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Based on the nonlinear coupling equations, the process of third-harmonic generation �THG� is investigated
theoretically in temporal and frequency domains and a set of analytical expressions is derived under the
plane-wave and pump undepletion approximations. The explicit formula characterizing the group-velocity-
matching relationship in the process of THG is obtained. The group-velocity-matching relationship appears to
be dependent on the pulse-duration ratio of fundamental �FH� to second-harmonic �SH� pulses. The THG
mixing process in KDP crystals with input Gaussian pulses is numerically simulated, and the obtained results
show that the conversion efficiency and conversion bandwidth can reach maximum when the formula is
satisfied �i.e., zero group-velocity mismatch�, and both will decrease rapidly when the formula is unsatisfied.
Numerical results confirm the validity of our formula. Furthermore, with the increasing of the pulse-duration
ratio of FH to SH pulses, the maximum bandwidth of generated TH pulses increases while maximum THG
conversion efficiency decreases.
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I. INTRODUCTION

Third-harmonic generation �THG� is a powerful technique
to produce widely tunable and high-energy ultrashort laser
pulses which have important applications in fields such as
laser spectroscopy, inertial confinement fusion �ICF� �1,2�,
photolithography, and medical and biological uses. With the
rapid development of ultrashort-pulse lasers in recent years,
THG is attracting increasing interest. Unfortunately, due to
the lack of adequate birefringence in nonlinear crystals, the
THG conversion efficiency and conversion bandwidth are
limited by the inevitable group-velocity mismatch �namely,
temporal walk-off� in the process of THG, especially in the
case of pulse duration of about 100 fs or shorter. Group-
velocity mismatch causes the input pulses and the growing
generated pulse to walk away from each other in a time
domain while they propagate in nonlinear crystals. Thus, it
leads to the generated pulse broadening, the spectral band-
width narrowing, and the conversion efficiency decreasing.

In order to increase conversion efficiency and maintain
the temporal shape of harmonic pulses as well as the spec-
trum in the THG process of ultrashort pulses, many specific
approaches were proposed and demonstrated. For example,
the so-called achromatic phase matching, which lets the
waves with different frequency components propagate with
their own phase-matching angles into the crystal by introduc-
ing angular dispersion, can satisfy the phase matching for the
entire frequency component. THG with cascading crystals
with opposite group-velocity walk-off can increase conver-
sion efficiency to some extent �3–10�. Although the ap-
proaches mentioned above were demonstrated successfully
to satisfy or compensate for the group-velocity mismatch in
broadband second-harmonic generation �SHG� �11–19�, they
are not suitable in broadband THG because the group-
velocity-matching �GVM� relationship is much more compli-

cated than that of SHG. As is well known, the perfect GVM
relationship in the SHG process is “�g1=�g2,” where �g1 and
�g2 are the group velocities of fundamental and second-
harmonic pulses, respectively. The GVM in this situation is
also called the spectral noncritical phase matching �15,16�.
Undoubtedly, the perfect GVM relationship in the THG pro-
cess is “�g1=�g2=�g3,” where �g1, �g2, and �g3 are the group
velocities of fundamental, second-harmonic, and third-
harmonic pulses, respectively. However, according to the
Sellmeier equations of various crystals �20�, it is nearly im-
possible to satisfy the perfect GVM relationship. Here, we
try to determine a proper GVM relationship of THG which
can reflect the intrinsic properties of group velocities among
three interacting waves.

In this paper, the temporal walk-off effect caused by
group-velocity mismatch in the process of broadband THG is
investigated in detail. Theoretical analyses of the nonlinear
coupling equations in the temporal or the frequency domains
are discussed in Sec. II. In Sec. III, the explicit formula char-
acterizing the GVM relationship of THG is derived for
Gaussian pulses. In Sec. IV, numerical simulation for verifi-
cation is presented. Finally, Sec. V concludes the paper.

II. THEORETICAL SOLUTIONS TO THE NONLINEAR
COUPLING EQUATIONS

The interacting waves in the THG process can be written
in the form

En�z,t� = 1
2An�z,t�exp�i�knz − �nt�� + c.c., �1�

where E1�z , t�, E2�z , t�, and E3�z , t� are the complex ampli-
tudes of fundamental, second-harmonic, and third-harmonic
pulses, respectively. Neglecting the effects of diffraction,
spatial walk-off, and third-order nonlinearities, etc., the non-
linear coupled amplitude equations describing the third-
harmonic generation under plane-wave approximation are
�21�*ysyang@nudt.edu.cn
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In the above equations, �n1= ��kn /����n
��gn

−1 is the first-
order group-velocity dispersion, and is equal to the inverse
group velocity of the nth wave. �n2= ��2kn /��2��n
�� /���1 /�gn� is the second-order group-velocity dispersion
�GVD�, �n is the linear loss term, and de is the nonlinear
optical coefficient. �k0=k�3

−k�1
−k�2

represents the original
phase mismatch at the center frequencies, which is zero in
the phase-matched case.

In order to solve the nonlinear coupled equations analyti-
cally, the pump undepletion is assumed �i.e., �A3��
� �A1�� , �A2��� which is satisfied usually due to the low THG
conversion efficiency of ultrashort pulses. In this case, Eqs.
�2� are simplified to be
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First, let us consider Eqs. �3a� and �3b�. By transforming
the coordinate �z , t� to the local coordinates �z ,T= t−z�11�
and �z ,T�= t−z�21�, and introducing normalized amplitudes
U1�z ,T�, U2�z ,T�� through the definition A1�z ,T�
=�I1e−�1zU1�z ,T�, A2�z ,T��=�I2e−�2zU2�z ,T��, where I1 and
I2 are the intensities of the input fundamental �FH� and
second-harmonic �SH� pulses, respectively, Eqs. �3a� and
�3b� are simplified to
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�z

+
i

2
�12
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�z
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Substituting the Fourier transformations of U1�z ,T� and
U2�z ,T�� into Eqs. �4�, they can be easily solved. The ampli-
tude expressions of FH and SH pulses in the temporal do-
main are as follows:

A1�z,T� = �I1e−�1zU1�z,T�
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A2�z,T�� = �I2e−�2z 1

2�
�

−�

� 	�
−�

�

U2�0,T��exp�i�T��dT�

	exp	 i

2
�22�

2z − i�T�
d� . �5b�

Similarly, the local coordinate �z ,
= t−z�31� and the am-
plitude W3�z ,
� defined by A3�z ,
�=e−�3zW3�z ,
� are intro-
duced into Eq. �3c� which includes the nonlinear interaction
term on the right-hand side. Then Eq. �3c� is simplified to
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i

2
�32

�2W3�z,
�
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2
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i�3de

n3c
A1�z,
�A2�z,
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where A1�z ,
� and A2�z ,
� can be obtained by substituting
T=
+zv1 and T�=
+zv2 into Eqs. �5a� and �5b�, respec-
tively. The v1=�31−�11, v2=�31−�21 are the so-called
group-velocity mismatches.

Substituting the Fourier transformation of W3�z ,
� �i.e.,

W̃3�z ,��=F�W3�z ,
��� into Eq. �6�, it becomes a nonhomo-
geneous differential equation in the frequency domain,

�W̃3�z,��
�z

=
i

2
�32�

2W̃3�z,�� + f̃�z,�� , �7�

where

f̃�z,�� =
i�3de

n3c
e�−i�k0z+�3z��

−�

�

�A1�z,
�A2�z,
��ei�
d
 .

�8�

Through the general solution to the nonhomogeneous differ-
ential equations, we can easily obtain the solution of Eq. �7�,

W̃3�z,�� =
i�3de

n3c
e�i/2��32�2z�

0

z �
−�

�

�A1��,
�A2��,
��ei�
d


	e�−i�k0+�3−�i/2��32�2��d� . �9�

Thus, the amplitude expression of TH pulses in the fre-
quency domain is

YANG et al. PHYSICAL REVIEW A 78, 053801 �2008�

053801-2
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Equations �5� and �10� are the general amplitude solutions to
the three-wave nonlinear coupling equations.

III. GROUP-VELOCITY-MATCHING RELATIONSHIP
IN THE CASE OF GAUSSIAN PULSES

Just from Eqs. �5� and �10� we cannot find any relation-
ship among group velocities of interacting waves; we need to
integrate Eqs. �5� and �10� to more explicit analytical expres-
sions for some specific cases. In this section, we consider a
simple case of Gaussian pulses for which the normalized
incident FH and SH fields are given by

U1�0,t� = exp	−
1 + iC1

2

t2

T1
2
 , �11a�

U2�0,t� = exp	−
1 + iC2

2

t2

T2
2
 , �11b�

where T1,2 are the half-widths at the 1 /e intensity, and C1,2
are the chirp parameters. �The subscripts 1 and 2 refer to FH
and SH pulses, respectively�.

Substituting Eqs. �11� into Eq. �5�, we obtain the propa-
gating FH and SH fields in the temporal domain at the length
of z in crystals, as follows:

A1�z,T� = �I1e−�1z T1
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2
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+zv2, the generated TH fields in the
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where x= b
a =

H1
2�1+iC2�

H2
2�1+iC1� is a parameter about pulse durations and chirp parameters of FH and SH pulses. Substituting Eq. �14� into

Eq. �13� and neglecting absorption, the generated TH fields in the frequency domain Ã3�z ,�� becomes
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where �k��� is the total phase mismatch of the THG process, which can be written as

�k��� = �k0 +
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1

2
�32�

2. �16�

If group velocities of FH and SH pulses are the same �accordingly v1=v2�, Ã3�z ,�� is
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If group velocities of FH and SH pulses are not the same, by substituting m=a 1
1+1/x �v1−v2�2 into Eq. �15�, Ã3�z ,�� becomes
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where the value of � is 1�2 �see the solution of the
integration �0

z exp�−ax2�dx�.
Equation �16� indicates that the total phase mismatch in-

cludes the original phase mismatch between center frequen-
cies and phase mismatches induced by group-velocity mis-
matches v1,2 and second-order GVD �32. Attention must be
drawn to the second term of Eq. �16�. It appears that if the
group-velocity mismatches v1,2 satisfy the equality v1+xv2

=0, then the total phase mismatch becomes 1
2�32�

2 and is
only affected by the second-order GVD of a generated TH
pulse for the phase-matched case ��k0=0�. Using the defini-
tion of v1,2 in Sec. II, the equality v1+xv2=0 becomes

1 + x

�g3
=

1

�g1
+

x

�g2
, �19�

which is the explicit formula characterizing the GVM rela-
tionship of THG in the case of Gaussian pulses.

According to Eq. �19�, we can find that the GVM relation-
ship of interacting waves in the THG process is strongly
dependent on the parameter x. For transform-limited pulses,
i.e., C1,2=0, if the second-order GVD of FH and SH pulses
�12 and �22 are negligible, the parameter x is approximately

equal to
T1

2

T2
2 , which is the square of the pulse duration ratio of

FH to SH pulses.
What is more interesting, the explicit GVM relationship

derived in the THG process is also suitable for the SHG
process. As in the SHG process �type-I SHG�, �g1, �g2 both
represent the group velocity of the FH pulse, �g3 represents
the group velocity of the SH pulse, and the ratio x is equal to
1, hence the GVM relationship in the SHG process becomes

2
�g3

= 1
�g1

+ 1
�g2

, i.e., �SH=�FH, which is the same as the results
mentioned in Refs. �15,16�.

In the next section, numerical simulation will be done to
verify the validity of the GVM relationship of THG and will
be compared with the above analytical results.

IV. NUMERICAL SIMULATION AND DISCUSSION

In order to check the validity of the GVM relationship of
THG �i.e., Eq. �19��, the mixing process of THG in type-II
KDP crystals is simulated based on the split-step Fourier-
transform approach and the fourth-order Runge-Kutta inte-
gral method. The input FH and SH fields adopt the following
Gaussian temporal profiles:

A1�t� = I1 exp	−
1 + iC1

2

t2

T1
2
 , �20a�

A2�t� = I2 exp	−
1 + iC2

2

t2

T2
2
 , �20b�

where chirp parameters C1,2 are both set to be zero and peak
intensities of FH and SH fields I1,2 are 1 GW /cm2 and I2
=2 GW /cm2, respectively. Under the pump undepletion ap-
proximation, crystal length LD is limited to be smaller than
the dispersion length of the TH pulse; here LD is selected to
be 2 mm. The time scale is set to be from −64T1 to 64T1 in
simulation. For simplicity, absorption and the second- or

higher-order GVD are assumed to be negligible.
We first investigate the dependence of THG conversion

efficiency on the group velocity of a generated TH pulse for

various pulse duration ratio x �i.e.,
T1

2

T2
2 �. In the numerical

simulations, the pulse duration of the FH pulse T1 is fixed to
be 200 fs, thus different pulse duration T2 of the SH pulse
can result in a different value of ratio x. At the center funda-
mental wavelength �1�=1053 nm, the group velocities of in-
put FH and SH pulses �g1 and �g2 are 2.017 95	108 m /s
and 1.940 15	108 m /s, respectively. Thus, at a fixed value
of ratio x, only a particular value of �g3 can satisfy Eq. �19�,
in which case the highest THG conversion efficiency and
broadest TH bandwidth can be obtained.

Figure 1 presents the curves of THG conversion effi-
ciency versus the group velocities of a generated TH pulse in
the case of a different ratio x. The THG conversion efficiency
is defined as �=

E3�

E1�+E2�
and each point in the curve is the

highest THG efficiency that can be obtained in a fixed status
�i.e., fixed �g1, �g2, and �g3�. Four curves in Fig. 1 are corre-

FIG. 1. THG conversion efficiency along with group velocity of
TH pulse in the case of different pulse-duration ratio x.

FIG. 2. Bandwidth of generated TH pulses along with group
velocity of TH pulse in the case of different pulse-duration ratio x.
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sponding to the value of ratio x to be 1 /2, 1, 2, and 3,
respectively. In Fig. 2, curves of bandwidth of output TH
pulses corresponding with conversion efficiency in Fig. 1
along with the group velocities of TH pulses are shown.

As shown in Figs. 1 and 2, the THG conversion efficiency
and bandwidth of TH pulses both can reach maximum at a
particular group velocity of the generated TH pulse, and both
fall down rapidly when it is away from that particular group
velocity. What is more important, with the increasing of
pulse-duration ratio x, the maximum bandwidth of generated
TH pulses will increase while the maximum THG conversion
efficiency will decrease exponentially. This result is consis-
tent with the qualitative conclusion made in Sec. III. Thus, in
practical cases, different demands for high conversion effi-
ciency or broad conversion bandwidth can be realized by
selecting a proper value of parameter x.

Furthermore, in order to confirm the explicit formula ex-
pressed by Eq. �19�, the theoretical data of group velocity of
TH pulses calculated by �19� and numerical data accessed
from Figs. 1 and 2 are listed and compared in Table I.

From Table I, we can find that the theoretical values of the
group velocity of TH pulses are very close to the numerical
ones, which confirms the validity of our formula describing
group-velocity matching of three-coupling waves. Let us fo-
cus on Eq. �19�; it is interesting that if the group velocities of
input FH and SH pulses are the same, then �g1=�g2=�g3,
which corresponds to the case of perfect group-velocity
matched. Otherwise, if �g1��g2, then

1 + x

�g1
=

1

�g1
+

x

�g1


1 + x

�g3
=

1

�g1
+

x

�g2


1

�g2
+

x

�g2

=
1 + x

�g2
�i.e.,�g1 � �g3 � �g2� �21�

or if �g1�g2, then

�g1  �g3  �g2. �22�

Both results indicate that the generated TH pulse should be
located between the FH and SH pulses through the whole
propagation in crystals so that the energy of different waves
can be coupled sufficiently and the group-velocity matching
of THG can be realized.

V. CONCLUSION

The temporal walk-off effect caused by group-velocity
mismatch in the process of broadband third-harmonic gen-
eration is investigated analytically and numerically. A set of
analytical expressions of interacting waves for the general
case is derived under the plane-wave and pump undepletion
approximations, and an explicit formula characterizing the
group-velocity-matching relationship in the process of THG
is obtained for Gaussian pulses. The THG mixing process
with Gaussian pulses input is numerically simulated in
type-II KDP crystals. Comparison between theoretical group
velocities of TH pulses calculated by our formula and nu-
merical ones appears that THG conversion efficiency and
bandwidth both can reach maximum when the formula is
satisfied and both fall down rapidly when it is not satisfied,
which confirms the validity of our formula. Meanwhile, with
the increasing of pulse-duration ratio x, the maximum band-
widths of generated TH pulses increase while the maximum
THG conversion efficiencies decrease.

This formula is useful for compensating for the group-
velocity mismatch in the process of ultrashort third-harmonic
generation such as finding nonlinear crystals with proper dis-
persive parameters and choosing effective group-velocity-
matching methods, etc.
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TABLE I. Comparison of theoretical and numerical data in the case of different pulse-duration ratio x.

Pulse-duration
ratio x=T1

2 :T2
2

Formula
1+x
�g3

= 1
�g1

+ x
�g2

Theoretical value
of �g3 �108 m /s�

Numerical value
of �g3 �108 m /s�

Maximum THG
efficiency �%�

Maximum
bandwidth �nm�

1 /2 3
�g3

= 2
�g1

+ 1
�g2

1.9913 1.9893 4.9 1.66

1 2
�g3

= 1
�g1

+ 1
�g2

1.9783 1.9783 3.7 1.91

2 3
�g3

= 1
�g1

+ 2
�g2

1.9654 1.9674 2.8 2.36

3 4
�g3

= 1
�g1

+ 3
�g2

1.9590 1.9610 2.4 2.72
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