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Controlling quasibound states in a one-dimensional continuum
through an electromagnetically-induced-transparency mechanism
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We study the coherent scattering process of a single photon confined in an one-dimensional (1D) coupled
cavity-array, where a A-type three-level atom is placed inside one of the cavities in the array and behaves as
a functional quantum node (FQN). We show that, through the electromagnetically-induced-transparency
mechanism, the A-type FQN bears complete control over the reflection and transmission of the incident photon
along the cavity array. We also demonstrate the emergence of a quasibound state of the single photon inside a
secondary cavity constructed by two distant FQN’s as two end mirrors, from which we are motivated to design
an all-optical single photon storage device of quantum coherence.
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I. INTRODUCTION

In recent years, many efforts have been exerted to imple-
ment all-optical quantum devices [1-4] that can coherently
control photons through photons [5-9]. This application-
oriented pursuit requires the possible existence of a strong
and controllable photon-photon interaction. From the view of
modern physics, photons do not couple to each other directly
through fundamental electromagnetic interactions; however,
people recognized that two photons interact indirectly via
nonlinear media [10-14]. Such nonlinear interactions are
usually obtained through high-order perturbation theories
and hence cannot be arbitrarily manipulated according to
one’s will. Nevertheless, inside some artificial medium, the
transport of photons can be well controlled by an additional
intervening classical field [1].

In this paper, we revisit this problem of photon transpor-
tation under a coherent architecture, based on the theoretical
approach we have developed in Ref. [15]. We propose that a
coupled cavity-array, regarded as a one-dimensional (1D)
continuum, provides a transport channel to an incident single
photon. Placed inside one of the cavities, a A-type three-
level atom can either grant or block the path of the single
photon by the atom’s electromagnetically-induced-
transparency (EIT) effect. This atom can essentially be re-
garded as a functional quantum node (FQN). In fact, a simi-
lar mechanism has been used to build the so-called single-
photon transistor, analogous to an electronic transistor in
which an atom plays the role of the gate through its absorp-
tion and emission of photons to-and-fro a channel [2].

In comparison with the design of the “single-photon tran-
sistor,” in which the photon travels continuously through a
fiber waveguide, our cavity array lets the photon travel dis-
cretely through the channel by locally creating or annihilat-
ing a photon between its cavities. We hence consider the
coherent scattering process of the photon with the foremen-
tioned FQN in the discrete coordinate representation. Our
approach is then a generalization of the 1D process where a
photon is scattered by the J-potential setup by a FQN
through its EIT effect into the discrete space. Such an ap-
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proach raises a richer spectrum structure indicated by its
nonlinear dispersion relation resulting from the tight-binding
intercavity coupling, as opposed to the usual linear disper-
sion relations. Because of the unusual dispersion relation, we
develop an approach for the transport of the single photon,
which is different from the effective field approach [16] nor-
mally adopted; yet the high energy limit of our setup can
cover the main results of the theoretical approaches of simi-
lar single-photon transistor designs [16—18].

We generalize the discrete scattering method recently pro-
posed [15] and calculate the reflection and the transmission
coefficients of the single-photon transport as functions of
both the Rabi frequency and the level spacing between the
excited state and the metastable state of the FQN. The reflec-
tion and the transmission spectra of the photon are depicted
by general line shapes whose ranges cover both the high-
energy end at the Breit-Wigner limit and the low-energy end
at the Fano-Feshbach limit. As emphasized, it is the classical
field that controls the system to reach such high-energy and
low-energy limits. Our derivations show that the A-type
FQN can behave as a perfect mirror to totally reflect the
incident photon when the Rabi frequency matches the fre-
quency of the controlling classical field. The behavior of the
FQN has suggested a basic mechanism to implement all-
optical control for single-photon transports and provides the
ground for a photon storage device through controllable qua-
sibound states, which are defined in Refs. [19,20], inside a
secondary cavity braced by two distant FQN’s.

The rest of the paper is organized as follows. In Sec. II,
we present the model Hamiltonian for a single photon
scattered by a A-type FQN. In Sec. III, we derive the scat-
tering equation for the transport of the single photon and
demonstrate the somewhat equivalent role played by a
A-type FQN and two two-level FQN’s at some particular
positions. In Sec. IV, the reflection and the transmission co-
efficients are derived to find the conditions for perfect reflec-
tion and transmission; the spectrum lineshapes at high and
low energy limits are also calculated. In Sec. V, we illustrate
the mechanism we design for photon storage. The conclusion
is given in Sec. VL
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FIG. 1. (Color online) Schematic of the model setup. (a) The 1D
coupled cavity array with one deposited A-type atom. (b) The in-
ternal structure of the A-type atom along with its coupling light
fields, where the red curvy line denotes the quantum light field
propagating in the cavity-array and the red arrow denotes the clas-
sical light field. (c) The cavity-array with two A-type atoms depos-
ited at different sites, which forms a secondary cavity.

II. MODEL SETUP

We consider a 1D coupled cavity array, in which the
transport of a single photon is described by a bosonic tight
binding model. A A-type three-level atom, whose ground
state, metastable state and excited state are denoted as |g),
|a), and |e>, respectively, is placed in one of the cavities. A
strong classical field with frequency . matches to the
ley—|a) transition, while the photon, considered a weak
quantum radiation field and traversing in the cavity array
with frequency wp, matches the |e) — |g) transition. The clas-
sical field as the control and the quantum field as the probe
dress the three-level atom into an EIT medium. The system
and the detailed structure of the EIT medium are shown in
Figs. 1(a) and 1(b), respectively.

The total Hamiltonian

H=H,+H,+H, (1)

contains three parts, describing in order: the propagation of
the photon, the free A-type three-level atom, and the control-
ling couplings

H,=j 2 [wb]b;—1(bb;,, +H.c)], (2a)

H, = we)e| + w,la)al, (2b)

H,=Q(e7ca)(e| + H.c.) + g(bj|g)e| +Hc), (2¢)

where b;- is the creation operator of photon at site j with @
the cavity field frequency and ¢ the hopping coefficient; w,
and w, are the energy level spacings of the metastable state
and the excited state, respectively; () is the Rabi frequency
due to the control field and g the coupling constant to the
probe field.

We first consider the scattering process in a ‘“rotating”
frame of reference, which is defined by a unitary transforma-
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tion U=exp(—iwc|a)(alt). Then the original Hamiltonian is
changed into a time independent one as

H'=UHU-iU'9U=H,+H,+H,, (3)

where, corresponding to renomalized A-type atom and con-
trolling interaction, respectively,

H = w,e)e| + Ala)a

, (4a)

H' = Q(a)e| + He) + g(bilg)e| +He).  (4b)

where A=w,—w is frequency detuning between the meta-
stable state and the classical light field or the model’s control
parameter in the EIT mechanism.

Our setup can be physically implemented in two ways.
One is to place artificial A-type atoms in the 1D defect cavi-
ties of a 2D optical crystals [8]. The other is to use a 1D
superconducting transmission line of resonators controlled
by a three-level Josephson junction. Both the optical crystal
line cavity and the superconducting transmission-line resona-
tors provide the 1D continuum for coherent transport of pho-
tons. The controller parts are implemented by an external
classical light field in the case of a A atom and an external
magnetic field in the case of an artificial Josephson three-
level atom.

II1. DISCRETE SCATTERING BY THE THREE-LEVEL
FQN

To consider the 1D scattering problem for the above
model, we divide Hf=Hy,+H, into two parts where
Hy=H,+H, is the free energy part of the cavity-array and
the three-level atom, and H;=H_ is the controlling interac-
tion. Through controlling the Rabi frequency and the cavity
mode frequency of the classical field, we can adjust the re-
flection and the transmission of light through the atom and
thus manipulate the propagation of the single photon in the
1D continuum.

The single photon process defines a conversation rule of
total occupation number (photons in the cavities plus the
excitations of the atom). Written in the tensor product space,
this occupation number operator reads
+0,a){0,a| +

0,e)0,e|=1, (5)

J

which commutes with the total Hamiltonian. In the above
identity, |1;,g) represents the state in which one photon oc-
cupies the site j while all other sites i with i#j have no
photon and the atom is at ground state; |0,e) and |0,a) rep-
resent the states in which no photon exists in the cavity-array
while the atom is promoted to the excited state and the meta-
stable state, respectively. We hence find an invariant sub-
space spanned by the stationary eigenvectors

|E)=j 2 u(i)|1;,8) +u,

where u(j), u,, u, denotes the probability amplitudes for
each state accordingly.

The eigenequation H|E)=E|E) results in the system of
equations

0,a) +u,|0,e), (6)
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(E-ou(j)=—tu(G+1)—rtu(j - l)+gue5j‘0, (7a)
(E - we)ue = gu(O) + Qua’ (7b)

(E-Au,=Qu,, (7¢)

about the probability amplitudes. By eliminating the ampli-
tudes for the atom’s excited state and metastable state, we
obtain the discrete scattering equation for the amplitude of
the single photon

[E-w=-V()u()=-mu(+1)-mu(-1),  (8)
where
g (E-A)
(E- w)(E-A)-Q?

V(j) = 0j0=V5j0 )
is the o-type effective potential determined by the internal
structure of the A-type atom and V indicates the magnitude
of the potential.

It should be pointed out that the effective potential V(j) is
actually dependent on the eigenenergy E. Or, inversely, the
energy E of the incident photon indirectly determine the
magnitude of the effective potential and can thus render the
effective potential smoothly from a barrier to a well follow-
ing its variation. Although this scattering potential is not en-
ergy independent, we can still apply the time-independent
scattering theory in the coordinate space for some certain
energy of the incident photon.

We are interested in the conditions when the total reflec-
tion or the total transmission of the photon controlled by an
external classical field occur. Under such circumstances, the
atom behaves as a single photon switch. When we apply a
classical field with a matching frequency, the EIT effect oc-
curs, there is no photon transport in and out of the cavity
array. The physical property of the photon transport is totally
contained in V(j). Its magnitude V can be rewritten as

V=g2( 4 b ) (10)

+
E-w, E-ow_
where the two peaks of maximum magnitude are defined by
the two resonant frequencies

+A
W+ = o T u (11)
2
and the corresponding amplitudes
1
A=E(1+V), (12a)
1
B=—(1-v). (12b)
2
In the above identities
—A\?
= sﬂ+<w3 ) (13)

denotes the energy splitting between the two resonant fre-
quencies and
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FIG. 2. (Color online) Schematic diagram of the potential,
where we apply two decay rates in order to make the values at
resonant frequencies finite.

y=— (14)

the amplitude difference between the two peaks. The abso-
lute value of the potential is plotted in Fig. 2, which explic-
itly shows the two peaks at two different values of energy E.
In order to make the potential finite, we have phenomeno-
logically introduced two additional decay rates I" and 7y for
the metastable and the excited states, respectively, of the
atom.
The full widths at half maximum are

r

Fi=—"2-(C-¢ (150
r

Fo=— T4 (=72, (15b)

which is derived from the first order Taylor’s expansion by
assuming large quality factors I'/ w, and y/A.

It is obvious that the scattering of the photon by the
A-type three-level atomic FQN can be regarded as scattering
by two two-level FQN’s at the same position. This fact can
be seen from the detailed calculation about the transmission
and reflection by two-level FQN’s in Ref. [15]. The main
conclusion is that the FQN play the same role as that of a §
potential in the 1D scattering problem. Tuning the FQN
properly can establish an infinite potential barrier to totally
reflect the incident single photon. The detailed discussions
are given in the next section.

IV. CONTROLLABLE REFLECTION AND TRANSMISSION
A. The tunable double peak

For the coherent transport of a single photon in the 1D
continuum, the scattering equation

(E-ou(j)=—tu(j+1)—tu(j-1) (16)
for j # 0 assumes a usual solution
(=te e <0, (7
= se” M| j>0,

where r and s are the reflection and the transmission coeffi-
cients, respectively. The cavity lattice constant is normalized
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FIG. 3. (Color online) Reflection coefficients vs k and &;. (a)
and (b) is plotted versus momentum k of incident photon, and (c)
and (d) is plotted versus energy g;. Here the parameters in our setup
is chosen as (1) t=2, w=1, w,=1, A=0, Q=1 (all is in units of
coupling constant g) for (a) and (¢); (2) =1, w=1, w,=2, A=0,
0=0.75 (all is in units of coupling constant g) for (b) and (d).

to 1. Apparently, the energy E of the incident photon obeys
the dispersion relation

E=w-2tcos(k), (18)

dependent on the momentum k the of incident photon.
The continuous condition u(0*)=u(0") together with scat-
tering equation at the zeroth site

[E- - V]u(0)=—rtu(1) — tu(-1) (19)
determines the reflection coefficient

Vv

S A 20
"= dirsin(kl) - v (20)

and the transmission coefficient s=1+r.

The reflection coefficient for single photon transport is
plotted in Fig. 3. The reflection coefficient is plotted against
the momentum & of the incident photon in Figs. 3(a) and
3(b), and against the energy e;=E(k)—A in Figs. 3(c) and
3(d). Obviously, there are rich line shapes beyond the con-
ventional Breit-Wigner and Fano-Feshbach types.

For a single incident photon with a definite momentum,
the potential V(j) determines all the properties of a scattering
process. The potential is only located at the zeroth site where
the A-type atom is placed. The nontrivial cases

0, perfect transmission,
r= (21)

—1, perfect reflection,

occurs when the potential V(j) takes special values. The ze-
ros of V(j) correspond to perfect transmission, and the sin-
gularities of V(j) correspond to perfect reflection. Therefore,
we can control reflection and transmission by tuning the
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FIG. 4. (Color online) 3D plot of reflection coefficients vs Rabi
frequency () and energy level spacing of classical light field w,
(both Q) and w is in units of coupling constant g).

Rabi frequency () and the control field frequency w¢. Similar
to the phenomenon of the negative differential electric resis-
tance in an electronic transistor, we observe here a “negative
differential photonic resistance.” Following this comparison,
we have demonstrated an all-optical device.

From Eq. (9), the energy E of the single photon at perfect
transmission, i.e., V=0, satisfies

E-A=0, (22)

which is exactly the two-photon resonant condition. The
photons scattered from the two potential peaks interfere co-
herently such that the back traveling photon is eliminated
while the forward traveling photon is constructed, which
gives perfect transmission to the incident photon. This phe-
nomenon never occurs in 1D scattering problem with a two-
level FQN in Ref. [15] because of the lack of the EIT mecha-
nism in a two-level atom. The case of ideal transparency can
be easily found in Fig. 3, where in the vicinity of ;=0 the
original single peak in Ref. [15] splits into two peaks. The
splitting position can be tuned by varying the Rabi frequency
of the classical control field.

The other nontrivial case is the perfect reflection, where
the three-level atom acts as a perfect “mirror.” The perfect
reflection caused by the singularities of the potential V takes
place only when the energy of the incident photon resonates
with one of the internal level spacings of the three-level
atom.

In Fig. 4, we can see how the reflection coefficient varies
with the Rabi frequency (), as the x axis, and with the fre-
quency . of the external control field, as the y axis. The
existence of the double peaks in the plot shows that when
fixing one of the parameters () or w., we can always fine
tune the other parameter to reach perfect reflection or trans-
mission. The reason why there always exist two peaks for
perfect reflection is that the )* term in the reflection coeffi-
cient corresponds to two values, ) and —(), of the Rabi
frequency.

The high- and low-energy limits are obtained in the vicin-
ity of k=7/2 and 0, respectively. The reflection coefficients
become (4 and [ index the high- and low-energy limits, re-
spectively)

(k— m/2),

I ViQit=v,),
"{ (k—0), (23)

V)/(2itk-V),
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FIG. 5. (Color online) The reflection coefficients as functions of
g,, are plotted under (a) the high-energy limit and (b) the low-
energy limit. None of the lineshapes are simple Breit-Wigner and
Fano-Feshbach types.

€,
o > 18

where the corresponding potentials in the high- and low-
energy limits equal
2
Sm
V, = 8 .
(Ag, +A-w,)e,—Q

(m=h,l). (24)

The reflection coefficient is plotted against the energy
g,, in Fig. 5: (a) in the high-energy limit as a function of g,
where the energy obeys the linear dispersion relation
e,=(w—tm—A)+2tk and (b) in the low-energy limit as a
function of &; where the energy obeys the quadratic disper-
sion relation &;=(w—2¢t—A)+1k>. Obviously, the line shapes
are different from the conventional Breit-Wigner and Fano-
Feshbach types.

B. Equivalence to a pair of two-level atoms

To show explicitly that the three-level FQN is equivalent
to a pair of two-level atoms placed apart in the cavity-array,
we consider the scattering problem in the 1D continuum with
one two-level atom deposited at the zeroth site and the other
at the Dth site. By a similar approach in discrete coordinate
representation used in Ref. [15], we obtain the reflection and
the transmission coefficients

_ Vlfz(k)exp(iZkD) -V Vo + Vy2ti sink

, ., (25a)
= fitk)f2(k)exp(i2kD) + V, V,
2t sin k)? exp(i2kD
e (2t sin k) e)fp(z ) , (25b)
= fitk)f2(k)exp(i2kD) + V, V,
where the transport functions are defined
Sulk)=2sisink+V,, (n=1,2) (26)
with the potentials
&
V= —" =1,2). 27
= m=12) 27)

m

The reflection and the transmission coefficients in Egs.
(25a) and (25b) are identical to the ones in our setup, in
addition to the additional phase factor exp(i2kD) determined
by the momentum k of the incident photon and the distance
D between the two FQN’s. We observe that the effect of D is
totally contained in this phase factor, which equals the phase
difference between the incident wave and the reflected wave
from the Dth site. The two effective potentials in Eq. (27)
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(a) (b)

FIG. 6. (Color online) (a) The reflection and the transmission
coefficients vs k for two distant two-level FQN’s. (b) The reflection
and the transmission coefficients vs D for two distant two-level
FQNs. Blue solid and red dashed line represent reflection and trans-
mission coefficients, respectively.

together play the same role as the complex potential in Eq.
(9). If we treat the two atoms with the cavities in between as
an extended “FQN,” then for a certain momentum k of inci-
dent photon, the phase factor becomes exp(i2kD)=1 and this
extended “FQN” is equivalent to a A-type atom in our setup.
For a fixed distance D, the transmission and the reflection
coefficients are plotted in Fig. 6(a). In this setup, the perfect
reflection can be attained when both the effective potentials
V| and V, tend to infinity. However, the existence of perfect
transmission is not guaranteed. Not only the two-photon
resonance condition but also the distance constraint
exp(i2kD)=1 must be met to attain perfect transmission. For
a fixed momentum k, the periodic variance of the transmis-
sion and the reflection coefficients is shown in Fig. 6(b).

C. Cavity decay and atomic decay

The material and devices imperfections result in unad-
voidable energy relaxation and dephasing of devices. Such a
decoherence effect results in the inelastic scattering of a
single photon and reduce the switching efficiency.

For atomic decay, it can be simply demonstrated by phe-
nomenologically introducing two additional atomic decay
rates I" and vy for the metastable and the excited states, re-
spectively, of the atom. According to Egs. (15a) and (15b),
the maximum value of effective potential is decreased to a
finite value, which implies that perfect reflection would not
be obtained anymore.

To derive the scattering property of the propagation of a
single photon with atomic decays I' and v, the frequencies
w, and A are substituted by w,—il" and A—i7y to phenomeno-
logically represent the atomic energy relaxation. The
straightforward calculation gives the reflection amplitude as

\%
re ot (28)
2it sin(kl) - V,
where
2E-A+i
v, g( iy) (29)

T (E-w,+D)E-A+iy) - Q2

and the corresponding transmission amplitude s=1+r. The
reflection coefficient for single photon transport with atomic
decay is plotted in Fig. 7(a).
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FIG. 7. (Color online) Reflection coefficients and the energy
loss ratio vs gy, respectively, in (a) and (b). Here the parameters in
our setup is chosen as t=2, w=1, w,=1, A=0, Q=1, y=1'=0.04 for
both (a) and (b) (all is in units of coupling constant g) (all is in units
of coupling constant g) for (b).

Obviously, the perfect transparency can not be obtained
even when the absolute value of effective potential is zero.
The maximun value of transmission coefficient is less than 1
as depicted in Fig. 7(a). At the meantime, the maximum
value of reflection coefficient depicted as peaks in Fig. 7(a)
are dramatically decreased. And the summation of reflection
coefficient and transmission coefficient is always less than 1,
which implies that the single photon undergo an inelastic
scattering process. This inelastic effect is plotted in Fig. 7(b).
The label of the y axis £=1—(|r|>+]t|?) represents the ratio of
loss energy after the inelastic scattering.

To depict the nonideal scattering process with various de-
coherences, we need to consider the coherent length (CL) of
the scattering process, and an infinite CL means an ideal
elastic scattering. Here, the CL can be regarded as the dis-
tance that the photon travels between the left side and the
right side of the scatterer (the three-level system). Actually,
to make sure that the scattering process can happen, it is
required that the photon leakage rate « for each resonator is
much smaller than the hopping constant, otherwise photons
will totally escape into the environment before encountering
the scatterer. Therefore, we think that the photon leakage rate
k defines the CL, which is roughly proportional to the prod-
uct of «~! and the group velocity of the photons. Moreover,
any additional change of the leakage rate, at the point where
the scatterer is located, will broaden the width of the line
shape at the resonance (i.e., there is a peak at the transition
energy).

To study this decoherence effect in detail, we need to use
a microscopic model where both the cavities and the three-
level system are coupled to the external environment. The
decoherence of every cavity and the three-level system
mainly results in the incoherent or dissipative propagation of
the incident photon. In such an approach, the decoherence or
dissipation can be divided into two categories according to
its contributions to the scattering process. One category con-
tains all the cavity decays, except the one of the cavity which
is directly coupled to the three-level system, since these reso-
nators contribute to the free propagation of the photon. This
trivial type of photon leakage rate in each cavity only affects
the coherent length of the scattering process. The other cat-
egory influencing the scattering process contains the decay
of the three-level system and the decay of the cavity directly
coupled to the two-level system. Because the energy of the
incident photon is not conservative before and after the scat-
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tering happens, the scattering is obviously inelastic. The in-
elastic scattering process would broaden the width of the line
shape. These different decoherence categories would reduce
the quantum switching efficiencies in different ways.

V. FORMING A SECONDARY CAVITY WITH TWO FQN’S

According to the results derived above, we now propose a
controllable secondary cavity architecture. We place two
A-type FQN’s at the zeroth site and the Dth site in the 1D
cavity-array [Fig. 1(c)]. These two FQN’s acting as & poten-
tials with tunable potential are controlled by external classi-
cal light fields. The most natural consideration is that there
exists a quasibound state between the two & potentials, which
can degenerate to become a bound state under some special
cases. In our setup, it is intuitive that the two A-type FQN’s
form a secondary cavity for single photon storage among the
regular cavities in the array. We can prove that only incident
photons of some particular momenta can be stored in this
secondary cavity.

The total Hamiltonian in the “rotating” frame of reference

H®=H,+H,+H, (30)

reads
H,=j 2 [wb]b;—t(bb;,, +H.c)], (31)
H,=1= 1,2 [w, e)el|;+ Ajfa)al], (32)

H.=1=1,2 2 [Q(|a)e|,+ H.c) + gi(bilg)el;+ Hee)],
(33)

where H,, describes the free energy of the photon, H/ the
potential energy of the two FQN’s with detunings
Aj=w,;—wc; (I=1 indicates the FQN at the zeroth sites
while /=2 that of the Dth site), and H C’ the interaction of the
FQN’s with the photon probe and the classical control fields.

Again, the energy eigenvectors can be expanded in the
basis of an invariant subspace in the form

|E)=j 2 u(j)bl0.g.8) +1=1.2 2 [u,

0,e,8)],
(34)

O,a,g}+ui_

where u(j) is the probability amplitude of the single photon
at the jth site. Following the same procedure as in the one
FQN case, we obtain the scattering equation of the probabil-
ity amplitudes

[E-w-1=1,22 V8 Ju(j) =—tu(j - 1) - tu(j + 1),

(35)
where the potentials at the two sites of FQN’s are
2
81 (E-A)
V= (1=1,2). (36)
U E- 0 )E-A)-(Q)

It should be noted that both the potentials act as & potentials,
between which a quasibound state can survive.
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The quasibound state can be considered the analytic con-
tinuation of a scattering state into the complex momentum
plane singular reflection and transmission coefficients. Ac-
cordingly, we first assume the scattering state to be

ekl 4 kil j <o,
I/t(]) = Sle_ikjl + rleikjl, 0 <] < D, (37)
se_ikﬂ, J > D’

where r and s, are the reflection and the transmission coef-
ficients at the zeroth site, whereas r; and s are those at the
Dth site. Since we are only interested in the effective behav-
ior of the secondary cavity as an intact storage device, the
intracavity analysis of wave transmission can be neglected.
That is, we are only concerned about the coefficients r and s
viewed from outside the secondary cavity, whose values are
the solution of the boundary value problem Eq. (37) and read

_ Vlfz(k)exp(leD) - Vl Vz + V22tl sin k
= [1(k)f2(k)exp(i2kD) + V, V,

. (38a)

_ (2tsink)* exp(i2kD)
= filk)fa(k)exp(i2kD) + V,V,

s (38b)

Except that the potentials V| and V, are defined as in Eq.
(36), the above expressions are identical to Egs. (25a) and
(25b), which leads to perfect transmission through the sec-
ondary cavity based on EIT mechanism.

The quasibound state then occurs when the denominators
of the two coefficients equal to zero, which corresponds to
the condition

£i2kD _ ViV,
(2ti sink+ V) ti sink+V,)’

(39)

from which the momentum k of a single photon surviving
between the potentials V; and V, is determined. The incident
photon corresponding to this intracavity photon has its mo-
mentum take imaginary values, which in turn leads to its
imaginary energy. The imaginary energy will result in a de-
cay of the wavefunction, which means the quasibound state
is a bound state with a small leakage at two ends. When
w>1, it is almost impossible for a single photon to propagate
in the channel and quasibound states are formed in the sec-
ondary cavity.

The most interesting quasi-bound state can be obtained
when both FQN’s are tuned to their resonant states, where

eI (40)

The above formula subjects the momentum of the trapped
photon to a quantized value

™
=—, 41
Y (41)

where n is an arbitrary integer. The corresponding bound
state is
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j<Qorj>D,

N 0’
”(J)‘{A sin(kj), 0<j<D, (42)

where A is the normalization constant. So the incident pho-
ton can be perfectly trapped between the two FQN’s, similar
to what happens in a single cavity. We hence name this setup
a perfect secondary cavity, which realizes a nondestructive
single photon storage.

Compared to the proposals of quantum memories based
on the dark state in the EIT effect, our secondary cavity setup
is much easier to implement. In the former, the dark state is
stationary and the classical field is adiabatically manipulated
to store information from the incident photon to the three-
level atom. Such a process should be regarded as a stationary
storage and demands highly precise control over the external
control field. Whereas, the secondary cavity proposed here is
dynamic and the control parameters, including the distance D
between the FQN’s, the Rabi frequency (2, and the frequency
wc of the external field, are all much easier to manipulate.
The storage process can be imagined as disposing two per-
fectly reflecting “mirrors” in the cavity array such that a
single photon originally traveling in the array is bounded in
between to become a standing wave. The releasing process is
to inversely remove these two reflecting “mirrors.”

VI. CONCLUSION

We have revisited the problem of single photon transport
in an 1D cavity array with a deposited three-level A-type
FQN and illustrated how the reflection and the transmission
coefficients rely on the Rabi frequency and the traveling fre-
quency of a classical control field external to the cavity array.
By tuning these two frequencies, the FQN can serve as a
perfect “mirror” or a transparent medium for an incident
photon. The appearance of line shapes different from the
conventional Breit-Wigner or Fano-Feshbach type was
shown to stem from a nonlinear dispersion relation and the
EIT mechanism in the setup.

The dissipation of cavities and atom are taken into ac-
count. The atomic decay is added phenomenologically to ex-
plain the single photon undergo an inelastic scattering pro-
cess. The cavities decay mainly determine the coherent
length, which limit the upper number of cavities.

Using this phenomenon, we have proposed a secondary
cavity between two FQN’s, in which a controllable quasi-
bound state can be formed, to coherently store a single pho-
ton. A perfect secondary cavity selects photons with mo-
menta being integral mutiples of a constant. The limiting
lossless case has also been presented to compare with the
usual photon storage using an EIT dark state.
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