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Self-similar propagation of optical beams inside a one-dimensional nonlinear graded-index waveguide am-
plifier is studied. By employing the lens-type and Husimi transformations, movable exact quasisoliton simi-
laritons are obtained. Under certain conditions, these similaritons are well described by bright, Gaussian, and
dark solitons on a compact parabolic background. Approximate but highly accurate analytical methods are
developed to describe the interaction dynamics of exact quasisoliton similaritons.
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I. INTRODUCTION

Self-similarity is a fundamental property that has been
explored in many areas of physics such as hydrodynamics
and quantum field theory �1�. Recently, the symmetry reduc-
tion method, which is based on the self-similarity of certain
partial differential equations, has been widely applied to
search for exact and asymptotic self-similar solutions in op-
tical systems modeled by the well-known nonlinear
Schrödinger equation �NLSE� �2–10�. These self-similar
waves �optical similaritons� may be useful in real applica-
tions, since they can maintain their overall shapes but with
their amplitudes and widths changing with the modulation of
system parameters such as dispersion, nonlinearity, gain, and
inhomogeneity. Similaritons also exist in fields such as plas-
mas and Bose-Einstein condensation �11–13�.

One always deals with the following two types of simi-
laritons in the context of nonlinear optics. The first are the
asymptotic similaritons, which are mainly described by com-
pact parabolic, Hermite-Gaussian, and hybrid functions
�2–5,14–16�. These asymptotic similaritons exist under a
wide range of system parameters, and hence have attracted
much attention in recent years, especially the asymptotic
parabolic similariton, which exhibits some interesting prop-
erties such as that it can be easily generated from arbitrary
input waves and its stability is guaranteed even at a high
power level �15�. The other type are the exact similaritons,
described by exact soliton �6–10,17� and quasisoliton solu-
tions �18–20�. The existence of exact similaritons requires a
delicate balance between system parameters. Note that the
process of finding exact soliton similaritons is in essence the
reduction of the original NLSE equation to the standard
NLSE, and all of the methods can be unified by the general-
ized inverse scattering technique with variable spectral pa-
rameters �17�. The exact quasisoliton similariton �EQSS�,
however, is obtained by mapping the original NLSE equation
into the standard NLSE with a stationary harmonic potential
�18–20�. Therefore, exact multiple-soliton similariton solu-

tions can be constructed by the inverse scattering technique,
whereas exact multiple quasisoliton solutions are hard to
find.

An important aspect of the similariton theory is the inter-
action dynamics. Recently, it was found that the collision of
two asymptotic parabolic similaritons results in an oscilla-
tion, which further evolves into a train of dark solitons �16�;
while the interaction of two exact soliton similaritons leads
to the elastic collision or formation of a moleculelike bound
state, depending crucially on the sign of the similariton phase
chirp �9�. The interaction of multiple similaritons �more than
two� were also studied numerically in loss- and dispersion-
managed fibers �21�; as for the EQSSs, it was shown that the
initial chirps reduce their interaction �18�. However, the col-
lision dynamics of multiple EQSSs has not yet been studied.
In this paper, we are going to develop an analytical method
to describe the interaction dynamics of multiple EQSSs in
the context of a nonlinear graded-index waveguide amplifier.

II. MODEL EQUATION AND THE EVOLUTION
OF A SINGLE SIMILARITON

We consider the propagation of an optical beam inside a
nonlinear graded-index waveguide amplifier with refractive
index �8,22� n=n0+n1f�z�x2+n2I, where z is the propagation
distance, x is the spatial coordinate, and I is the beam inten-
sity. The first two terms describe the linear contribution to
the refractive index and the last intensity-dependent term
represents the Kerr nonlinearity �positive n2 for self-focusing
nonlinearity and negative n2 for self-defocusing nonlinear-
ity�. Here we assume n1�0, and f�z� is the distributed pa-
rameter describing the inhomogeneity of the graded-index
waveguide along the propagation direction. The graded-
index waveguide acts as a linear defocusing lens for
f�z��0 and a focusing lens for f�z��0. With this kind of
refractive index, one can control the collision of optical
beams by choosing the appropriate inhomogeneity parameter
f . The governing equation for the propagation of optical
beams inside such a waveguide is the following
�1+1�-dimensional NLSE:*Corresponding author. jf�zhang@zjnu.cn
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where the beam envelope u, propagation distance z, spatial
coordinate x, and gain parameter g�z� are respectively nor-
malized by �k0�n2�LD�−1/2, LD, w0, and LD

−1, with the wave
number k0=2�n0 /� at the input wavelength �, the diffrac-
tion length LD=k0w0

2, and the characteristic transverse scale
w0= �2k0

2n1�−1/4. The nonlinearity coefficient is �=sgn�n2�
= �1.

To obtain the exact self-similar solutions, we introduce
the following lens-type transformation �20�:

u�z,x� =

exp��
0

z

g�z��/2 dz��
	��z�

U�Z,X�exp�i
�z

2�
x2� , �2�

where �=exp�
0
z −g�z��dz��, X=x /�, and Zz=�−2 with Z�0�

=0, and reduce the original equation �1� into the following
standard NLSE with an additional harmonic potential:

iUZ +
1

2
UXX + ��U�2U = K

X2

2
U , �3�

where K is determined by the self-similar condition

K = �g2 − gz − f��4. �4�

The virtue of the lens-type transformation is that we can
obtain information about the original equation �1� via the
investigation of Eq. �3�. Specifically, when K=0, U�Z ,X� can
be given explicitly by the bright ��=1� and dark soliton
��=−1� solutions, and the interaction of multiple similari-
tons can be obtained by the powerful inverse scattering tech-
nique. Here we are more interested in the case where K is a
positive constant, such that Eq. �3� possesses a localized sta-
tionary state solution U�Z ,X�=S�X�exp�i�Z�, where � is the
propagation constant. Note that this stationary state solution
rests at the coordinate origin X=0. According to the Husimi
transformation �23�, a movable stationary state solution is
possible. That is, if U�Z ,X� is a solution of Eq. �3�, so is the
following:

U�Z,X − X0�exp�i�X0Z�X − X0� + ��� , �5�

where the center-of-mass motion of the stationary state solu-
tion is given as

X0ZZ + KX0 = 0, �6�

and the phase �=
0
Z�X0Z

2 −KX0
2� /2 dZ+�0. Note that the

center-of-mass velocity of the stationary state is X0Z, which
is just the coefficient of X in the phase term. This is a unique
property of the NLSE with constant coefficients.

Then the lens-type and Husimi transformations, as well as
the self-similar condition, determine the exact self-similar
evolution of the movable EQSS. It is readily shown that the
amplitude and effective beamwidth of the EQSS are propor-
tional to exp�
0

zg�z��dz�� and exp�
0
z −g�z��dz��, respectively,

while its center of mass is x0=X0�, satisfying the Ehrenfest
theorem:

x0zz = f�z�x0. �7�

It must be noted that the center-of-mass velocity of the EQSS
is x0z=X0Z /�−X0g�, which does not equal the coefficient of
x in the phase terms X0Z /�. The additional velocity −X0g� is
caused by the coordinate transformation between the new
variable X and the old one x. Also note that the phase-front
curvature of the EQSS is �z /2�, which just equals one-half
of the change rate of effective beamwidth �, this is also a
unique property for the self-similar evolution of optical
waves of Eq. �1�.

III. INTERACTION OF MULTIPLE SIMILARITONS

The single-EQSS solution, which is directly related to the
stationary state solution of Eq. �3�, can be easily found by
numerical methods; however, the multiple EQSSs are hard to
retrieve. We hereafter present approximate but highly accu-
rate descriptions of interaction dynamics of multiple EQSSs,
which are composed of many single EQSSs.

A. interaction of sech-type similaritons

First, when the initial power of the optical beam is large,
the nonlinearity is self-focusing ��=1�, and K is small, the
envelope of the stationary state of Eq. �3� can be well de-
scribed by the bright soliton solution:

S = 2	 sech�2	�X − Q�� , �8�

where 2	 and Q are the amplitude and center of mass of the
bright soliton.

For a single bright soliton, the center-of-mass motion is
determined by Eq. �6� with X0 replaced by Q, which is the
same as the formula in Ref. �24�. That is, the bright soliton
behaves as a quasiparticle of mass 1, oscillating in a har-
monic potential. Several approximate methods have been de-
veloped regarding the interaction of bright solitons. For ex-
ample, Karpman and Solov’ev �25� used a perturbative
analysis based on the inverse scattering technique to describe
the interaction of two bright solitons of the standard NLSE;
Gordon �26� derived the bright soliton interaction directly
from the exact two-soliton function of the standard NLSE;
while Anderson and Lisak �27� reduced the standard NLSE
to two coupled NLSEs and obtained an expression for the
interaction of two bright soliton based on the variational
technique. Later, Gerdjikov et al. �28� found that the interac-
tion of N bright solitons leads to a complex Toda lattice with
N nodes, where the NLSE can have an external potential.
However, one of the validity conditions of the above meth-
ods is that the relative velocity between the two bright soli-
tons is small everywhere, corresponding to slow collisions,
which could lead to energy transformation between bright
solitons. On the contrary, when two bright solitons collide
with a relative large velocity, their shapes remain intact but
their centers and phases suffer a shift. To describe this shift,
Scharf and Bishop �29� mapped the system to a noninte-
grable many-particle dynamics with an effective Hamiltonian
by a collective-coordinate approximation. The validity of the
effective Hamiltonian is under the assumption that three-
soliton collisions as well as two-soliton collisions with van-
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ishing relative velocity can be neglected. Fortunately, the two
cases happen rarely. Recently, the Hamiltonian was em-
ployed to study the chaotic collision between three bright
solitons of Eq. �3� in the context of Bose-Einstein condensa-
tion, where the numerical results from the effective Hamil-
tonian agrees well with direct numerical simulations of the
Gross-Pitaevskii equation �30�. In this paper, we introduce a
Hamiltonian for the center-of-mass motion of an arbitrary
number of bright solitons in the framework of Eq. �3� as

H = �
i=1

N � Pi
2

2	i
+

	iKQi
2

2
� − �

1
i�j
N

cos���ij�

�2	i	 j�	i + 	 j�sech2� 2	i	 j

	i + 	 j
�Qi − Qj�� , �9�

where Pi and Qi are, respectively, the the momentum and
center of mass of the ith soliton, and ��ij is the initial phase
difference between the ith and jth solitons, with ��ij =0 and
� corresponding to the in-phase and out-phase collisions be-
tween the ith and jth solitons, respectively.

Now we consider the interaction of two identical solitons,
namely, 	1=	2=	. From the Hamiltonian �9�, it is readily
shown that the center-of-mass motion of each soliton is gov-
erned by the following equations:

Q1ZZ = − KQ1 − 8	3 cos����sech2�	�Q1 − Q2��

� tanh�	�Q1 − Q2�� ,

Q2ZZ = − KQ2 + 8	3 cos����sech2�	�Q1 − Q2��

� tanh�	�Q1 − Q2�� , �10�

where the first terms in the right-hand sides of Eq. �10� stand
for the linear restoring force introduced by the external po-
tential KX2 /2, which dominates at large relative distance;
while the second terms in the right-hand sides of Eq. �10�
represent the nonlinear interaction force, which work at in-
termediate relative distance. The nonlinear force is attractive
for in-phase collisions and repulsive for out-phase collisions.

Figure 1 shows two typical interaction sceneries of two
identical bright solitons, where the direct numerical simula-
tion results �black lines, contour plot of the amplitude� of Eq.
�3� agree well with the numerical integration results �red and
green lines, center of mass of each bright soliton� of Eq. �10�.

When the two solitons are in phase, they collide periodically
�Fig. 1�a��; when the two solitons are out of phase, they
propagate with constant distance when QiZZ�0� and QiZ�0�
are zero, where i=1,2 �Fig. 1�b��. This is due to the balance
between the linear restoring force and the nonlinear repulsive
force.

The interaction scenario of two identical EQSSs will be
different when the lens-type and Husimi transformations as
well as the self-similar condition are taken into account.
Such a difference is caused by the transformation between Z
and z, X and x �31�. We first take the initial condition of Eq.
�1� as u�0,x�=U�0,X�exp�−ig�0�x2 /2� with U�0,X� being
the initial conditions used in Fig. 1�a�, and the gain param-
eter g is constant for the example. When g is a positive
constant, we have z=ln�2gZ+1� /2g, which implies that the
collision period gets shorter and shorter as z and g increase
�Fig. 2�. On the other hand, when g is a negative constant,
we have Z= �1−exp�−2�g�z�� /2�g�. Quite interestingly, the
new propagation distance Z now has an upper-bound value
1 /2�g�, which means that for some value of g, the periodic
collision will not appear. From Fig. 1�a� we see that the two
solitons collide at Z�8–9 for the first time and at Z
�25–26 for the second time, so the two corresponding
EQSSs collide only once when g=−0.03 and then separate
�Fig. 3�a��, this is because the upper-bound value is Zmax
�16.7, which is larger than 9 but smaller than 25; similarly,
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FIG. 1. �Color online� Evolution of the amplitude of U�Z ,X� for
�a� in-phase collision and �b� out-of-phase interaction of two
bright solitons. The initial velocity of bright solitons is zero;
the other parameters are 	=1, Q2�0�=−Q1�0�=2, and
K=8	3 sech2�2	Q1�0��tanh�2	Q1�0�� /Q1�0�.
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FIG. 2. �Color online� �a�, �b� Evolution of the amplitude of
u�z ,x� for the in-phase collision of two EQSSs. �c� Comparison
between the trajectory of center of mass between the direct numeri-
cal simulation of Eq. �1� �black lines� and Eq. �11� �colored lines�,
where the parameters are the same as those used in �b�. The inho-
mogeneity parameter f =g2−K exp�4gz�, gain parameters g are re-
spectively 0.05 and 0.08 for �a� and �b�, and the other parameters
are the same as in Fig. 1�a�.
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the two EQSSs collide once but now form a moleculelike
bound state when g=−0.057 such that Zmax�8.8 �Fig. 3�b��;
while when g=−0.08 such that Zmax=6.25, the two EQSSs
did not collide but separated �Fig. 3�c��. Note that the under-
lying dynamics for the formation of the moleculelike bound
state is that, when the original propagation distance z varies a
lot, the transformed propagation distance Z only changes a
little, and it happens to be in the region where two stationary
state solitons collide. To achieve this, the amplification pa-
rameter g should be negative; therefore, the formation of the
moleculelike bound state depends crucially on the phase-
front curvature, but not the initial phase-front curvature �also
known as chirp in the context of temporal optics �9��. When
U�0,X� is taken as the initial condition used in Fig. 1�b�, the
results are quite simple: the two corresponding EQSSs either
approach each other when g is positive or separate when g is
negative �Fig. 4�. For other forms of amplification param-
eters and corresponding inhomogeneity parameters, similar
situations will happen.

To further understand the interaction dynamics of two
identical EQSSs, we present here the governing equation for

their centers of mass x1 and x2 in the original coordinates x
and z �while the changes of amplitudes and widths are given
by the lens-type transformation�:

x1zz = f�z�x1 −
8	3

��z�3 sech2�	�x1 − x2�
��z�

�
� tanh�	�x1 − x2�

��z�
�cos���� ,

x2zz = f�z�x2 +
8	3

��z�3 sech2�	�x1 − x2�
��z�

�
� tanh�	�x1 − x2�

��z�
�cos���� . �11�

Such an equation is obtained by substituting the coordinate
transformation used in the lens-type transformation into Eq.
�10� and considering the fact that x0=Q0�. It should be noted
that the initial velocity of each similariton is xiz�0�
=QiZ�0� /�−Qi�0�g�. The validity of this equation has been
confirmed in Figs. 2–4, where one can clearly find that the
numerical results �colored lines� of Eq. �11� agree well with
the direct numerical simulations of Eq. �1�, except for the
situation when the two bright similaritons collide �Fig. 2�c��.
This is caused by the numerical error in determining the
center of mass of two sech-type similaritons from the direct
numerical simulation data of Eq. �1� when their profiles are
almost overlapped.

Obviously, the above analysis can be easily extended to
study the interaction dynamics of multiple EQSSs. Specifi-
cally, when the EQSSs have the same amplitude and width,
their center-of-mass motion can be simply given:

xizz = f�z�xi −
8	3

��z�3�
i�j

sech2�	�xi − xj�
��z�

�
� tanh�	�xi − xj�

��z�
�cos���ij� , �12�

where i=1,2 , . . . ,N is the EQSS index, with N being the
total number of EQSSs.

Figure 5 shows the trajectory of three EQSSs with the
initial condition u�0,x�=�i

32 sech�2�x+xi��exp�i�i�, where
the numerical results �color lines� of Eq. �12� agree well with
the direct numerical simulation �black lines� of Eq. �1�. Note
that, unlike the interaction of two EQSSs, where their center-
of-mass motions are regular, the interaction of multiple
EQSSs could lead to the emergence of chaos �30�. Chaos is a
fascinating character of nonlinear systems. In nonlinear op-
tics, chaos has also been reported in the coupled NLSE for
the collision of vector solitons �32� and in massive multi-
channel optical fiber communication systems with the effect
of delayed Raman response �33�. Here the presence of f�z�
and ��z� in Eq. �12�, as well as the relative phase difference,
provide a method to control the chaotic behavior of multiple
EQSSs. For example, when three identical EQSSs are ini-
tially located at Q, 0, −Q with initial phase 0, �, 0 and K
=8	3�sech2�	Q�tanh�	Q�−sech2�2	Q�tanh�2	Q�� /Q, three
EQSS bound states could emerge. On the other hand, since

(c)

−10 0 10

5

10

15

20

25

30

35

Spatial Coordinate x

(b)

−10 0 10

5

10

15

20

25

30

35

P
ro

pa
ga

tio
n

D
is

ta
nc

e
z

(a)

−10 0 10
0

5

10

15

20

25

30

35

40

FIG. 3. �Color online� Evolution of the amplitude of u�z ,x� for
the in-phase interaction of two EQSSs. The inhomogeneity param-
eter f =g2−K exp�4gz�, gain parameters g are respectively −0.03,
−0.057, and −0.08 for �a�, �b�, and �c�, and the other parameters are
the same as in Fig. 1�a�.
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the chaotic behavior stems from periodic collisions, we can
choose negative g and corresponding f to control the colli-
sion times of the multiple EQSSs, as demonstrated in Fig.
3�c�.

B. Interference of Gaussian-type similaritons

Second, when the initial power of the optical beam is
weak such that the nonlinearity is negligible, the stationary
state solution of Eq. �3� can be well described by the
Hermite-Gaussian function. Here we consider only the
Gaussian function, since other high-order stationary solu-
tions can be handled in the same way:

U0�Z,X� = A0 exp�−
X2

2W0
2 − i�Z� , �13�

where W0 is the effective beamwidth at equilibrium, satisfy-
ing K=1 /W0

4, and �=1 /2W0
2 is the propagation constant.

When the effective beamwidth strays from the equilib-
rium value W0, or the Gaussian beam has initial phase-front
curvature, the general self-similar Gaussian beam of Eq. �3�
can be given:

U�Z,X� = A exp�−
X2

2W2�expi�WZ

2W
X2 − �

0

Z 1

W2dZ�� .

�14�

Here the effective beamwidth is W=W0+Wp, where the pe-
riodically changing width Wp is determined by WpZZ
=4KWp �34�, and the amplitude of the Gaussian beam A
satisfies the conservation law of total beam energy as P
=	�A2W.

Therefore, Eq. �14�, the lens-type transformation, self-
similar condition, and Husimi transformation describe the
exact self-similar evolution of a Gaussian beam of the origi-
nal equation �1�. Note that the effective beamwidth of the

EQSS is now proportional to exp�
0
zg�z��dz��W�Z�. Since in

the low-intensity approximation the NLSE �3� is approxi-
mately linear, the interaction of two EQSSs is quite simple:
their center-of-mass motion is determined by xizz= fxi, and
their effective beamwidth varies as Wi0�+wi, with wi deter-
mined by wizz=4fwi; when they collide, strong interference
structures appear �35�. One can see that there are no major
difference between the self-focusing and self-defocusing
nonlinearity �Fig. 6�, since for the Gaussian-type similaritons
both the focusing and defocusing nonlinearity are negligible.

C. Interaction of tanh-type similaritons on a compact
parabolic background

Finally, when the initial power of the optical beam is
large, nonlinearity is self-defocusing ��=−1� and the station-
ary state solution of Eq. �3� can be described by either the
compact parabolic solution �20�

U0�Z,X� = A0	1 −
X2

W0
2 exp�i�0Z� �15�

or the dark soliton solution on the compact parabolic back-
ground U0�Z ,X�,

Ud�Z,X� = U0�Z,X�tanh�AX� , �16�

at �X�
W0=	2�0 /K and U�Z ,X�=0 otherwise, where A0
=	�0, and the propagation constant �0 is related to the total
beam energy as P=	32�0

3 /9K.
Therefore Eq. �15� or Eq. �16�, together with the lens-type

transformation, self-similar condition, and Husimi transfor-
mation, describe the exact self-similar evolution of a para-
bolic beam or dark soliton on the compact parabolic back-
ground of the original equation �1�. It is readily shown that
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FIG. 6. �Color online� In-phase interference of two Gaussian
EQSSs. The inhomogeneity parameter is f =g2−K exp�4gz� with
the gain parameter g being −0.02 for �a� and �c� and 0.02 for �b� and
�d�. The nonlinearity is self-focusing in �a� and �b� and self-
defocusing in �c� and �d�. The initial positions of the EQSSs are −5
and 5, A�0�=0.1, W�0�=K=1, and WZ�0�=1.
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the amplitude and effective beamwidth of one compact para-
bolic similariton are proportional to exp�
0

zg�z��dz�� and
exp�
0

z −g�z��dz��, respectively. However, the interaction of
two parabolic EQSSs is much more complicated than that of
Gaussian EQSSs, where the governing equations are ap-
proximately linear. Numerical simulations show that, when
the two parabolic EQSSs are separated by a distance much
larger than their widths, their interaction scenario can be ap-
proximated by their linear superposition for the first several
collision periods, since the nonlinearity does not have much
time to convert the interference pattern to dark solitons. On
the contrary, when their relative distance is much smaller
than their width, their strong interaction will quickly lead to
the formation of dark solitons. Here we consider the special
case that the initial condition of Eq. �3� takes the form

U�0,X� = U0�0,X�tanh�A0�X − Q1��tanh�A0�X − Q2�� ,

�17�

to study the interaction of two dark solitons on a compact
parabolic background.

It is well known that, when there is only one dark soliton
on a compact parabolic background, that is,

U = U0�cos��tanh�A0 cos���X − Q�� + i sin��� ,

�18�

the center-of-mass motion of the dark soliton is determined
by QZZ+KQ /2=0 and QZ=A0 sin�� with ��
� /2, pro-
vided that the oscillation amplitude max�Q� is much smaller
than the width of the parabolic region �36�. That is, the dark
soliton behaviors as a quasiparticle of mass 2, oscillating on
a compact parabolic background; when taking into account
their interactions, we suppose that the interaction forces,
which are repulsive, have the same expression as that
for bright solitons �9�. Therefore, in the small-oscillation-

amplitude approximation where Q1 ,Q2�W0, the governing
equations for the centers of mass of the two dark solitons are

Q1ZZ = −
K

2
Q1 + 2A0

3 sech2�A0�Q1 − Q2��tanh�A0�Q1 − Q2�� ,

Q2ZZ = −
K

2
Q2 + 2A0

3 sech2�A0�Q2 − Q1��tanh�A0�Q2 − Q1�� ,

�19�

while the initial condition �17� evolves as U�Z ,X�
=U0�i=1

2 �cos�i�tanh�A0 cos�i��X−Qi��+ i sin�i��, with
sin�i�=QiZ /A0 and �i�
� /2.

As for the interaction of N bright solitons, we can get the
governing equation for the center-of-mass motion of N dark
solitons on a self-similar compact parabolic background in
the original spatial and temporal coordinates x and z:

xizz =
f�z�
2

xi +
2A0

3

��z�3�
i�j

sech2�A0�xi − xj�
��z�

�
� tanh�A0�xi − xj�

��z�
� , �20�

where xi should satisfy the small-oscillation-amplitude ap-
proximation xi�W0�.

The validity of Eq. �20� has been confirmed by numerical
simulations �Figs. 7 and 8�, provided that the initial dark
solitons do not overlap too much. From the numerical simu-
lations, we found that the amplitude and width of the com-
pact parabolic background are proportional to
exp�
0

zg�z��dz�� and exp�
0
z −g�z��dz��, respectively, while

the depth �minimum value of the intensity� and the effective
beamwidth of the each dark soliton are proportional to
�C /��2 and � /C, respectively, where C=cos�i�
=	1− �xiz�+xig��2 /A0

2, provided that the dark similaritons do
not overlap too much. It is quite interesting that, as one can
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FIG. 7. �Color online� Interaction of two dark solitons on the
self-similar compact parabolic background. The inhomogeneity pa-
rameter is f =g2−K exp�4gz� with the gain parameter g being 0 for
�a�, 0.02 for �b�, and −0.02 for �c�. The initial positions of the dark
solitons are −1 and 1, A0=3, and W0=15.

FIG. 8. �Color online� Interaction of three dark solitons on a
compact parabolic background: �a� amplitude and �b� trajectory.
The inhomogeneity parameter is f =−K, and the gain parameter is
g=0. The initial positions of the dark solitons are −2, −1, and 3,
A0=3, and W0=15.
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see from Eq. �19�, the repulsive interaction force between
dark solitons first increases as the relative distance �say,
�Q1−Q2�� decreases, and then decreases to zero as the rela-
tive distance approaches zero. This is not physical since the
repulsion should be increasing as the relative distance de-
creases. However, we can see in Fig. 8�b� that, even when
the relative distances of dark solitons are very small, their
trajectories obtained from Eq. �19� agree well with the direct
numerical simulation of Eq. �1�. This needs further investi-
gation. Additional numerical simulations show that the inter-
action forces lead to chaotic behavior of multiple dark soli-
tons propagating on a self-similar compact parabolic ground,
like that of the bright similaritons.

IV. CONCLUSION

In conclusion, we have obtained the self-similar evolution
of optical beams inside the nonlinear graded-index wave-
guide amplifier. We have found that, under certain condi-
tions, the optical similaritons can be described by the bright

soliton solution, Hermite-Gaussian function, and dark soliton
solution on a compact parabolic ground. The evolutions of
the amplitudes and widths of exact optical similaritons are
given by the lens-type transformation, while their center-of-
mass motion is determined by approximate but highly accu-
rate analytical methods. Specifically, we have investigated
the interaction of two identical bright similaritons in detail,
and explained why they can form a moleculelike bound state.
We hope that our results will be very useful in initiating
experimental verification.
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