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The problem with the construction of the Gross-Pitaevskii �GP� equation and related wave functions in a
medium is associated with the necessity to begin with a description of the configuration space and proceed to
a description of the physical space. We show that the balance equations of the number of particles and
momentum immediately follow from the multiparticle Schrödinger equation. From the obtained set of balance
equations, the equation for the wave function in the medium coincides in form with the GP equation, where we
can restrict ourselves only by the first-order terms of the interaction radius of the stress tensor of bosons, for
dilute gases. As a generalization of the GP equation, we made allowance for the contribution of the third-order
terms of the interaction radius to the stress tensor of bosons. For a system of particles that comprises an
ultracold mixture of bosons and fermions, a two-kind quantum hydrodynamics is constructed for the third-
order terms of the interaction radius. The spectrum of eigenmodes involves additional information on the
interparticle interaction as a correction to the Bogoliubov spectrum.

DOI: 10.1103/PhysRevA.78.053624 PACS number�s�: 03.75.Hh, 03.75.Kk, 67.85.Pq

I. INTRODUCTION

Progress in the development of the experimental tech-
nique �1� of magnetic and optical confinement of atomic-
molecular systems in traps, the wide possibilities for varying
the cooling and excitation modes of captured particles, and
the experimental realization of the Bose-Einstein condensate
�BEC� �2–4� stimulated the development of theoretical meth-
ods of investigation of physical processes in Bose systems in
external fields. In this connection, the Bogoliubov method
�5� for microscopic description of the ground state of the
homogeneous Bose gas with a weak interaction was further
developed. For example, in �6–8�, methods for taking correct
account of correlations of short- and long-range ordering are
developed. However, these methods are applicable for the
homogeneous Bose gas only. Generalization of these meth-
ods for the equilibrium and nonequilibrium cases in the con-
text of the Hartree-Fock-Bogoliubov variational scheme was
obtained in �9�, as usual, by varying the energy functional.
Theoretical field methods, which were used for the first time
for the low-density Bose gas by Belyaev �10� and Hugen-
holtz and Pines �11�, were further developed and generalized
for the case of finite temperatures �12,13�. In the context of
the above-mentioned and other methods �see, for example,
the reviews �14,15��, under the condition that the system of
particles is diluted and the interaction is relatively weak, the
Gross-Pitaevskii �GP� equation �16–18� can be obtained.
This equation is an effective tool for investigation of physi-
cal properties of Bose-Einstein condensates in traps. Note
that this equation for a system of N bosons with 3N degrees
of freedom is written for the function of three variables

��r , t�, which is usually called �9� “the ordering parameter.”
The authors of �19� suggested the generalization of the GP
equation for the case of arbitrary interaction intensity, which
is in agreement with the limiting cases of weak �14� and
strong �20� interaction. In �21–23�, generalization of the GP
equation is considered, allowing for the three-particle inter-
action. In �24–26� equations for Bose-Einstein spinor con-
densates were discussed. However, the Schrödinger descrip-
tion of a quantum system in 3N-dimensional space with the
use of a set of field functions of various tensor dimension-
alities has developed into quantum hydrodynamics �27–29�
which therefore is a natural method for the field description
of non-steady-state processes in systems of interacting par-
ticles. The fact that the time-dependent GP equation in the
limit of the dilute gas can be obtained from the multiparticle
Schrödinger equation is investigated in detail in �30–32�. The
equation of quantum hydrodynamics for one particle in an
external field was obtained by Madelung in 1926 �33�, and
for one particle with spin by Takabayasi �34�. The general
equations of quantum hydrodynamics for many particles
were obtained in �27,28�. As for boson systems, in order to
formulate the hydrodynamic method itself, the problem of
obtaining the total quantum stress tensor should be resolved
and the conditions of its existence should be clarified. Here,
we will restrict ourselves to the development of the quantum
stress tensor and show that under the standard assumptions
this tensor can be transformed so that the momentum balance
equations for bosons will coincide with the analogous Gross-
Pitaevskii equation. For the momentum balance equation
thus obtained, we can construct the equivalent nonlinear
Schrödinger equation �for the wave function in the medium�,
which coincides with the GP equation. The stress tensor is
symmetric and consists of three parts, namely, the tensor of
stresses caused by the thermal motion of bosons, the stress
tensor itself conditioned by the interaction of particles only,
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and the purely quantum term associated with the extension of
the particles in terms of quantum mechanics. When proceed-
ing to the GP equation, we should restrict ourselves to only
the first term of the series for the interaction tensor, which
can represent the stress tensor in the general case. In this
case, the stress tensor will be diagonal. Irrespective of the
selection of the orthonormal system of single-particle wave
functions, which are involved in the formula for the stress
tensor, the coupling constant equals −�dr rdU�r� /dr, which
equals −��dr U�r� for the nonuniform degrees � of the po-
tentials. It is evident that the coupling constant depends on
the degree of homogeneity �. For potentials such that the
limiting values of r3U at zero and infinity turn to zero, the
integral determining the coupling constant can be calculated
by parts and will coincide with the GP result.

For sufficiently wide traps, we can select plane waves as
the orthonormal system of single-particle wave functions. In
this case, the equation for the wave function in the medium
��r , t� will coincide with the GP equation. For narrow traps,
we can select the single-particle wave function of the ground
state of the harmonic oscillator. In this case, the equation for
��r , t� will also have the same form as the GP equation.

In experiments on Bose-Einstein condensates �BEC� of
atomic gases located in traps, an atomic gas of bosons is
mixed with fermionic atoms. Examples of such mixtures are
7Li-6Li �35,36�, 23Na-6Li �37�, and 87Rb-40K �38�. In certain
works �39–44�, physical processes in boson-fermion systems
were analyzed based on model equations for �b�r , t� ,� f�r , t�
which have the form of modified GP equations. Using theory
based on the notions of the mean field, experiments for ul-
tracold rarified 87Rb-40K mixtures were analyzed in �44�.
Modified GP equations for the mixture are used in �39,42�
for numerical analysis of the collapse in such systems. In this
connection, it is of interest to give the derivation of GP-type
equations for boson-fermion systems based on the quantum-
hydrodynamic momentum balance equations. It is shown be-
low that the equations obtained in this manner agree qualita-
tively with the modified GP equations. Derivation of the
equation for bosons and boson-fermion systems based on
quantum hydrodynamics and their comparison with the
above-mentioned works is performed, allowing for the first
term of expansion of the stress tensor of the interaction ra-
dius. Below, we find equations for the wave functions in the
medium in the third order of the interaction radius. These
equations are integro-differential equations and can be con-
sidered as generalizations of the GP equation. Based on these
equations, we investigate below the intrinsic modes in the
boson-fermion system and establish the dispersion law of
such modes.

II. SET OF QUANTUM HYDRODYNAMIC EQUATIONS

Let us consider a system of N Bose particles with a short-
range potential. The Hamiltonian of the system under con-
sideration has the form

Ĥ = �
i

1

2mi
p̂i

�p̂�i + �
i

Vext�ri,t� +
1

2 �
i,j,i�j

U��ri − r j�� ,

�1�

where p̂i
�=−ı��i

� is the momentum operator of the ith par-
ticle, mi is the mass of the ith particle, and Uij =U��ri−r j�� is
the interaction potential.

The concentration of particles in the vicinity of the point r
of the physical space is determined as the operator �i=1

N ��r
−ri� averaged over the quantum-mechanical states,

n�r,t� =� dR�
i

��r − ri��†�R,t���R,t� , �2�

where dR=	i=1
N dri. Differentiating this function over time

and using the Schrödinger equation with the Hamiltonian �1�,
we derive the continuity equation, in which the vector of
current density appears in the form

j��r,t� =� dR�
i

��r − ri�
1

2mi
��p̂i

���†�R,t���R,t� + �†�R,t�

��p̂i
����R,t�� . �3�

The momentum balance equation for the system of particles
under consideration is obtainable similarly, i.e., via differen-
tiation of the current density �3� and application of the
Schrödinger equation �27,45�. As a result, we obtain

�t j
��r,t� +

1

m
��	���r,t� = −

1

m
� dr����U�r,r���n2�r,r�,t�

−
1

m
n�r,t���Vext�r,t� . �4�

In the momentum balance equation, 	���r , t� is the quantum
tensor of the density of the momentum flux. This tensor has
the form

	���r,t� =� dR�
i

��r − ri�
1

4mi
��†�R,t��p̂i

�p̂i
����R,t�

+ �p̂i
���†�R,t��p̂i

����R,t� + c.c.� . �5�

The interaction between the particles in Eq. �4� is ex-
pressed through the two-particle probability density
n2�r ,r� , t� normalized over N�N−1� and having the form

n2�r,r�,t� =� dR �
i,j,i�j

��r − ri���r� − r j��†�R,t���R,t� .

�6�

Let us represent the first term in the right-hand side of Eq.
�4�, i.e., the density of the interaction force of the particles, in
the form

−
1

2
� dR �

i,j.i�j

���r − ri� − ��r − r j����i
�U�rij���†�R,t���R,t� ,

�7�

which is possible by virtue of the symmetry �antisymmetry�
of the wave function, and let us proceed in Eq. �7� to vari-
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ables of the center of gravity and variables of the relative
distance of the particles:

Rij =
1

2
�ri + r j�, rij = ri − r j . �8�

Since the interaction forces between the particles rapidly
decrease at distances of the order of the interaction radius,
small �rij

�� give the main contribution to the integral �7�.

Therefore, in expression �7�, we can replace the multipliers
of the interaction potential by their expansion in series of rij

�.
We have reached the conclusion that the density of the inter-
action force for bosons with a short-range interaction poten-
tial can be represented in the form of the divergence of the
tensor field ��
���r , t�. Here, 
���r , t� is the quantum stress
tensor conditioned by the occurrence of interparticle interac-
tion. The divergence of this tensor is represented by the
formula

��
���r,t� =� dR �
i,j,i�j

�
l=0

�

�
k=1

�

�
n=1

�

�
p=1

k

�
m=1

n

���1
¯ ��2l+1

��r − Rij���− 1�2l+p+m+1

�
1

2
�2l+k+n+1 1

�2l + 1�!
1

k!

1

n!
Ck

pCn
mrij

�rij
�1
¯ rij

�2l+1rij
�1
¯ rij

�krij
�1
¯ rij

�n

�
1

�rij�
�U��rij��

��rij�
��1

�1
¯ �1

�k−p�2
�k−p+1

¯ �2
�k�*�Rij,Rij,RN−2�� � ��1

�1
¯ �1

�n−m�2
�n−m+1

¯ �2
�n��Rij,Rij,RN−2�� . �9�

The quantity Ck
p is the binomial coefficient, Ck

p=k! / �p!�k
− p�!�. It is evident from the presented formula that the quan-
tum stress tensor is symmetric with respect to permutation of
indices � ,�: 
���r , t�=
���r , t�.

Now, the momentum balance equation will take the form

�t j
��r,t� +

1

m
���	���r,t� + 
���r,t�� = −

1

m
n�r,t���Vext�r� .

�10�

Let us now consider the tensor 	���r , t� and isolate in it the
contributions to the momentum flow density for the convec-
tive and thermal motions and the purely quantum part. For
this purpose, let us introduce the velocities by the formulas

vi�R,t� =
1

mi
�iS�R,t� , �11�

where vi�R , t� is the velocity of the ith particle, while the
S�R , t� phase of the wave function is

��R,t� = a�R,t�exp
 ıS�R,t�
�

� .

The velocity field v�r , t� is determined by the formula

j�r,t� = n�r,t�v�r,t� . �12�

Thus ui�r ,R , t�=vi�R , t�−v�r , t� is the quantum analog of the
velocity of thermal motion. Isolating the evidently thermal
motion of the particles with velocities ui and the motion with
the velocity v�r , t� in the continuity and momentum balance
equations �10�, we come to the following equations:

�tn�r,t� + �„n�r,t�v�r,t�… = 0, �13�

mn�r,t���t + v � �v��r,t� + ���p���r,t� + 
���r,t� + T���r,t��

= − n�r,t���Vext�r,t� . �14�

In Eq. �14�,

p���r,t� =� dR�
i=1

N

��r − ri�a2�R,t�miui
�ui

�. �15�

This tensor tends to zero as the velocities of thermal mo-
tion ui of the particles go to zero. Therefore, it has the mean-
ing of the kinetic pressure. The temperature 
�r , t� of the
system of bosons is expressed through this tensor by the
formula


�r,t� =
p���r,t����

3n�r,t�
. �16�

The tensor

T���r,t� = −
�2

2m
� dR�

i=1

N

��r − ri�a2�R,t�
�2 ln a

�x�i�x�i
�17�

is proportional to �2 and has a purely quantum origin. For a
system of numerous noninteracting particles, this tensor is

T���r,t� = −
�2

4m

����n�r,t� −

1

n�r,t�
���n�r,t�����n�r,t��� .

�18�

Divergence of this tensor is usually presented in the form
�14�

��T���r,t� = −
�2

2m
n�r,t���

��n�r,t�
�n�r,t�

. �19�
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Therefore, it is evident that the total stress tensor P���r , t�
can be represented as the sum of the kinetic pressure tensor,
the quantum tensor T���r , t�, and the tensor of stresses

���r , t�, which are determined by interparticle interaction.
In this case, the normal stress is determined by the scalar
P= �1 /3�P���r , t����, while the tangential or shear stresses
are determined by the deviator P���r , t�− P���.

The explicit expression of P���r , t� through the wave
functions of the system of particles is determined by formu-
las �9�, �15�, and �17�. In problems of the evolution of small
perturbations in Bose systems, this tensor can be approxi-
mately calculated by perturbation theory. This will allow us
to form the closed apparatus for description of such systems.

III. THE GROSS-PITAEVSKII EQUATION

As was mentioned above, the first term of Eq. �9� gives
the main contribution to the tensor 
���r , t�. Retaining this
term only, we have


���r,t� = −
1

2
� dR �

i,j.i�j

��r − Rij�
rij

�rij
�

�rij�
�U�rij�
��rij�

��†�R,t���R,t� . �20�

Using the properties of symmetry of boson wave functions
and interparticle interaction potential, formula �20� can be
transformed to the form


���r,t� = −
1

2
Tr�n2�r,r�,t�� � dr

r�r�

r

�U�r�
�r

, �21�

where

Tr�f�r,r��� = f�r,r� .

For the two-particle probability density, according to defini-
tion �6�, we have

n2�r,r�,t� = N�N − 1� � dRN−2
n1,n2, . . . , �r,r�,RN−2,t�

� 
r,r�,RN−2,t�n1,n2, . . . � , �22�

where dRN−2=	k=3
N drk.

Let us use the known formulas for expansion of the wave
function 
r ,r� ,RN−2 , t �n1 ,n2 , . . . � �46�. In the case of bosons,
we have


r,r�,RN−2,t�n1,n2, . . . �

= �
f

�nf

N

r,t�f�
r�,RN−2,t�n1, . . . ,�nf − 1�, . . . �

= �
f

�
f�,f��f

�nf

N
� nf�

N − 1

r,t�f�
r�,t�f��

�
RN−2,t�n1, . . . ,�nf� − 1�, . . . ,�nf − 1�, . . . �

+ �
f

�nf�nf − 1�
N�N − 1�


r,t�f�
r�,t�f�
RN−2,t�n1, . . . ,

��nf − 2�, . . . � . �23�

Here, 
r , t � f�=� f�r , t� are the single-particle wave functions.
The first term in formula �23� represents particles situated

in two different quantum states, while the second term refers
to particles in the same quantum state. Therefore, for par-
ticles in the BEC state, it is sufficient to take into account the
second term in formula �23�. In consideration of a system of
bosons with temperature differing from zero, where a certain
number of particles is outside the condensate, the first sum-
mand of formula �23� gives a contribution both in the case of
interaction of excited particles with each other and in the
case of their interaction with the particles appearing in the
BEC state. In this case, the second term of formula �23�
gives the contribution to the interaction both between the
particles appearing in the BEC state and between excited
particles appearing in the same quantum state.

In this case,


n1, . . . ,�nf� − 1�, . . . ,�nf − 1�, . . . , �n1, . . . ,�nq� − 1�, . . . ,

��nq − 1�, . . . � = ��f − q���f� − q�� + ��f − q����f� − q� ,


n1, . . . ,�nf − 2�, . . . , �n1, . . . ,�nq − 2�, . . . � = ��f − q� ,

�24�

and

n2�r,r�,t� = n�r,t�n�r�,t� + ���r,r�,t��2 + �
g

ng�ng − 1�

���g�r,t��2��g�r�,t��2. �25�

Here,

n�r,t� = �
g

ng�
g
*�r,t��g�r,t� , �26�

��r,r�,t� = �
g

ng�
g
*�r,t��g�r�,t� , �27�

where �g�r , t� are arbitrary single-particle wave functions.
The second term of formula �25� represents the part of the

stress tensor caused by the exchange interaction. Substituting
expression �25� into Eq. �21� for the quantum stress tensor of
the boson system, we derive the formula


���r,t� = −
1

2
����
2n2�r,t� + �

g

ng�ng − 1����g�r,t��2�2� ,

�28�

where the following integral is designated through �:

� =
4�

3
� dr�r�3�U�r�

�r
. �29�

Assuming that the potential satisfies the condition that the
quantity r3U�r� tends to zero as r tends to zero and infinity,
we obtain for � from Eq. �29�, by integration by parts,

� = −� dr U�r� ,

which coincides with the result for the interaction constant
by Gross and Pitaevskii allowing for the sign in �35�.
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Taking into account the notations given after formula
�23�, we obtain the following relation for the quantum tensor
of stresses of a system of bosons close to the BEC state:


BEC,n
�� �r,t� = −

1

2
����
2nBEC�r,t�nn�r,t� + 2nn

2�r,t�

+ �
g

ng�ng − 1����g�r,t��2�2� , �30�

Here, we used the notations nBEC�r , t� for the concentration
of particles situating in the BEC state and nn�r , t� for the
concentration of excited particles. The expression �28� ob-
tained for 
���r , t� in the approximation under consideration
should be substituted into the momentum balance equation
�14�.

The stress tensor, which depends on interparticle interac-
tions, contains the single-particle functions �g�r , t�. By these
functions, expansion of the unknown N partial wave function
is actually performed. If we neglect the interparticle interac-
tion, the partial problem N will be reduced to the single-
particle one, and the set of functions �g�r , t� will be deter-
mined by the single-particle Schrödinger equation. In this
case, the momentum balance equation will also not contain
interactions and, along with the continuity equation, will de-
termine the single-particle wave function in polar form. Such
single-particle functions, which are simultaneously the solu-
tions of the equations of quantum hydrodynamics for the
system of noninteracting particles and the single-particle
Schrödinger equation, can be used as a first approximation
when calculating the stress tensor. The quantum balance
equations thus obtained will determine the set of field func-
tions that in turn determine the state of the system in hydro-
dynamics and, consequently, the single-particle wave func-
tion of the system of interacting particles. Such a wave
function of spatial coordinates and time will determine the
effective Schrödinger equation, which is nonlinear and
integro-differential in the general case. The solution of this
equation can be used as the second iteration when calculating
the stress tensor, etc.

According to this iteration procedure, the basis wave
functions �g�r , t� in formula �28� can be selected as the plane
waves

�p�r,t� =
1

�V
exp
−

ı

�
��pt − pr�� , �31�

for sufficiently wide traps, �p=p2 /2m. Assuming that most
of the particles of the system are situated in the state of the
Bose condensate, the probability of situation of two excited
particles in one quantum state is small, and the number of
particles is sufficiently large, we will approximately have in
this case

�
g

ng�ng − 1�����g�r,t��2�2� = n2�r,t� . �32�

For Bose particles with a weak interaction, which
are captured into a sufficiently narrow harmonic trap
Vext=m�0

2r2 /2, we can select the wave function of the

ground state of the harmonic oscillator �g�r , t� as
exp�−ı�t��m�0 / �����−3/4 exp�−m�0r2 / �2���. In this case,
formula �32� will also apply.

Using the result �32�, we obtain the expression for

BEC,n

�� �r , t� in the form


BEC,n
�� �r,t� = −

1

2
�����2nBEC�r,t�nn�r,t� + 2nn

2�r,t�

+ nBEC
2 �r,t�� . �33�

In the absence of excited particles, the quantum stress tensor
takes the form


BEC
�� �r,t� = −

1

2
����nBEC

2 �r,t� . �34�

The corresponding momentum balance equation of quantum
hydrodynamics for the BEC only takes the form

mn�r,t���t + v��r,t����v��r,t� + ��p���r,t� −
�2

2m
��

��n�r,t�
�n�r,t�

− �n�r,t���n�r,t� = − n�r,t���Vext�r,t� . �35�

For eddy-free motion v�r , t�=���r , t� and with the pro-
viso that the kinetic pressure p���r , t�= p�r , t���� is isotropic
and that we have barotropicity,

�p�r,t�
mn�r,t�

= ���r,t� , �36�

where ��r , t� is the chemical potential, the momentum bal-
ance equation

m�tv
��r,t� +

1

2
m��v2�r,t� + m����r,t� −

�2

2m
����n�r,t�

�n�r,t�

− ���n�r,t� = − ��Vext�r,t� �37�

has the Cauchy-Lagrangian integral

�t��r,t� +
1

2
v2�r,t� + ��r,t� −

1

m
�n�r,t� −

�2

2m2

��n�r,t�
�n�r,t�

+
1

m
Vext�r,t� = const. �38�

The equations of continuity �13� and momentum pulse �37�
can be associated with the equivalent single-particle
Schrödinger equation for a certain effective wave function
��r , t�. Substituting this function in the form

��r,t� = �n�r,t�exp
 ı

�
m��r,t�� , �39�

differentiating it with respect to time, and using Eqs. �13�
and �38�, we obtain the equivalent single-particle
Schrödinger equation
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ı��t��r,t� = 
−
�2�2

2m
+ ��r,t� + Vext�r,t�

− ����r,t��2���r,t� , �40�

which is well known as the Gross-Pitaevskii equation
�16,18,14,47�. The wave function ��r , t� is normalized by
the condition

� dr ��r,t�*��r,t� = N ,

where N is the number of particles in the system.
The obtained equations �40� and �35� contain the chemical

potential and its gradient as separate terms. It is immediately
evident from the determination of the chemical potential �36�
that it turns to zero at zero temperature. Another distinction
of Eq. �40� from the standard GP equation is that, at any
choice of �g�r , t�, the coupling constant is determined by the
formula �dr rdU�r� /dr and has the form of the Clausius
virial. The formulas obtained for the coupling constant, for
uniform potentials of the negative first degree of uniformity,
and for nonuniform potentials satisfying the condition of ap-
proaching zero at the limiting values of r3U at zero and

infinity, coincide with the results presented in �47,15� and
other works. For uniform potentials of degree �,

� dr r
dU�r�

dr
= �� dr U�r� .

The interaction of the Bose atoms is presented in the start-
ing Hamiltonian �1� as the interaction of point particles.
Therefore, the interaction potential U�r� should be consid-
ered as a model, providing repulsion at small finite distances
and attraction or repulsion at distances of the order of the
interaction radius. This circumstance should be taken into
account when calculating the integral of form �29� with spe-
cific functions U�r�.

IV. STRESS TENSOR IN THE THIRD ORDER
OF THE INTERACTION RADIUS

As shown above, in the first order of the interaction ra-
dius, the stress tensor is determined by the gradient of the
interaction potential and particle distribution n�r , t�. It is eas-
ily seen that the second term of the expansion 
���r , t� ap-
proaches zero. In order to obtain the dependence of the stress
tensor on the hydrodynamic velocity and kinetic pressure
tensor, the tensor 
���r , t� should be calculated in the third
order of the interaction radius. The results of the calculations
can be presented in the form


���r,t� = −
1

2
�����2nBEC�r,t�nn�r,t� + 2nn

2�r,t� + �
g

ng�ng − 1����g�r,t��2�2� −
1

48
�2����� + 2�����
2nBEC�r,t�nn�r,t�

+ 2nn
2�r,t� + �

g

ng�ng − 1����g�r,t��2�2� +
1

�2�2�mnBEC�r,t�����	n
���r,t� + 2	n

���r,t�� − ���jn
2�r,t� − 2jn

��r,t�jn
��r,t��

−
1

2
�2nBEC�r,t�Tr���������� + 2�������n�r,r�,t�� − +

1

�2�2�mnn�r,t�����	BEC
�� �r,t� + 2	BEC

�� �r,t�� − ���jBEC
2 �r,t�

− 2jBEC
� �r,t�jBEC

� �r,t�� − −
1

2
�2nn�r,t�Tr���������� + 2�������BEC�r,r�,t�� − +

1

�2�2�mnn�r,t�����	n
���r,t�

+ 2	n
���r,t�� − ���jn

2�r,t� − 2jn
��r,t�jn

��r,t�� −
1

2
�2nn�r,t�Tr���������� + 2�������n�r,r�,t�� −

1

8
�2�������

+ ������ + ��������
g

ng�ng − 1���
g
*�r,t��

g
*�r,t���g�r,t������g�r,t� − ���g�r,t����g�r,t�� + H.c.� , �41�

where ��� =� /�x�� and

�2 �
4�

15
� dr�r�5�U�r�

�r
. �42�

In formula �41�, we used

j��r,t� =
1

2m
�

g

ng��
g
*�r,t�p̂��g�r,t� + p̂�*�

g
*�r,t��g�r,t�� ,

�43�

	���r,t� =
1

4m
�

g

ng��
g
*�r,t�p̂�p̂��g�r,t�

+ �p̂�*�
g
*�r,t��p̂��g�r,t� + c.c.� . �44�

The quantities �BEC�r ,r� , t�, jBEC
� �r , t�, 	BEC

�� �r , t�, �n�r ,r� , t�,
jn
��r , t�, and 	n

���r , t� in Eq. �41� are the density matrix, cur-
rent vector, and density tensor of the pulse flux of the par-
ticles situating in the BEC state and in the excited states,
respectively.
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The first term in formula �41� is the quantum stress tensor

���r , t� at first order in the interaction radius. The second
term of formula �41�, similarly to the first term, involves the
contribution to the interaction of bosons situated in the BEC
and particles in excited states. In the third and fourth terms
of formula �41�, the dependence of 
���r , t� on the current
j��r , t�, density tensor of the pulse flux 	���r , t�, and two-
particle density matrix ��r ,r� , t� appears. These summands
give the contribution to the interaction only in the presence
of the particles in excited states and turns to zero if all
bosons are in the BEC state. The last term in Eq. �41� de-
scribes the contribution to the quantum stress tensor from the
interaction of particles situated in the same quantum state;
specifically, situated in the BEC state.

These formulas are valid for any selection of basis wave
functions �g�r , t�. In order to obtain a closed apparatus, we
can use the iteration procedure when calculating expression
�41�. In the absence of particles in excited states, Eq. �41�
takes the form


BEC
�� �r,t� = −

1

2
�����

g

ng�ng − 1����g�r,t��2�2 −
1

48
�2�����

+ 2������
g

ng�ng − 1����g�r,t��2�2 −
1

8
�2�������

+ ������ + ��������
g

ng�ng − 1���
g
*�r,t��

g
*�r,t�

���g�r,t������g�r,t� − ���g�r,t����g�r,t��

+ H.c.� . �45�

For sufficiently wide traps and weakly inhomogeneous
media in the BEC state, we can select plane waves as the
basis functions. If the Bose condensate is situated in a nar-
row harmonic trap, the choice of eigenfunctions of the har-
monic oscillator as the approximated single-particle wave
functions is more adequate. Since the particles are in the
BEC state, let us select the eigenfunction of the ground state
of the harmonic oscillator as �g. In this case, from Eq. �45�,
we find the final expression for the stress tensor allowing for
third-order terms in the interaction radius. This expression
contains � and �2 as parameters and is independent of the
concentration and its derivatives:


���r,t� = −
1

2
����n2�r,t� −

1

48
�2����� + 2�����n2�r,t� .

�46�

V. ULTRACOLD MIXTURE
OF BOSONS AND FERMIONS

There are substantial differences between the quantum hy-
drodynamics of bosons and of fermions. These distinctions
can be explicitly followed if we consider the system of fer-
mions and bosons as a two-component liquid and obtain
equations of quantum hydrodynamics for it. Such systems of
particles were studied, for example, in �44�. The Hamiltonian
of this system can be presented in the form

Ĥ = �
i

 pi

2

2mi
+ Vext�ri,t�� +

1

2 �
ib,jb

Uibjb
�rib

− r jb
�

+
1

2 �
if,j f

Uif jf
�rif

− r j f
� + �

ib,j f

Uibjf
�rib

− r j f
� . �47�

In this Hamiltonian, Uibjb
, Uif jf

, and Uibjf
are the interaction

potentials between bosons and bosons, fermions and fermi-
ons, and bosons and fermions, respectively. Strictly speak-
ing, all these potentials are different. The index i in formula
�47� runs over values from 1 to N, where N is the total
number of particles in the system, both bosons and fermions.
The indices ib, jb, if, and j f enumerate only bosons and fer-
mions, respectively.

In accordance with the Schrödinger equation, the state of
this system of particles is specified in configuration space. In
physical space, this state is determined by the set of field
functions of different tensor dimensionality. To proceed to
the physical state, let us use the same method as for the
derivation of formulas �2�–�14�. As a result, we obtain the set
of equations of continuity and momentum balance for bosons
and fermions, respectively. The momentum balance equa-
tions for the Bose and the Fermi particles have the forms

nb�r,t���t + v�b�r,t����vb
��r,t� −

�2

2mb
2����nb�r,t�

�nb�r,t�

+
1

mb
���pb

���r,t� + 
bb
���r,t�� =

1

mb
Fbf

� �r,t�

−
1

mb
nb�r,t���Vext�r,t� , �48�

nf�r,t���t + v�f�r,t����v f
��r,t� −

�2

2mf
2����nf�r,t�

�nf�r,t�

+
1

mf
���pf

���r,t� + 
 f f
���r,t�� =

1

mf
Ffb

� �r,t�

−
1

mf
nf�r,t���Vext�r,t� . �49�

Here, the stress tensor 
bb
���r , t�, which characterizes the

boson-boson interactions in Eq. �48�, is determined by the
general formula �41� and its limiting case �46�.

The two-particle function n2�r ,r� , t� in Eq. �21� is deter-
mined by the general formula �22� for bosons and fermions.
However, in the formula for fermions, instead of expression
�23�, which is valid for bosons, the following formula should
be used �46�:


r,r�,RN−2,t�n1,n2 . . . �

= �
f

�
f��f

�nf

N
� nf�

N − 1
�− 1��f��g�fng�
r,t�f�
r�,t�f��

− 
r�,t�f�
r,t�f��� � 
RN−2,t�n1, . . . ,�nf� − 1�, . . . ,

��nf − 1�, . . . � , �50�
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n1, . . . ,�nf� − 1�, . . . ,�nf − 1�, . . . , �n1, . . . ,

��nq� − 1�, . . . ,�nq − 1�, . . . � = ��f − q���f� − q��

− ��f − q����f� − q� . �51�

Therefore, for the stress tensor of fermions with short-range
interaction potential Uf f, to the third approximation in the
interaction radius, we obtain the following expression:


 f f
���r,t� =

1

2
�2f f����
nf�r,t��

g

ng���g�r,t��2

− ��
g

ng�
g
*�r,t� � �g�r,t��2�

+ 
nf�r,t��
g

ng����
g
*�r,t�����g�r,t�

− �
g

ng�
g
*�r,t�����g�r,t��

��
g�

ng���
��

g�
* �r,t���g��r,t� + c.c.�� . �52�

Here, �g��r , t� are the arbitrary single-particle wave func-
tions, and �2f f = �4� /15��dr�r�5�Uf f�r� /�r.

We can see that, similarly to the case of bosons, the stress
tensor 
 f f

���r , t� is symmetric. The main distinction of the
fermionic stress tensor from the bosonic one is in the absence
of first-order terms in the interaction radius in the fermionic
tensor. Let us find the expression for the stress tensor of
ultracold fermions, accepting plane waves as the first itera-
tion. In this case, from formula �43�, we obtain j��r , t�
=n�r , t�v��r , t�=0.

The quantity �gng�
g
*�r , t�����g�r , t�� entering expression

�52�, similarly to j�, equals zero. From formula �44�, we
obtain the result that 	���r , t� is not equal to zero. Separat-
ing the convective part of the density tensor of the momen-
tum flux, we have

	���r,t� = n�r,t�v��r,t�v��r,t� + p���r,t� + T���r,t� .

By virtue of the equality v��r , t�=0, the tensor 	���r , t�
equals the sum p���r , t�+T���r , t�. The quantity
�gng����

g
*�r , t�����g�r , t�, in the approximation of plane

waves for ultracold fermions situated inside the Fermi
sphere, equals m /�2	��. Assuming that the kinetic pressure
tensor is diagonal, p��= pFe�

��, and that pFe
=1 /5�3�2�2/3�2nf

5/3 /mf �48�, we derive the expression for the
stress tensor in the form


 f f
���r,t� =

mf

2�2�2f f
����3�2�2/3 �2

mf
nf

8/3�r,t�

+ ���nf�r,t�T���r,t� + 2nf�r,t�T���r,t�� .

�53�

Let us now address the interaction of bosons and fermi-
ons. When calculating the force field Fbf

� �r , t� that character-
izes this interaction, we proceed to new variables of the cen-
ter of gravity and relative motion, and then replace the

functions characterizing the particle distribution by their ap-
proximate values in the region of the radius of the boson-
fermion interaction. Since now these particles are of different
kinds, the even expansion terms of the � function, which
were mutually reduced for the systems of identical particles,
will give the first nonzero expansion term and, for this rea-
son, the boson-fermion interaction is unrepresentable in the
form of the divergence of a certain tensor. By calculation, we
obtain the formula accurate to third-order terms in the inter-
action radius:

Fbf
� �r,t� = �bfnb�r,t���nf�r,t� +

1

2
�2bfnb�r,t����nf�r,t� .

�54�

Here, as above, �bf and �2bf are determined by the integrals
�bf ��4� /3��dr�r�3�Ubf�r� /�r, �2bf
��4� /15��dr�r�5�Ubf�r� /�r. The expression for the force
field Ffb

� �r , t� and momentum balance equation for the fermi-
ons can be obtained from Eq. �54� via substitution of the
index f for b, and vice versa.

From the expressions obtained for the stress tensors �46�
and �53�, and vector force field �54�, an important conse-
quence follows: in the field representation, the short-range
forces approach zero simultaneously with equality to zero of
concentration gradients, so that for the uniform equilibrium
distributions, the resultants of the forces equal zero. The ap-
pearance of concentration gradients in the external field
causes the appearance of stresses �46�, �53�, and force �54�,
and is the physical mechanism causing static equilibrium of
the boson-fermion system of particles in an external field.

In the general case, the effective single-particle
Schrödinger equation is not an integral of the Cauchy-
Lagrangian type, Eqs. �48� and �49�. However, for the sys-
tems and processes for which the pressure tensor p�� can be
considered as diagonal and the velocity field can be consid-
ered as eddy-free, and we can restrict ourselves to the first
order in the interaction radius in the stress tensor, integrals of
the specified type exist:

ı��t�b�r,t� = 
−
�2�2

2mb
+ Vext�r,t� + �b�r,t� − �bbnb�r,t�

− �bfnf�r,t���b�r,t� , �55�

ı��t� f�r,t� = 
−
�2�2

2mf
+ Vext�r,t� + �3�2�2/3 �2

2mf
nf

2/3�r,t�

− �bfnb�r,t��� f�r,t� . �56�

It is evident that the equation for bosons under the as-
sumptions made differs from the Gross-Pitaevskii equation
�40� only in the term representing the interaction of bosons
with fermions. As for Eq. �56� for fermions, it is desirable to
compare this equation with the results of studies of other
authors. Let us rewrite Eq. �56� in the form
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ı��t� f�r,t� = 
−
�2�2

�mf
+ Vext�r,t� + � f�r,t�

+ gbfnb�r,t��� f�r,t� . �57�

From this, it is evident that in our work the mass factor is
�=2, while the chemical potential appears as the local Fermi
pressure � f�r , t�= �3�2�2/3��2 /2mf�nf

2/3�r , t� and gbf =−�bf.
For comparison, note that in �39�, in consideration of the
boson-fermion mixture for the mass factor, a value of 2 is
also used, while for the chemical potential of fermions situ-
ated in the harmonic trap, the expression � f =��F�6�NF�1/3

obtained in the study �49� is used. Here, �F is the trap pa-
rameter, � the trap asymmetry parameter, and NF the number
of fermions in the trap. In �40,50–52�, taking into account the
Weiszäcker kinetic energy, the mass factor is �=6, while the
chemical potential has the form � f�r , t�
=�2�6�2�2/3�n�2/3�r , t� /2m. In �53–55�, the equation for the
single-particle wave function of fermions entering the boson-
fermion mixture has the form �57�, where �=2, � f =0. How-
ever, in �55�, the force constants gBB and gBF have the forms
gBB=8��aBBRB

−1 and gBF=4��mFaBF�1+mF�−1RB
−1, where

RB= �� /MB�B�1/2, MB, and MF are the mass of bosons and
fermions, respectively, mF=MF /MB, and �B is the transverse
trapped frequency of the bosons. In �56�, for the description
of the properties of the boson-fermion mixture, a set of equa-
tions for single-particle wave functions is obtained. The fea-
ture of this set of equations is that the fermions are described
by a set of NF single-particle wave functions, where NF is the
number of fermions in the system. By this method, the equa-
tions for the wave functions of fermions are similar to Eq.
�57� with the values �=2, � f =0. The equations obtained
agree qualitatively with the modified GP equations, to within
the accuracy of these corrections.

Therefore, based on the general equations of quantum hy-
drodynamics, we obtained the GP equation and more general
equations containing the additional parameter �2 at higher
spatial third-order derivatives with respect to concentration.
In this case, the velocity field of the Bose liquid was consid-
ered as eddy-free, i.e., rotvb�r , t�=0, and at zero temperature,
�pb�r , t� /nb�r , t�=��b�r , t�. For fermions, the temperature
was also assumed to be equal to zero, and consequently the
pressure was assumed to be isotropic and equal to the Fermi
pressure. These equations have the form, for bosons,

mbnb�r,t��tvb
��r,t� +

1

2
mbnb�r,t���vb

2�r,t� + ���b�r,t�

−
�2

2mb
nb�r,t�����nb�r,t�

�nb�r,t�
−

1

2
�bb��nb

2�r,t�

−
1

16
�2bb���nb

2�r,t� = �bfnb�r,t���nf�r,t�

+
1

2
�2bfnb�r,t����nf�r,t� − nb�r,t���Vext�r,t� , �58�

and for fermions,

mfnf�r,t���t + v�f�r,t����v f
��r,t� −

�2

2mf
nf�r,t�����nf�r,t�

�nf�r,t�

+
1

8
�2f f���nf�r,t���nf�r,t�

+
1

4
�2f f�����nf�r,t����nf�r,t� −

3

8
�2f fnf�r,t����nf�r,t�

+
1

2
�3�2�2/3�2f f�

�nf
8/3�r,t� +

�2

5mf
�3�2�2/3��nf

5/3�r,t�

= �bfnf�r,t���nb�r,t� +
1

2
�2bfnf�r,t����nb�r,t�

− nf�r,t���Vext�r,t� . �59�

In this approximation, the corresponding effective wave
functions satisfy the equations

ı��t�b�r,t� = 
−
�2�2

2mb
+ Vext�r,t� + �b�r,t� − �bbnb�r,t�

− �bfnf�r,t� −
1

2
�2bf�nf�r,t�

−
1

16
�2bb�

r0

r 1

nb�r,t�
d��nb

2�r,t����b�r,t�

�60�

�this equation is the generalization of the GP equation and
takes into account the third-order terms in the interaction
radius� and

ı��t� f�r,t� = 
−
�2�2

2mf
+ Vext�r,t� + �3�2�2/3 �2

2mf
nf

2/3�r,t�

− �bfnb�r,t� −
1

2
�2bf�nb�r,t�

+
4

5
�3�2�2/3�2f fnf

5/3�r,t� −
3

8
�2f f�nf�r,t�

+
1

8
�2f f�

r0

r �nf�r,t�
nf�r,t�

dnf�r,t�

+
1

8
�2f f�

r0

r d���nf�r,t���2

nf�r,t� �� f�r,t� . �61�

Equation �61� differs from the above-given Eq. �56� in that
the third-order terms in the interaction radius are taken into
account in Eq. �61�.

VI. DISPERSION OF EIGENWAVES

The dependence of the energy of elemental excitation on
the momentum for a uniform system of bosons in the state of
the Bose condensate is described by the Bogoliubov formula
�5,14�, which also follows from the Gross-Pitaevskii equa-
tion. In �57� the low-energy excitations of a dilute atomic
Bose gas confined in a harmonic trap interacting with repul-
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sive forces was investigated. In �58,59�, collective oscilla-
tions of a Bose-Fermi mixture are considered. In �60,32�
measurements of the excitation spectrum and the static struc-
ture factor of a Bose-Einstein condensate were reported and
analyzed.

Therefore, let us consider the eigenmodes which can
propagate along the larger symmetry axis of a cigar-shaped
magnetic trap based on found above Eqs. �58� and �59�. In
the approximation of linear concentration and velocity field,
we obtain the dispersion equation for elemental excitations
in the form

�1,2
2 =

1

2
��0b

2 + �0f
2

����0b
2 − �0f

2 �2 +
4n0fn0b

mfmb
k4
�bf −

1

2
�2bfk

2�2� ,

�62�

�0b
2 = 
 �2

4mb
2 +

n0b�2bb

8mb
�k4 −

�bbn0b

mb
k2, �63�

�0f
2 = 
 �2

4m2 +
3nof�2f f

8mf
�k4 +

�3�2�2/3

3

 �2

mf
2n0f

2/3

+
4�2f f

mf
n0f

5/3�k2. �64�

In the limit of large moments �k, the dependence ��k� is
parabolic. From the explicit expression for the coefficient �2,
Eq. �42�, it is evident that, if the attractive forces act between
the particles of the system, this coefficient is positive. Con-
sequently, the curve �=��k� for particles interacting via at-
traction is higher than the curve corresponding to the Bogo-
liubov spectrum.

It is evident that, for the uniform system of bosons 4He in
formula �63�, the coefficient of k4 varies qualitatively. In ad-
dition to the kinematic contribution proportional to �2, a dy-
namic contribution �2bb that depends on the concentration of
the Bose particles appears. Using the known values of physi-
cal characteristics of superfluid helium 4He at atmospheric
pressure, we can evaluate the numerical value of the
concentration-dependent term �2bb and compare it with the
value of �2 / �4mb

2�. To evaluate the quantity �2bb, let us find
its relation to �bb; in turn, �bb can be expressed through the
scattering potential. As the model short-range potentials, let
us consider the interaction potential of “rigid spheres” U�r�
=U0=const at r�r0 and U�r�=0 at r�r0, as well as the
Yukawa potential U�r�=U0 exp�−r /r0� /r.

Calculating the integrals �29� and �42� with these poten-
tials, we can see that the approximate equality �2bb
�r0

−2�bb is valid. For a potential of the type of rigid spheres
�2bb= �1 /5�r0

−2�bb. For the Yukawa potential �2bb=4r0
−2�bb.

To evaluate �bb, note that, for the potentials under consider-
ation, is following the condition satisfied: r3U�r�→0 as r
tends to zero or to infinity. Then �bb=−�dr U�r�=−gbb=
−4��2abb /mb. The scattering amplitude abb can be evaluated
based on the experimental data. The quantity r0 has the order
of the atomic radius and scattering amplitude.

Dispersion in the system of fermions, formula �64�, is
actually reduced to a linear dependence ��k� in the region of
long wavelengths. The interparticle interaction is involved in
this formula by means of the coefficient �2f f. It is evident
from formulas �63� and �64� that the coefficients of k4 in
dispersion relations for bosons and fermions have the same
functional form.

As for the boson-fermion mixture, it is evident from the
dispersion relations �62� that the interaction between par-
ticles of various types leads to the presence of two hybrid
branches of wave dispersion, which can be excited in this
medium. Evaluation of the quantity �2bf can be performed
through the quantity �bf, similarly to the evaluation of �2bb.

Let us also note that the immediate measurement of the
dispersion curves �62�–�64� can be used for the direct experi-
mental determination of the parameters �bb, �2bb, �2f f ,�bf,
and �2bf immediately associated with the potentials of inter-
particle interaction.

VII. CONCLUSIONS

The problem of construction of the GP equation and re-
lated wave functions in a medium is associated with the ne-
cessity of proceeding from the description in configuration
space to the description in physical space. We showed that
the balance equations for the number of particles and mo-
mentum, which are the local conservation laws, immediately
follow from the multiparticle Schrödinger equation. In the
case of short-range interaction between the particles, the
force field is represented as the divergence of the quantum
stress tensor. This conclusion is valid for a single-component
system of bosons and a single-component system of fermi-
ons. The stress tensor 
���r , t� is represented in the form of
series �9� at a sufficiently small interaction radius. The GP
equation for Bose systems corresponds to the case where we
can restrict ourselves only to the first term of series �9�.
Under the assumptions made, the set of equations of conti-
nuity and momentum balance is not closed. Therefore, to
close the set of equations, the method of sequential approxi-
mations is additionally used. For a sufficiently dilute system
of Bose particles in a harmonic magnetic trap, we can use the
eigenfunctions of the harmonic oscillator problem as the first
iteration. For a uniform system or for sufficiently wide traps,
we can use plane waves in this case. It turns out that in both
cases the same equations �32� are valid for the BEC. There-
fore, we derive a set of equations of quantum hydrodynamics
closed with respect to the concentration nb�r , t� and the ve-
locity field vb�r , t� of Bose particles. From the set of balance
equations �13� and �37� obtained, the equation for the wave
function in the medium follows; this coincides with the GP
equation.

As a generalization of the GP equation, we made allow-
ance for the contribution of the third-order terms in the in-
teraction radius to the stress tensor of bosons. This contribu-
tion also depends on the basis single-particle wave functions.
The specific expressions for the stress tensor in this approxi-
mation are obtained for plane waves as basis wave functions
as well as for functions of the isotropic harmonic oscillator
under the condition that the particles are in the BEC state.
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For the system of particles that comprises an ultracold
mixture of bosons and fermions, two-type quantum hydrody-
namics is constructed.

For the fermionic subsystem, the stress tensor is found
accurate to third-order terms in the interaction radius. In this
case, due to the antisymmetry of the wave function with
respect to permutation of the Fermi particles, the first-order
term in the interaction radius for fermions identically ap-
proaches zero. The stress tensor for fermions in the third
order of the interaction radius is expressed through the con-
centration and basis single-particle wave functions. To close
the set of equations of quantum hydrodynamics, we selected
the plane waves as the basis wave functions. It was also
assumed that all fermions lie inside the Fermi sphere. The
expression for the stress tensor for fermions is found through
the Fermi pressure and the quantum Bohm potential
T���r , t�, which in turn depend on the fermion concentration
and its derivatives.

The boson-fermion interaction is unrepresentable in the
form of divergence of the stress tensor. The force field of
interaction of bosons and fermions, as shown above, is ex-
pressed through the concentrations of bosons and fermions
and their derivatives for each selection of basis single-
particle wave functions accurate to third order in the interac-
tion radius.

The spectrum of the eigenmodes of boson, fermion, and
boson-fermion systems is determined by the dispersion rela-
tions �62�–�64�. For bosons, the previously obtained relation
�63� involves additional information on the interparticle in-
teraction as a correction to the Bogoliubov spectrum. We
also established the dependence of the dispersion relation of
fermions �64� on the character of their interaction. The dis-
persion law of the waves in a boson-fermion system, as
shown above, presents two hybrid branches �62�, which ex-
plicitly depend on the character of boson-boson, fermion-
fermion, and boson-fermion interactions.
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