photon fluxes

Np,s =
c

8���p,s
Re�E� p,s � H�

p,s
* � �

�Ip,s�2

8��
,

where H� p,s��cqp,s
0 /�p,s�E� p,s are the monochromatic compo-

nents of the magnetic field.
We now substitute Eq. �20a� into system �15�, performing

complex conjugation of the second equation of the system
and using Eqs. �19a� and �19e�. With accuracy up to square-
law and bilinear corrections over small parameters c /n0�l,
Im 
0 /Re 
0, � /�21, �21 /�, and �31 /�21, where l is the scale
of the wave-amplitude inhomogeneity, we have

� �

�z
− i

��

VEIT
gr + �EIT + �0	Ip = − i�PITe2i�I

s
*,

� �

�z
− i

��

Vs
gr − �s + �0	I

s
* = + i�PITe−2i�Ip. �20b�

From Eqs. �20b� we have the photon-flux variation law

� �

�z
+ 2�EIT + 2�0	Np − � �

�z
− 2�s + 2�0	Ns = 0,

which, in the absence of dissipative processes �for �EIT=�s
=�0=0�, converts to the Manley-Rowe relationship for the
four-quantum process ��d+��d⇔��p+��s corresponding
to synchronism condition �1�, namely Np−Ns=const.

System �20b� reduces to the second-order equation

U��� + �1

4
��2 − 1� −

i

2
���
U = 0, �20c�

where

U = Ip exp�−
1

2
�

0

Z �i� ��

VEIT
gr +

��

Vs
gr	

− �EIT + �s − 2�0
dz�, � =
�

c�21
�

0

Z ��z�
n0�z�

dz ,

�20d�

� =

��

VEIT
gr −

��

Vs
gr + i��EIT + �s�

��

cn0�21

�
3��

4��PIT
+ i� 1

2G
�1 +

�31�21


2 � ��

�21
+

3

2
G	2
 +

3�31

8�21
� ,

�20e�

G =

2

�21�21
=

2��PIT

3�21
�20f�

�for obtaining the expression for � we used Eqs. �19d� and
�19g��. It is seen in Eq. �20e� that the quantity � does not
depend on the effective density of � atoms nor the dielectric
properties of the background medium.

Equation �20c� is an equation with constant coefficients in
the case 
2=const even for the spatially varied parameters
��z� and 
0�z�; thus, in the approximation of a constant
D-wave intensity we find an exact solution of system �20b�:

Ip = �
J=O,X

FJe
�0

z �i�qJ−�J�dz,

Is = �
J=O,X

Q
J
*F

J
*e�0

z �−i�qJ−�J�dz,

QO,X = �� � ��2 − 1�e−2i�,

�O,X =
�EIT − �s

2
+ �0 �

��

2cn0�21
Im ��2 − 1,

�qO,X =
��

2
� 1

VEIT
gr +

1

Vs
gr	 �

��

2cn0�21
Re ��2 − 1,

�20g�

where FO,X are arbitrary constants and QOQX=e−4i�. The
group velocities of the normal modes are determined by the
expression VJ

gr= ����qJ� /������−1. It can easily be verified
that the expressions for the complex wave vectors �=�qO,X
+ i�O,X are solutions of dispersion equation �19f�.

In the limit ���2�1, Eqs. �20g� become considerably sim-
pler:

�O � �0 + �EIT +
�EIT + �s

4���2
, �qO �

��

VEIT
gr ,

QO �
1

2�
e−2i�, VO

gr � VEIT
gr ,

�X � �0 − �s −
�EIT + �s

4���2
, �qX �

��

Vs
gr ,

QX � 2�e−2i�, VX
gr � Vs

gr.

It can easily be seen that the ordinary �O� mode always
corresponds to the process of predominant transformation of
P and S photons into D photons

��p + ��s ⇒ ��d + ��d:
�

�z
�Np + Ns� 	 − 2�0�Np + Ns� ,

and the extraordinary �X� mode always corresponds to the
inverse process

��d + ��d ⇒ ��p + ��s:
�

�z
�Np + Ns� � − 2�0�Np + Ns� .

In the absence of the background absorption ��0� Im 
0
→0�, the X mode is always amplified.
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Thus, in the case of an optically depth layer of � atoms its
transparency is determined exclusively by the excitation ef-
ficiency of the X mode.

In the case of nonuniform intensity of the D wave, the
amplitudes FO,X become variable. One can construct an
asymptotic WKB solution of Eq. �20c�, which determines the
amplitude variation law4

FO,X =
CO,X

��2���2 − 1��� � ��2 − 1�
=

CO,X

�1 − QO,X
2 �z�e4i�

,

�21a�

where CO,X=const.
A common criterion of applicability of the WKB asymp-

totics during solution of Eq. �20c� is the fulfillment of the
inequality

����� � ��2 − 1� . �21b�

It is easily seen that inequality �21b� is equivalent of the
condition ��k−1dQO,X /dz�� �QO,X�, where �k= ��qX+ i�X�
− ��qO+ i�O�. Thus, in addition to the standard condition of
geometrical-optics applicability �k−2k�z��1, an additional
constraint is imposed for systems of coupled wave equations.
The coefficients QO,X characterizing the structure of the nor-
mal modes must vary only weakly on the length of the beats.
In this sense, the coefficients QO,X are completely similar to
the polarization coefficients of monochromatic waves in an
anisotropic medium, whose relatively rapid variation can be
responsible for the violation of the geometric-optical solution
in anisotropic media �see Refs. �35,36��.

It follows from Eqs. �21a� and �21b� that even a relatively
small variation in the D-wave intensity inside the � layer can
be of basic importance in the vicinity of the singularity �2

→1. However, this singularity can be insignificant by virtue
of the dissipative effects. Indeed, in the case G�1 we obtain
��2−1�min
G−2�1. At the same time, for G�1 we have
��2−1�min
min�1 /G ,�31 /�21��1. In this case, the WKB
asymptotic can be inadequate when passing through the
boundary of the unstable region �19h� where �2→1. Here,
we will not consider the construction of a solution in this
domain and only note that for the linear approximation �cor-
responding, e.g., to weak absorption of the drive wave�, such
that 
2�
0

2�1−���−�0��, Eq. �20c� can be reduced to the
well-known parabolic-cylinder equation �37�.

V. TRANSMISSION OF THE RADIATION
THROUGH THE � LAYER

In this section, we limit ourselves to exact solution �20g�,
which is valid for arbitrary inhomogeneous profiles5 ��z� and

0�z� and a constant drive intensity since the solution allow-
ing for the inhomogeneity of the WKB drive field in the

region of its applicability does not lead to radically new ef-
fects. Consider the incidence of a signal wave with frequency
�p and amplitude corresponding to the quantity �Ip�z=o= Ip

0

from vacuum on a � layer of thickness L. Neglecting the
reflection of waves from the layer, we obtain the following
expressions for arbitrary constants of solution �20g�:

FO =
QXIp

0

QX − QO
, FX = −

QOIp
0

QX − QO
. �21c�

Formally, solution �20g� with found constants contains the
above-discussed singularity for �2→1 when QO→QX. How-
ever, since solution �20g� is exact, the corresponding correct
passage to the limit leads to the expressions not containing
singularities

Ip → Ip
0�1 −

i�

2c�21
�

0

z �

n0
dz	exp��

0

z

�i�qO − �O�dz	 ,

Is → I
p

0* i�

2c�21
�

0

z �

n0
dzexp�− �

0

z

�i�qO + �O�dz	 .

Using Eqs. �20g� with arbitrary constants found above, we
obtain expressions for the ratio of incident and transmitted
photons.

Neglecting the small factors 2�0
L�0dz and 2�0

L�sdz in a
medium that is transparent for the drive field, we find

Np�z = L�
Np�z = 0�

�
1

4��2 − 1�
��� + ��2 − 1�2e−�1/2�EIT+�PIT�

− 2 cos�� + 2!�e−�1/2��EIT + ��

− ��2 − 1�2e��PIT−1/2�EIT�� ,

Ns�z = L�
Np�z = 0�

�
1

4��2 − 1�
�e−�1/2�EIT+�PIT� − 2 cos�� �e−�1/2��EIT

+ e��PIT−1/2�EIT�� , �22a�

where

�EIT = 2�
0

L

�EITdz ,

� �
3��

4��PIT
+ i

1

2G
�1 +

�31�21


2 � ��

�21
+

3

2
G	2
 ,

�PIT = �
0

L

��O − �X�dz = " Im ��2 − 1,

� = �
0

L

��qO − �qX�dz = " Re ��2 − 1,

4Such a result can be obtained also by constructing the WKB
solution of original system �20b� or by the corresponding passage to
the limit in Eq. �18c�.

5Certainly, the profiles must be gradual on the scale of the wave-
length 2�c

�n0
.
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" =
�

c�21
�

0

L ��z�
n0�z�

dz, ! = Arg�� + ��2 − 1� �22b�

�the features of the behavior of the solution for �2→1 were
analyzed above�. The right-hand sides of Eqs. �22a� represent
the photon fluxes in the O and X modes �the first and last
terms in the parentheses� and an interference term which can
appear significant for comparable amplitudes of the O and X
modes at the layer output.

For ���2�1, the asymptotics

�PIT �
1

2
�EIT�1 +

1

2���2	 �22c�

is valid, within the framework of which the simpler expres-
sions can be obtained from Eqs. �22a� and �22b�. The found
expressions give a fairly complete solution of the problem of
transmission of the P and S waves through the � layer. First,
it is seen that in any case, the PIT effect ensures the appear-
ance of power-law “tails” of the frequency transparency line
outside the region of exponential decay of an EIT signal.
Other features of the signal transmission are determined by
the dimensionless parameter G, introduced in Eq. �20f�, and
the minimum optical depth for the EIT regime, which is
given by �EIT

min= ��EIT��p=�31
="G−1.

�i� G�1. In this case, Eqs. �22c� apply for all frequencies.
For the EIT parameter range ������
2 /�31� we have

1

4���2
� G2�1 + � ��

�21
	2
−1

. �22d�

Displacement of the PIT line center ��p=�p
0� with respect to

the center of the EIT line ��p=�31� is much smaller than the
width of the PIT line ����PIT
�21. For �EIT

min�4 ln�1 /G�, the
generation of the S wave affects only weakly the transmis-
sion of the P wave. For �EIT

min�4 ln�1 /G�, transmission of the
radiation through the layer is due exclusively to the PIT ef-
fect; the group velocity of the X mode in this regime is close
to the group velocity Vs

gr of the S wave. In the transmitted
radiation, the S wave is about a factor G−2 more intense than
the P wave at the line center and decays significantly weaker
as the frequency detuning increases. In Fig. 3 we present the
output intensities of P and S waves numerically calculated
on the basis of Eq. �22a� in the corresponding regimes. In the
region �EIT

min
4 ln�1 /G�, the contributions of the O and X
modes in the expression for the transmitted intensity of the P
wave are of the same order of magnitude. Their interference
results in oscillations of the frequency dependence of the
transmitted-radiation intensity, which can be observed if the
oscillations’ period �8���PIT /3" is less than the EIT line
width, so that the condition 2���31 /�21"	1 is fulfilled.
This regime is presented in Fig. 4.

�ii� G�1. In this case, a parametric instability takes place
for the extraordinary mode in the frequency band ����PIT

� 8
3��PIT=4G�21 �19h�. The maximum amplification coeffi-

cient �at the line center� is given by 1
4 exp��PIT−

�EIT
min

2 �
� 1

4 exp�"− "
2G �. The ratio between characteristic widths of

the frequency passbands ����EIT �13� and ����PIT is

����EIT

����PIT
�

1

��31

�21
"

� 1,

i.e., the PIT band turns out to be much narrower. Dispace-
ment of the PIT line center with respect to the EIT line center
is of the order of the PIT linewidth. In the instability band,
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FIG. 3. Calculated probe �solid line� and Stokes �dashed line�
transmitted signals �Eq. �22a�� as functions of frequency detuning
��=�p−�31= �2�32−�31�−�s for the following dimensionless pa-
rameters: G=0.2, �21�31 /
2=0.4, �i� "=0.2, �ii� "=0.8, �iii� "
=2, that correspond, for example, to the following set of real pa-
rameters of � systems, formed by hyperfine splitting of the ground
state of D1 line in the vapor of Na atoms �3S1/2→3P1/2 transition,
corresponding wavelength #=589.6 nm, �21=1772 MHz, 

=12.4 MHz, �31=160 MHz, �21=400 kHz, L=7.5 cm, �i� N1=7
�109 cm−3, �ii� N1=2�1010 cm−3, �iii� N1=5�1010 cm−3�, similar
to that realized in the experiment �26�.
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intensity, calculated for parameters G=0.5, �21�31 /
2=0.005, "
=1.5.
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the P and S components have intensities of the same order of
magnitude ��QO,X���=0� � ie−2i��. The group velocity of
both partial modes is given by VO,X

gr �2VEIT
gr , i.e., the probe’s

group delay characteristic of EIT is preserved. In the insta-
bility region �19h� the interference oscillations are certainly
insignificant. Outside the limits of region �19h�, the S wave
has significantly stronger power-law “tails” of the transpar-
ency line than the P wave. In particular, under the condition


2 /�31� �������PIT one can make use of Eqs. �22c�,
where

1

4���2
� � 
2

�21��
	2

. �22e�

For �EIT
min�1, the X mode dominates in the transmitted radia-

tion outside the limits of the instability region as well. Under
the condition �EIT

min�1, the intensities of the O and X modes
in the vicinity of the boundaries of the instability region are
of the same order of magnitude; in this case, as is shown in
the previous section, the effects stipulated by the inhomoge-
neity of the D-wave intensity and not described by Eqs. �22�
can also be manifested.

The calculated �Eq. �22a�� signals corresponding to the
described instability for the different parameters appropriate
for possible experiment in Rb vapor are presented in Fig. 5.
The dependence of the amplification coefficient on the drive-
field intensity �parameter G� can be traced from Fig. 5�a�.
The modification of the output Probe and Stokes signal with
a rise in cavity length and/or atom concentration �parameter
"� is shown in Fig. 5�b�.

VI. COMPARISON WITH EXPERIMENTS

The induced transparency with the effect of S-wave gen-
eration has been experimentally investigated in � systems,
formed by hyperfine splitting of the ground state of the D1
line in the vapor of Rb87 atoms �S1/2�F=2�→P1/2�F=2� tran-
sition� �24,25� and Na atoms �3S1/2→3P1/2 transition� �26�.
The theory developed in the present paper corresponds quali-
tatively to the experimental data �24–26�. Nevertheless there
is no strict quantitative correspondence. Evidently, it is
caused by a number of simplifications used in theory con-
struction: �1� three-level model, �2� only the homogeneous
broadening of spectrum lines taking into account �in all men-
tioned experiments the inhomogeneous broadening if D1 line
was essentially larger than the homogeneous one, the time-
of-flight broadening for the light beams was about inverse
lifetime of the ground state�, �3� approximation of well re-
solved transitions �which is failed, in particular, for the con-
ditions of experiments in Ref. �26��, �4� linear approximation
for P and S waves, �5� approximation of predetermined
populations, �6� strict one-photon resonance for the drive
field, �7� neglect of drive field depletion and others.6

In collating up the results of our analytical calculations
with experimental data, we considered the effective popula-
tion of the ground state N1, the relaxation rate at HF transi-
tion �31 and in some case drive power as adjustable param-
eters, keeping in mind just mentioned idealizations. The
conformity between analytical dependences and experimen-
tal curves was achieved for magnitudes N1 several times less

6The numerical model free of corresponding approximation was
used in Ref. �24�.
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FIG. 5. The regime of parametric instability. The calculated
probe �solid line� and Stokes �dashed line� signals. The parameters
are chosen with aim to be realized in the experiment in Rb vapor
within the D1 manifold �#=794 nm, �21=6.83 GHz, �31

=100 MHz, �21=15 kHz�. �a� The dependence of amplification co-
efficient on the drive-field Rabi-frequency for the fixed product of
cavity length and atomic concentration �LN1=5 cm�2.6
�1011 cm−3 that corresponds to "=4�, �i� 
=10 MHz �corre-
sponding parameter G=1�, �ii� 
=14 MHz �G=2�, �iii� 

=17.5 MHz �G=3�. �b� The development of instability with the
cavity length or dense growth �i� LN1=5 cm�2.6�1011 cm−3, �ii�
LN1=15 cm�2.6�1011 cm−3, �iii� LN1=30 cm�2.6�1011 cm−3,
�iv� LN1=38 cm�2.6�1011 cm−3; G=3 �the power of drive field
is 30 mW with spot size of 5 mm�.
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�from 5 to 2.5� than measured atomic concentrations7 and
magnitudes �31 approaching to the constant of inhomoge-
neous broadening in order of magnitude, the adjustable drive
power is maximally twice less than experimental value.

The data in Fig. 3 qualitatively correspond to the condi-
tions of experiment �26�, where conversion from standard
EIT regime to the regime of practically total transfer of P
wave to S wave with a rise in atomic dense was investigated.
The experimental parameters: cavity length L=7,5 cm, drive
radiation power 12 mW and spot size 2 mm, the atomic den-
sity varied from 3,5�1010 to 2 ,6�1011 cm−3. The results
of simulations fulfilled on the basis of the presented theory
agree with the experimental conclusions of Ref. �26�, with
the difference that specialities of line shapes for transmitted
P and S radiation were not investigated in Ref. �26�.

The frequency dependences, followed from Eqs. �22a�
and presented in Fig. 6, demonstrate the regime discovered
in experiments �25�, in which the medium is transparent for
the S wave in frequency window wider than that for the P
wave. To make the effect more obvious we chose the calcu-
lation parameters �in particular parameter "� so that the in-
tensities of the transmitted P and S waves were equal in
maximum. The authors of Ref. �25� explored a mix of Rb87

and N2 buffer gas at the pressure of 3 Torr at temperature
70–90 °C; the power of drive field was 100–500 �W, beam
diameter was 5 mm; they did not investigate theoretically
predicted dependence of the frequency bands and intensities
of P and S lines on the optical depth of the medium.

A density dependent spectral narrowing of EIT window
and novel, even narrower, resonances superimposed on the

EIT line were observed in dense Rb vapor in Ref. �24�. The
experimental parameters: cavity length L=5 cm, D-wave
power 5–10 mW, spot size 5 mm, atomic densities varied
from 6�1010 to 6�1011 cm−3. It is essential that in those
experiments the heterodyne detection scheme measured the
beat signal at frequency �l=�21+�� with power Ssig

2

� �EdE
s
*+E

d
*Ep�2, instead of P and S waves intensities sepa-

rately. As atomic density increases the frequency dependence
Ssig

2 ���� transforms from the function with one maximum to
the oscillating curve. This indicates the conversion from the
regime with dominating P wave to the regime with P and S
waves of similar intensities. Graphics followed from Eqs.
�22a� calculated for parameters similar to the experimental
parameters and confirming this conclusion are introduced in
Fig. 7�b�. The dependences Ssig

2 ����, calculated using Eqs.
�20a�, �20g�, and �21c� are presented in Fig. 7�a�. These de-
pendences correspond qualitatively to the experimental
curves �24�: for sufficiently large atomic density the fre-
quency line becomes asymmetrical with oscillations at the
periphery.

VII. CONCLUSION

The analytical solution we obtained in this paper for the
problem of propagation of radiation in a three-level medium
demonstrates the possibility of a very nontrivial behavior of
the interacting waves due to collective effects. The following
main interrelated processes can be distinguished: the nonlin-
ear coupling between a high-power D wave and S wave leads
to the occurrence of a dissipative instability of the S wave;

7This discrepancy is probably caused by “extraction” of a part of
atoms from resonant interaction with the field due to Doppler fre-
quency difference. The maximum discrepancy—up to 5 times—
took place for data �26�, where inhomogeneous broadening ex-
ceeded spacing between lower levels in three-level systems.
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FIG. 7. Calculated signal as function of probe and Stokes de-
tuning ��=�p−�31= �2�32−�31�−�s fulfilled for parameters simi-
lar to the experiment in Rb vapor �24�: �#=794 nm, �21

=6.83 GHz, 
=7 MHz, �31=100 MHz, �21=15 kHz, L=5 cm, �i�
N1=2.4�1010 cm−3, �ii� N1=4�1010 cm−3, �iii� N1=8
�1010 cm−3, �iv� N1=2.4�1011 cm−3�. �a� The quantity Ssig

2

� �EdE
s
*+E

d
*Ep�2 such as measured by the detection scheme. The

probe and Stokes intensities are presented in �b�.
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the nonlinear coupling between the P wave and the un-
damped �unstable� S wave, which is stipulated by a high-
power D wave, ensures transport of the probe radiation
through a layer of � atoms due to collective effects even in
the case where the layer is opaque within the framework of
the standard EIT regime; the coupled P and S waves generate
normal biharmonic modes, which, in many respects, are
similar to the normal waves in anisotropic media. The ap-
proach developed here can be extended and modified further
for an analysis of nonlinear problems with allowance for the

influence of the finite intensity of the signal and Stokes
waves, for taking into account the influence of the inhomo-
geneous broadening, etc.
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