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We present an exact many-body theory of ultracold fermionic gases for the Bose-Einstein condensation
�BEC� regime of the BEC-BCS crossover. This is a purely fermionic approach which treats explicitly and
systematically the dimers formed in the BEC regime as made of two fermions. We consider specifically the
zero temperature case and calculate the first terms of the expansion of the chemical potential in powers of the
density n. We derive first the mean-field contribution, which has the expected standard expression when it is
written in terms of the dimer-dimer scattering length aM. We go next in the expansion to the Lee-Huang-Yang
order, proportional to n3/2. We find the far less obvious result that it retains also the same expression in terms
of aM as for elementary bosons. The composite nature of the dimers appears only in the next term proportional
to n2.
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I. INTRODUCTION

The recent experimental developments in ultracold Fermi
gases and in particular the experimental realization of the
Bose-Einstein-condensation–Bardeen-Cooper-Schrieffer
�BEC-BCS� crossover through Feshbach resonance �1� have
arised in a field where theoretical investigations started a
long time ago. Indeed fairly soon after the publication of the
BCS theory �2�, the extension to the neutral Fermi liquid 3He
was considered �3�. Although the case of liquid 3He is more
complex than the one of ultracold gases, it is nevertheless
analogous to the situation found on the BCS side of the
crossover, in the strong interaction regime. Similarly the pos-
sibility of BEC of composite bosons was considered quite
early for excitons in semiconductors �4�, where the compos-
ite nature of these bosons is expected to be an essential
physical feature. This is the situation met in the BEC range
of the BEC-BCS crossover.

Deep theoretical investigation of this last situation was
made not long afterwards by Keldysh and Kozlov �5�, fol-
lowing a seminal work by Popov �6� which considered a
physical model with short-range potentials, much closer to
the ultracold gas case. In both cases, due to the formal simi-
larity between the Bogoliubov and the BCS frameworks, the
theoretical treatment relied on the fact that in the dilute limit
the formalism leads directly to the Schrödinger equation for
the molecular state corresponding to the composite boson.
This provided an anticipation of the study of the whole BEC-
BCS crossover. Independently, Eagles �7�, in the course of a
study of superconductivity in doped semiconductors �where
the electron gas has a low concentration compared to stan-
dard metals�, was led to investigate the extrapolation of the
simple BCS formalism toward the dilute regime where pair
formation would take place, due to the attractive interaction,
and Bose condensation of these pairs should occur at lower
temperatures.

In the context of cold gases, the physics of the crossover
was considered by Leggett �8�, who stressed the physical
interest of considering Cooper pairs as giant molecules, em-
phasized the change of physical regime when the chemical

potential goes through zero, and introduced the scattering
length in the BCS formulation. The matter was taken up by
Nozières and Schmitt-Rink �9� who studied the smooth evo-
lution of the critical temperature in the crossover within the
simplest T-matrix approximation, showing in particular how
the critical temperature of the ideal Bose gas is recovered in
the strong coupling limit. Sá de Melo, Randeria, and Engel-
brecht �10� addressed the crossover with the functional inte-
gral formalism.

As it has often been stressed, the physical situation found
in this BEC-BCS crossover is extremely interesting since �at
least for wide Feshbach resonances �1,11�� the scattering
length a of the different fermions with mass m is enough to
fully describe their interaction, while one has still to deal
with the full complexity of a strongly interacting system. As
a result the theoretical problem has not been solved exactly
and one has to rely on various approximate schemes �1�, the
simplest one being the straight BCS formalism �often called
BCS-MF� which is known to give a correct description at
zero temperature in both the extreme BEC and BCS limits
a→0�. The imperfections of the approximate treatments are
clearer in the BEC regime. Indeed if one wants to describe
properly the departure from the ideal Bose gas of dimers, one
has to provide a correct description of the dimer-dimer inter-
action, in order to find the expected physics of a weakly
interacting Bose gas. As stressed by Keldysh and Kozlov �5�
the composite nature of the dimers has already to be properly
taken into account at this stage in order to obtain correct
results.

A first step in this direction for the specific case of short-
range interactions, relevant for cold gases, was made by
Haussmann �12� who obtained, both in the normal and in the
superfluid state �where this can be found naturally out of the
BCS ansatz�, that the dimer-dimer scattering length aM is
related to the fermion scattering length a by aM =2a. This
result was also obtained in Ref. �10� in the superfluid state by
other methods. The level of approximation corresponding to
this result turns out to be the Born approximation for the
dimer-dimer scattering. At the same level of approximation
Pieri and Strinati �13� derived quite recently the Gross-
Pitaevskii equation from the Bogoliubov-de Gennes equa-
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tions. However this level of approximation was markedly
improved by Pieri and Strinati �14� who performed the cal-
culation at the level of a T-matrix approximation and found
aM �0.75a. Nevertheless their calculation does not include
all the processes resulting from the existence of the fermions
making up these composite bosons. The exact numerical re-
sult was obtained recently by Petrov, Salomon, and Shlyap-
nikov �15� who basically solved the relevant Schrödinger
equation for the four-body problem and found for this dimer-
dimer scattering length aM �0.60a. Thereafter it was shown
�16� how this same problem could be exactly formulated and
solved within the methods of quantum field theory, with
naturally exactly the same result. This last work is quite rel-
evant to the present paper, and represents the basis out of
which we will work. This is naturally linked to the fact that
field theoretic methods are a convenient, and probably nec-
essary, framework for an exact formulation and solution of
this superfluid strong coupling problem raised by the BEC-
BCS crossover.

In this paper, we provide an exact approach to the BEC-
BCS crossover problem from the BEC side by presenting an
exact fermionic theory of a BEC superfluid of composite
bosons in the low density range. The two interacting fermion
species we deal with are actually the two lowest energy hy-
perfine states used experimentally �1� in ultracold gases of
6Li or 40K, and as it is usually done we will for convenience
refer to them as “spin up” and “spin down” states. Specifi-
cally working in the low density range means that we pro-
ceed basically to an expansion in powers of the gas density.
Otherwise our framework is completely general. In the
present paper we deal with the lower orders in this expan-
sion, but nothing in principle prevents our approach to be
extended to higher orders, although admittedly this will re-
quire much more work. Similarly we will restrict ourselves
to the T=0 situation, which brings strong simplifications as
we will see because in this case there are no fermions at all
in the normal state. However it is quite possible to extend
our approach to nonzero temperature. Finally, we deal here
with thermodynamics, but our framework allows us naturally
to calculate dynamical quantities.

As we mentioned our approach is in principle a low den-
sity expansion. However the density n is not a convenient
basic parameter since it rather appears in the formalism as
the result of a calculation. On the other hand it is known �and
we will see it explicitly below� that in the simple BCS ap-
proximation for the BEC limit, which as mentioned above
corresponds to a Born approximation at the level of the
mean-field term, the density n is proportional to �2, where �
is the gap parameter of the BCS theory. Hence a convenient
way to proceed effectively to a low density expansion is
rather to expand in powers of �. However this quantity is
specific of the BCS approximation, which has no general
validity. But it is directly related to the anomalous self-
energy ��p� �where p is an energy-momentum four-vector�
which is a completely general microscopic quantity charac-
teristic of a superfluid system. Hence our method will spe-
cifically be an expansion of the general equations in powers
of the anomalous self-energy ��p�.

Here we will calculate the equation of state, or more pre-
cisely the dependence of the chemical potential � on the

density n �a short account of our calculation has already been
published �17��. Actually this is rather the reciprocal of this
function which comes naturally out of the calculation, since
� enters the Green’s functions while n is obtained at the end
of the calculation, after elimination of ��p� which comes in
the intermediate steps. The lowest order term in the expres-
sion of �, beyond the trivial term of half the molecular bind-
ing energy −1 / �2ma2�, is the mean-field term. One has to
note that, even at this stage, the composite nature of the
bosons we deal with is entering as noted by Keldysh and
Kozlov �5�. However, in our case it is lumped into the full
dimer-dimer scattering length aM. This result is physically
natural since, beyond the zeroth order term −1 / �2ma2� in the
chemical potential �18� corresponding to an isolated mol-
ecule, we expect in a density expansion to find the physics of
two coexisting molecules, which should be fully describable
by aM for its static properties, corresponding to the zero en-
ergy scattering properties. Nevertheless, as far as we know,
this quite reasonable result has always been in the literature
more or less taken for granted or cursorily obtained, but not
fully explicitely derived from a microscopic theory for com-
posite bosons. Hence our first step will be to obtain this fully
explicit derivation.

However we are naturally essentially interested by the
next order term, at which we will also limit our present cal-
culation. From the theory of weakly interacting elementary
bosons this term is proportional to n3/2, as first obtained by
Lee and Yang �19�. We refer to this term as the LHY term.
This term has then been rederived by Beliaev �20� making
use of field theoretic methods. Naturally it is reasonable to
expect that a similar term arises for composite bosons. What
is however less clear is that the coefficient is just the same as
for elementary bosons, i.e., that it can be simply expressed in
the same way in terms of aM. Indeed it is clear that, at some
stage in the expansion, the composite nature of the bosons
will enter by other quantities than those describing the phys-
ics of elementary bosons. This is quite obvious physically
since, by going to higher densities �which corresponds to
take into account higher-order terms in the expansion�, we
will go toward unitarity and find physical properties linked to
the existence of Fermi seas. Obviously this cannot be ob-
tained from the physics of elementary bosons. Hence it is
conceivable that additional processes contribute to the n3/2

term for composite bosons. Nevertheless we will find at the
end of our paper that the n3/2 term is indeed identical to the
LHY term provided the dimer-dimer scattering length is
used. The fact that this is not obvious is immediately realized
from the number and the complexity of our steps, which do
not map systematically on the elementary boson derivation.

On the other hand this result makes sense physically when
it is realized that the LHY term is directly linked to the
existence of the gapless collective mode. A standard pertur-
bation expansion should produce a n2 term as the next term
after the mean-field one. The existence of the LHY term is
linked to the presence of these gapless elementary excita-
tions which produce a singularity in the expansion, leading
formally to a divergence in the coefficient of the n2 term.
Obtaining the proper result is equivalent to the resummation
of a partial series to all order in perturbations in order to
eliminate the singularity. Since these steps involve only low
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energies, they do not test the internal structure of the bosons
which comes into play when energies of order of the binding
energy 1 /ma2 are involved. In such a case it is reasonable
that no difference appears between elementary and compos-
ite bosons. On the other hand the calculation of the coeffi-
cient of the regular n2 term in the expansion involves the
consideration of energies of order of the binding energy, as
we will see explicitly, making explicit the composite nature
of the bosons. This implies that at the level of this term one
finds a result different from the case of elementary bosons.
Note that this result has been previously assumed to be cor-
rect in calculations of collective mode frequencies �21,22�.
On one hand this was in agreement with Monte Carlo calcu-
lations �23�, and on the other hand this has been supported
by very recent experiments �24�.

At the level of handling the collective mode, very strong
analogies with a purely bosonic approach, in particular with
Beliaev’s work �20�, will appear for obvious physical rea-
sons, although it can be seen that our treatment bypasses a
good deal of Beliaev’s detailed diagrammatic analysis. We
will not try to put these analogies away, but rather make use
of these similarities and correspondences to make easier the
physical and technical understanding of our calculation.
However we will never make an actual use of a bosonic
approach and all our theory is a purely fermionic theory, the
essential physical feature being that we deal with fermion
physics but with negative chemical potential ��0. In par-
ticular we often use the word dimer to describe two fermions
with spin up and spin down. But since the theory contains, in
the corresponding propagator, not only the bound state of
these fermions but also the scattering states, it should be
taken as a simple convenient wording, although it is natu-
rally physically suggestive. More generally and formally the
anomalous self-energies ��p� and �*�p� play clearly a role
analogous to �b0� and �b0

†� for bosonic superfluidity.
Our paper is organized according to the above introduc-

tion. After introducing briefly the general formalism in the
Sec. II, we proceed to the calculation of the normal and
anomalous self-energies in Sec. III to lowest order in ��p�,
which leads us to the mean-field term in the expression of the
chemical potential. Then in Sec. IV we proceed to discuss
the collective mode which plays an essential role in the cal-
culation of the LHY term. Then the calculation of the con-
tribution of this collective mode to the normal and anoma-
lous self-energies is performed in Sec. V, at the end of which
the LHY contribution to the chemical potential is obtained. A
number of technical details are treated in appendixes, to try
to make more palatable the main part of this paper which is
already fairly heavy.

II. GENERAL

Our work deals only with the T=0 situation. Hence it
would be most natural to use the standard T=0 Green’s func-
tion formalism and naturally all the content of our paper can
be reproduced with this formalism. However one has in this
case to be careful in dealing with real frequencies, and
specify precisely the location, with respect to the real axis, of
singularities in the corresponding complex plane. This is of-

ten left implicit. A simple way to clarify this question is to
deal with complex frequencies. But this is actually what one
has to do naturally when one works at T�0, where the fre-
quencies run on the imaginary frequency axis. In the T→0
limit the discrete sums over Matsubara frequencies turn into
integrals over frequencies running on the imaginary axis �the
link with the T=0 formalism is merely obtained by continu-
ing analytically the frequencies toward the real frequency
axis, that is performing a so-called Wick rotation on the fre-
quency�. This leads to somewhat clearer results. Hence, de-
spite its somewhat artificial character, we will work quite
specifically with this T=0 limit of the T�0 formalism. Ac-
tually this will not appear in many of our expressions be-
cause of their formal nature, and for this reason it does not
make any real problem. The essential point is that, in this
way, we will always have perfectly regular expressions, with
an effective handling of which is quite clear and easy.

We deal only with the formalism of fermionic superfluid-
ity, as it is known in superconductivity �25� and superfluid
3He �26�. This entails the use of both the “normal” fermionic
Green’s functions G↑↑�p�=G↓↓�p��G�p�, where we make
use of the four-vector notation p�	p ,�
, and their “anoma-
lous” counterpart F�p� and F+�p�, where we make use of
standard notations �25�. This could be written in a compact
Nambu formalism, but for clarity we prefer to write the nor-
mal and anomalous parts explicitely, with slightly different
sign conventions. In practice we will always consider in the
following, when we calculate G�p�, that we deal with G↑↑�p�,
without writing it explicitely for simplicity. The existence
�i.e., the fact that they are nonzero� of these anomalous
Green’s function is the basic ingredient of fermionic super-
fluidity in our formalism. This is quite clear physically since
they are related to the condensate.

We start by writing Dyson’s equations for this superfluid,

G�p� = G0�p� + G0�p���p�G�p� + G0�p���p�F+�p� , �1�

F+�p� = G0�− p���− p�F+�p� − G0�− p��*�p�G�p� , �2�

their corresponding diagrammatic representation being given
in Fig. 1. Here G0�p�= �i�−	p�−1 is the free atom Green’s
function, with 	p=
p−� the atom kinetic energy 
p=p2 /2m
measured from the chemical potential �. The quantities ��p�
and ��p� are, respectively, the normal and the anomalous
self-energies. By definition ��p� is the sum of all diagrams,
with one entering p line and one outgoing p line, which
cannot be separated into two disconnected parts by cutting a
single G0�p� line �or G0�−p� line�. ��p� has the same defini-
tion except that it has two entering lines, one �p , ↑ � line and
one �−p , ↓ � line. We note that ��p� depends naturally in the
general case on momentum and frequency. In the second
equation, for F+�p� which begins with an outgoing �−p , ↓ �

FIG. 1. Diagrammatic representation of Dyson’s equations �Eqs.
�1� and �2��.

SUPERFLUID EQUATION OF STATE OF COLD … PHYSICAL REVIEW A 78, 053621 �2008�

053621-3



line and finishes with an outgoing �p , ↑ � line, it would look
more symmetrical to introduce a corresponding anomalous
self-energy �+�p�, analogous to ��p�, but with two outgoing
lines, one �−p , ↓ � line and one �p , ↑ � line. However it can be
related directly to �*�p� by time reversal, as we have written
explicitly. All formulas in the following turn out to be sim-
pler to interpret when this substitution is done, and we will
follow this standard habit. We note also that, since we deal
with an equilibrium situation, where the gas is homogeneous,
we do not need to introduce Green’s functions with different
entering and outgoing momenta, as it would be required in
the case of an inhomogeneous system.

Dyson’s equations �1� can be understood as a way of or-
dering the full perturbation expansion, by gathering terms
into ��p� and ��p�. However it is interesting to note that this
can be done in slightly different ways. For example, we can
gather in Eq. �1� all the terms where only the free Green’s
function G0�p� and the normal self-energy ��p� appear, that
is the terms where no anomalous terms are present. This
leads to introduce G0�p�=G0�p�+G0�p���p�G0�p�
+G0�p���p�G0�p���p�G0�p�+¯, that is G0

−1�p�=G0
−1�p�

−��p�. In this way, by making use of G0�p� instead of G0�p�,
we are only left to write in Dyson’s equations the anomalous
terms, that is to rewrite these equations as

G�p� = G0�p� + G0�p���p�F+�p� , �3�

F+�p� = − G0�− p��*�p�G�p� . �4�

It is indeed checked easily that the algebraic solution of Eqs.
�1� and �2�, as well as the one of Eqs. �3� and �4�, is indeed

G−1�p� = G0
−1�p� + ��p�G0�− p��*�p� . �5�

Making use of the expression of G0
−1�p� this can be rewritten

as

G−1�p� = G0
−1�p� − ���p� − ��p�G0�− p��*�p�� . �6�

This result could have been obtained directly in the follow-
ing way. In the definition we have taken above for the self-
energy, we had excluded diagrams made of two blocks
linked by a single propagator G0�p� �corresponding to an
atom propagating to the right, as for the definition of the
normal self-energy� or G0�−p� �corresponding to an atom
propagating to the left, as it is produced by the anomalous
self-energies�. However we could take another definition
where we would exclude only blocks linked by a rightward
propagator, just as in the normal state. In this case the formal
expression of G�p� in terms of the self-energy, i.e., G0

−1�p�
=G0

−1�p�−S�p�, is just the same as in the normal state, as it is
indeed the case in Eq. �6�. But the expression of the self-
energy has been naturally modified from ��p� to S�p�. In-
deed we now have to include terms containing leftward
propagators G0�−p�. But it is easily realized that these new
terms contain at most a product ��p��*�p�, corresponding to
the presence of anomalous self-energies of opposite types at
the extremities of the block. These two anomalous self-
energies can be separated by any number of leftward propa-
gators G0�−p�, with normal self-energies ��−p�. The sum of
all these produces a factor G0�−p�, which leads to the relation

S�p� = ��p� − ��p�G0�− p��*�p� , �7�

in agreeement with Eq. �6�.

III. � EXPANSION: LOWEST ORDER

While they are completely general, the considerations pre-
sented in the preceding section are not of much practical use
since we have no expressions for the normal and anomalous
self-energies. In order to obtain explicit expressions, we will
now begin to proceed along the lines outlined in the intro-
duction, namely to perform a systematic expansion in powers
of �. In the present section, as an introduction and as a first
step, we will only consider the lowest order in this expan-
sion. The next order will then be addressed in the next sec-
tion. In the first subsection we will consider the expansion of
the normal self-energy, which turns out to be the easier one.
Then the anomalous self-energy will be handled along the
same lines.

A. Normal self-energy

As we have indicated in the introduction, and as we will
check explicitly below, the expansion in powers of � has the
character of an expansion in powers of the density n since we
will find n��2. Hence the zeroth order in powers of � cor-
responds to an infinitely dilute gas for which the normal
self-energy is naturally zero. Since by its definition this nor-
mal self-energy contains only processes which conserve glo-
bally the number of particles, the lowest-order term ��2��p�
in the normal self-energy must contain both � and �*, be-
cause � implies from its definition the annihilation of two
atoms �going physically in the condensate�, while �* corre-
sponds to the creation of two atoms �coming out of the con-
densate�. Hence this lowest-order term in the normal self-
energy is the sum of all diagrams which contain ��p�� and
�*�p��, and which have one entering line p and one outgoing
line p, the rest of the diagrams containing only �since we
proceed to an expansion� �=0 quantities, that is normal state
quantities �see Fig. 2�. We call the sum of all these normal
state diagrams the “normal part” of ��2��p�. This is just
��2��p�, except for the ��p�� and �*�p�� terms.

Explicitly this means that this normal part of the diagrams
contains only any number of bare propagators G0�p� and of
interactions lines. Moreover the two atom lines coming out
of �*�p�� �with opposite spins� are not allowed to interact
immediately after entering the normal part of the diagram,
since such an interaction is already included in �*�p�� �as we
will see explicitly below� and allowing it would amount to
double counting of diagrams. Similarly the two atom lines
entering ��p�� are not allowed to interact immediately be-
fore. As it happens, such a normal state set of diagrams has

FIG. 2. Diagrammatic representation of S�2��p�.

R. COMBESCOT AND X. LEYRONAS PHYSICAL REVIEW A 78, 053621 �2008�

053621-4



already been essentially considered in Ref. �16�. Indeed in
this paper the scattering of a single atom by a dimer �made of
atoms with opposite spins� has been calculated. The fact that
a dimer is entering the diagram implied that the two corre-
sponding atom lines cannot interact immediately in the dia-
gram, since such an interaction is already taken into account
in the dimer propagator and this would be again double
counting. There is a similar requirement for the two lines
corresponding to the outgoing dimer. We see that the require-
ments on the normal part of ��2��p� are just the same as in
the above paper. In this Ref. �16� the sum of all these dia-
grams was denoted T3�p1 , p2 ; P�, where p1 �respectively, p2�
is the four-vector of the entering �respectively, outgoing�
atom, and P is the total four-vector of the single atom and the
dimer. In our statement we apparently overlook the fact that
T3�p1 , p2 ; P� contains only three atom lines, which go from
the beginning to the end of the diagram, with various inter-
actions between them in the diagram, since we deal with the
vacuum scattering of an atom and a dimer. In contrast we
could think that, in addition to these lines, the normal part of
��2��p� may contain any number of loops of atom lines.
However it is clear physically that these loops are not al-
lowed. Indeed if we think of this normal part as representing,
in a time representation, a succession of processes due to
interaction, the appearance of a loop corresponds to the cre-
ation of a particle-hole pair. While such processes can always
occur at nonzero temperature, in our T=0 situation they are
possible only if the chemical potential � is positive, thereby
allowing the existence of a Fermi sea in which the hole can
be created. But in our dilute regime we have ��0 and these
processes are forbidden. This argument is developped more
technically in Appendix B. Hence it is correct to identify the
normal part of ��2��p� with T3 since both contain only three
atom lines, subject to the same restrictions indicated above.

Nevertheless there is still a small difference in the general
case between the normal part we want and T3. In the defini-
tion of T3 one has to sum over all possible four-vectors for
the two lines making up the entering dimer, with the only
restriction that their sum is fixed at P− p1. A similar summa-
tion applies for the two lines making up the outgoing dimer.
On the other hand in our normal part the two lines �p� , ↑ �
and �−p� , ↓ � entering in ��p�� have a total zero four-vector,
and because ��p�� depends on p�, when we sum over p�,
there is a weight ��p�� which depends on p�, in contrast with
the case of T3. Nevertheless, as shown in Appendix A, it is
possible to express in the general case our self-energy in
terms of T3. But in our specific problem, this is an unneces-
sary complication since we will see that, at the order of the
expansion we are considering, the dependence of ��p�� on
p� can be neglected, and ��p�� can be considered as a con-
stant which we denote merely as �. Hence we can factor �
out. Similar considerations apply to �*�p� � and the entering
dimer lines.

There is still a very important point to consider before
writing our expression for ��2��p�. Among all the diagrams
we have considered contributing to ��2��p�, there is necessar-
ily a diagram which gives a contribution −�G0�−p��* be-
cause it satisfies all our requirements. Indeed this is just what
is coming from the lowest-order diagram in T3, which gives
a contribution −G0�−p� to T3 and corresponds merely to the

Born approximation. This diagram is necessarily present be-
cause we considered it already in the preceding section,
when we were dealing with the general expansion of G�p� in
powers of ��p� and ��p�. This is just the last term in Eq. �6�,
when we replace G0�−p� by G0�−p� �since we want only
normal state diagrams� and take ��p� independent of p.
However, since it is already explicitely present in Eq. �6�,
this implies automatically that it is reducible �and indeed it is
obviously reducible� and for this reason should not be in-
cluded in ��2��p� �otherwise we would double count this dia-
gram�. On the other hand, this is clearly the only reducible
contribution coming from T3, as seen directly from the dia-
grammatic expansion �16� of T3, or because any such reduc-
ible contribution has to appear explicitely from Eq. �6� as
explained above. Accordingly we have to subtract this con-
tribution out and we obtain finally

��2��p� = ���2T3�p,p;p� + ���2G0�− p� . �8�

We can also rewrite this result in terms of our self-energy S
as

S�2��p� = ���2T3�p,p;p� . �9�

This result is also directly quite natural since, when we
evaluate S, the diagrams with G0�−p� are not considered as
reducible, as we have seen, and accordingly −�G0�−p��*

should not be subtracted.
We are now in position to calculate the single spin atomic

density n, which is given quite generally by

n = dp

�2��3
−�

+� d�

2�
G�p�ei�0+. �10�

If G is replaced by G0, one checks easily that n=0, which is
physically obvious since in this case we deal with a nonin-
teracting fermion gas, at T=0, and chemical potential ��0.
There is no Fermi sea �which arises only for �0� and there
are no fermions. Hence we can replace completely generally
G�p� by G�p�−G0�p�=G0�p�S�p�G�p� in Eq. �10�. Since we
work in this section at the lowest order in �, which means at
order �2 in the present case, we can replace S�p� by S�2��p�,
and G�p� by G0�p�. This leads to

n = ���2 d3p

�2��3
−�

+� d�

2�
T3�p,p;p��G0�p��2 �11�

where, as in Eq. �10�, p is for 	p ,�
.
At this stage it seems that, in order to calculate the den-

sity, we are required to have a deep knowledge of T3. This
seems physically reasonable since, in Eq. �11�, T3 describes
the scattering of an atom with the condensate which has
clearly to be taken into account. However the actual situation
turns out to be much simpler. In order to calculate the inte-
gral over � in Eq. �11�, it is convenient to close the contour
in the upper complex half plane Im �0 �which corresponds
to Re�i���0�, since the pole of G0�p�= �i�−	p�−1 is found
for Im ��0 �since 	p=
p+ ���0�. However it is shown in
Appendix C that, except for the Born contribution,
T3�p , p ; p� is analytical in the upper complex half plane and
does not contribute to the integral. The result comes entirely
from the Born contribution. This means that surprisingly the
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contribution of ��2��p� to n is zero, and that the only nonzero
contribution comes from the explicit BCS term −���2G0�−p�
in Eq. �7�. In other words the approximate BCS formalism
gives the exact result at the lowest order in our � expansion.
It reads

n = − ���2 d3p

�2��3
−�

+� d�

2�
G0�− p��G0�p��2 =

m2���2

8��2m����1/2 .

�12�

If we make use in this result of the zeroth order value of the
fermion chemical potential �=−Eb /2=−1 /2ma2, we end up
with

n �
m2a���2

8�
. �13�

Actually this relation ���2= �8� /m2a�n is precisely obtained
from the dimer propagator T2�P� �see Sec. IV� when it is
evaluated near its pole and with the purely bosonic propaga-
tor factor merely replaced by n.

B. Anomalous self-energy

We proceed now in a somewhat similar way for the
anomalous self-energy. The resulting equation is the gener-
alization of the standard “gap equation” of the conventional
BCS theory and it has the same character of being finally a
self-consistent equation for ��p�. In writing an expression
for ��p�, we can in full generality separate all contributing
diagrams in two sets. In the first set, for both of the two
entering fermionic lines, the first interaction is between these
lines themselves. The second set corresponds to the opposite
case, where for at least one of these two entering lines the
first interaction is with a line which is not the other entering
fermionic line �see Fig. 3�. This separation of the diagrams in
two classes is completely analogous to the separation of the
diagrams, coming in the standard self-energy �25�, into a
Hartree-Fock-like set and another set involving the full ver-
tex.

The set of diagrams where the two fermionic lines interact
can be immediately written in terms of F�p�, which is analo-
gous �and actually directly related� to F+�p�, except that it

has, instead of outgoing lines, an ingoing �p , ↑ � line and an
ingoing �−p , ↓ � line. It satisfies a Dyson’s equation analo-
gous to Eq. �1� and �2�, namely,

G�p� = G0�p� + G�p���p�G0�p� − F�p��*�p�G0�p� ,

�14�

F�p� = F�p���− p�G0�− p� + G�p���p�G0�− p� . �15�

Introducing the Fourier transform V�q� of the bare instanta-
neous interaction between ↑ atom and ↓ atom, this first con-
tribution to the anomalous self-energy is

�1�p� = − dkd�

�2��4 V�p − k�F�k,�� , �16�

which has naturally just the form of the standard BCS term.
Let us now switch to the other set of diagrams, for which

we proceed to an expansion similar to the one carried out in
the preceding subsection. Because of particle conservation
this expansion now involves odd powers in �� ,�*�. We con-
sider first the term proportional to ��p��. The normal part of
this diagram contains only one ↑ line and one ↓ line �with
any number of interactions�, since additional lines are not
allowed as discussed above. Moreover, because the interac-
tion is instantaneous, there is no possibility of crossing of
interactions when the diagram is drawn in time representa-
tion. Finally our lines are not allowed to go backward in time
since this would correspond to the creation of a particle-hole
pair, which is again not allowed in our case where we have a
negative chemical potential at T=0 �by contrast, for �0,
such processes could naturally occur�. In summary the only
possible diagrams are those of repeated interactions between
the ↑ and the ↓ atom. This corresponds merely to the propa-
gation of a normal dimer. However, these diagrams are al-
ready generated by the iteration of the term �16� when F�k� is
written as G0�p���p�G0�−p� from Eq. �15� at lowest order,
and they should not be double counted. Hence there is no
term of order � in this set, and our expansion starts with
terms containing ��p���*�p����p��.

The analysis is now somewhat similar to the one made in
the preceding section III A. To obtain the above third-order
term in the equation for ��p�, we have to write, together with
the factor ��p���*�p����p��, all the normal state diagrams
which have, in addition to the two entering lines �p , ↑ � and
�−p , ↓ �, another couple of entering lines coming from
�*�p��. Moreover, we have two couples of outgoing lines,
going into ��p�� and ��p��. Just as in the preceding section,
we have a no first interaction restriction for all these couples
of lines, including the �p , ↑ � and �−p , ↓ � ones. As discussed
above, in addition to these ingoing and outgoing ones with
their continuations, no other lines can appear in these dia-
grams since they form loops, which are forbidden since we
are at T=0 and ��0. We find that such normal state dia-
grams have already been essentially encountered in Ref.
�16�, where their sum has been called ��q1 ,q2 ; p2 , P�. Here
q1 and q2 are for the entering fermionic lines �corresponding
to p and −p in our case�, the total four-vector for the ingoing

FIG. 3. The two sets of diagrams making up the anomalous
self-energy. By definition the second set excludes the diagrams
which are already included in the first set. In this second set the full
propagators drawn may be normal or anomalous �accordingly we
have not drawn the second arrow on these propagators�. Similarly
the vertex corresponding to the rectangular box has normal and
anomalous parts.

R. COMBESCOT AND X. LEYRONAS PHYSICAL REVIEW A 78, 053621 �2008�

053621-6



and outgoing lines being 2P. Finally there is, in the defini-
tion of �, one entering 2P−q1−q2 dimer, while there are
two outgoing dimers P+ p2 and P− p2.

Just as in the preceding section, we should take into ac-
count that, in the general case, we have the weight
��p���*�p����p�� which depends on the four-vectors of the
atom propagators making up the dimers, while in the defini-
tion of � the summation over these variables is already per-
formed, with only their sums 2P−q1−q2, P+ p2 and P− p2
being fixed. This problem could nevertheless be circum-
vented and an expression for the normal part obtained in
terms of �, in a way analogous to Appendix A. However,
just as in Sec. III A, this is not necessary. Indeed from the
lowest-order term �1�p� given by Eq. �16�, we see that ��p�
does not depend at lowest order on the frequency variable �.
Moreover, since we deal with a bare interaction potential
V�r� which has a very short range, its Fourier transform V�q�
is a constant, except for very large wave vectors. But, as we
will see, these wave vectors will not come into play because
all the integrals we deal with converge at a much shorter
wave vector. Hence we find that, at lowest order, ��p� turns
out to be independent of p, just as in standard BCS theory.
Now, when we want to calculate the third-order term, we
may insert in it the expression of ��p� to lowest order, which
is just a constant which we denote again as �. Accordingly
the above problem disappears and the normal part of our
diagrams can be expressed directly in terms of
��q1 ,q2 ; p2 , P�.

Nevertheless we have to take into account, just as in Sec.
III A, that some of the diagrams appearing in ����2� are
actually not irreducible, and should not be included in our
expression for ��p�. Hence we have to subtract them out of
����2�. We denote �� what remains of � after this subtrac-
tion. This will be taken care of just below. Gathering our
results, we end up with the following �self-consistent� equa-
tion:

��p� = − dkd�

�2��4 V�p − k�F�k,i�� +
1

2
����2���p,− p;0,0� .

�17�

The factor 1 /2 in front of �� is a general topological factor
�it is present even if we do not take � as constant�. Indeed
exchanging ��p�� and ��p�� corresponds to a mere change
of variable and not to a different diagram. On the other hand,
by making use of ���q1 ,q2 ; p2 , P�, any given such diagram
would appear twice �even if � is actually unchanged when
we exchange the bosonic variables of the two outgoing
dimers, which amounts to change p2 into −p2�. Hence the
factor 1 /2 is required to avoid this double counting. We note
that clearly ��p� depends indeed on p in general, since this is
already explicitely the case in Eq. �17� where the third-order
term depends on p through ���p ,−p ;0 ,0�.

Let us now be specific about the difference between �
and ��, due to the reducible diagrams contained in ����2�.
One can obtain them by looking at the diagrammatic expan-
sion �16� of �. However it is easier to notice, as indicated
above, that they appear automatically explicitely from Eqs.
�14� and �15�, when their solution are expanded in order to

obtain the complete perturbative series expansion of G�p�
and F�p� in powers of � and �, because this expansion pro-
vides precisely all the reducible contributions in terms of the
irreducible self-energies � and �. When we expand the so-
lution for F�p�,

F�p� =
��p�

�G0
−1�p� − ��p���G0

−1�− p� − ��− p�� + ��p��*�p�
,

�18�

to third order, we find

F�p� = G0�p����p� + ��2��p�G0�p���p� + ��p�G0�− p�

���2��− p� − ��p�G0�− p��*�p�G0�p���p��G0�− p�
�19�

where for consistency we have to take only the second-order
contribution ��2��p� �given by Eq. �8�� to ��p�. The third-
order terms in the bracket are clearly the reducible contribu-
tions to ����2��p ,−p ;0 ,0�, as it can be seen directly. They
are displayed diagrammatically in Fig. 4. In particular the
last term of the bracket comes from the Born term of
��p ,−p ;0 ,0�. Hence we have explicitly

1

2
����2���p,− p;0,0�

=
1

2
����2��p,− p;0,0�

− ���2��p�G0�p���p� + ��p�G0�− p���2��− p�

− ��p�G0�− p��*�p�G0�p���p�� . �20�

However it is now more convenient to work with � rather
than ��. Hence we add to both members of Eq. �17� the
reducible contributions. After multiplication by G0�p�G0�−p�
and taking into account Eq. �19�, we end up with

F�p� = G0�p�G0�− p��1�p�

+
1

2
����2G0�p�G0�− p���p,− p;0,0� . �21�

Finally we obtain a closed equation by eliminating F�p� in
favor of ��p� through Eq. �17�, or more simply through the
definition, Eq. �16�. Multiplying Eq. �21� by V�k−p� and
summing over p we find

FIG. 4. Reducible contributions to the anomalous self-energy
from ����2��p ,−p ;0 ,0�. In the first two terms T3� is obtained from
T3 by excluding the Born term, since it is taken into account ex-
plicitly by the third term.
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�1�k� = − dpd�

�2��4V�k − p�G0�p�G0�− p��1�p� −
1

2
����2

� dpd�

�2��4V�k − p�G0�p�G0�− p���p,− p;0,0� .

�22�

If we had only the first term in the right-hand side, we would
merely have the linearized BCS gap equation. Accordingly
we proceed in the standard way �20,27� to eliminate the bare
potential in favor of the scattering amplitude. This is more
easily understood by proceeding in a formal way. Introduc-
ing the operator V̂, with matrix elements Vk,k��V�k−k��,
and the diagonal operator D̂ with matrix elements Dp,p�
��p,p�G0�p�G0�−p�, the T matrix for two fermions �in the
center of mass frame� in vacuum satisfies T̂= V̂+ V̂D̂T̂= V̂
+ T̂D̂V̂, where the operator product implies naturally the
summation on the intermediate variables with �p�
−�2��−4�dpd�. This can just be written V̂−1= T̂−1+ D̂. If we
note F��p� the second term in the right-hand side of Eq. �21�,
we can rewrite Eq. �22� as �1= V̂D̂�1+ V̂F�, or V̂−1�1= D̂�1

+F�. Inserting the above value of V̂−1, this leads to T̂−1�1

=F�, or �1= T̂F�. This is explicitly

�1�k� = �
p

T�k,p,E�F��p� �23�

where E is the energy at which the T matrix is calculated. In
the present case, since G0�p�= �i�−
k+��−1, the total energy
for the two fermions is E=2� �� for each fermion�, as it can
be seen directly by integrating the first term of Eq. �22� over
�.

In standard scattering theory the scattering amplitude
fk�k�� at energy E=k2 /m=k�2 /m �the reduced mass is m /2�
is obtained from the evaluation of the T matrix “on the
shell,” i.e., taking T�k ,k� ,E� with E=k2 /m. In the present
case we deal with a potential with a short range of order r0.
This implies that k and k� have to vary on a typical scale 1 /r0
in order to have a significant variation of T�k ,k� ,E�. Since
in the case of ultracold atoms we are dealing with much
smaller wave vectors, and we may replace T�k ,k� ,E� by
T�0 ,0 ,E�. Hence the scattering amplitude is merely given by
fk�k��=−�m /4��T�0 ,0 ,E�. On the other hand, in this same
regime, the scattering amplitude is given by its s-wave com-
ponent f�k�=−�1 /a−�−mE�−1. This gives T�0 ,0 ,E�
= �4� /m��1 /a−�−mE�−1.

Now we evaluate Eq. �23� for k small compared to 1 /r0.
We see that in this range �1�k� is essentially a constant,
which we call simply �1. On the other hand, F��p� is a rap-
idly decreasing function �16� of p, on a typical scale 1 /a.
Hence we may replace in Eq. �23� T�k ,p ,E� by T�0 ,0 ,2��,
which can be expressed in terms of the scattering amplitude.
This leads explicitly to

m

4�
�1

a
− �2m����1 =

1

2
����2�

p

G0�p�G0�− p���p,− p;0,0�

�24�

Finally we take into account the fact that the sum over p
appearing in the right-hand side of Eq. �24� is directly related

to the dimer-dimer scattering amplitude T4 in vacuum �16�
by

T4�0,0;	0,2�
� = �
p

G0�− p�G0�p���− p,p;0,0� �25�

whereas

� 8�

m2a
�2

T4�0,0;	0,− Eb
� =
2��2aM�

m
. �26�

We note that, in Eq. �25�, we end up with T4 being evaluated
at a dimer energy 2�, while the dimer-dimer scattering in
Eq. �26� is related to T4 evaluated at the binding energy
−Eb=−1 /ma2. However at this stage the small difference
between 2� and −1 /ma2 is unimportant in T4, since it ap-
pears in the corrective term which is on the right-hand side
of Eq. �24�. In this term we may also, within the same level
of accuracy, use �1��. This leads finally to

1

a
− �2m��� =

m2a2

8
aM���2. �27�

When we substitute in this expression the relation ���2
�8�n /m2a found in Sec. III A, we obtain at the same level
of accuracy

� = −
1

2ma2 +
�naM

m
, �28�

which is the standard mean-field correction to the chemical
potential, with the proper dimer-dimer scattering length aM.

IV. COLLECTIVE MODE

Since the LHY terms come physically from the low-
energy collective mode, we need first to derive the expres-
sion for the collective mode propagator, as well as its anoma-
lous counterpart. These propagators can be seen as the
extension to the superfluid state of the dimer propagator in
the normal state. For the normal component of this propaga-
tor, this is just the full vertex with two entering and two
outgoing fermion lines, the two fermions having opposite
spins. In the normal state, in the dilute limit, this vertex is
just the single dimer propagator T2 already used in Ref. �16�.
It depends only on the total momentum P and the total en-
ergy � of the two fermions. In contrast with the above ref-
erence we work in the grand canonical ensemble and the
energies are taken with respect to the chemical potential � of
single fermions. Hence for all the energies e used in Ref.
�16�, we have to make the substitution e→�+�. For the
single dimer propagator we have to make E→�+2�. How-
ever we keep for simplicity the same notation as in Ref. �16�
for the various quantities after having made this substitution.
Also for coherence, and in contrast with the preceding sec-
tions, we work in the present section with real frequencies,
rather than with Matsubara frequencies. This is also more
natural physically since we are interested in particular in the
�real� frequency of the collective mode.

Making use of the quadrivector notation P= 	P ,�
 we
have thus, for this single dimer propagator in the dilute limit,
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T2�P� =
4�

m3/2
1

�Eb − �P2/4m − � + 2���

=
4�

m3/2

�Eb + �P2/4m − � + 2���
� − 2��� − P2/4m + Eb

, �29�

where Eb=1 /ma2 is the dimer binding energy, and we have
made explicit the fact that ��0. Note that physically this
propagator describes the bound state of the two fermions,
through its pole at �=2���+P2 /4m−Eb, as well as the con-
tinuum of scattering states where the dimer is broken,
through the continuum in the spectral function starting at
�=P2 /4m+2���.

In the superfluid we want to obtain the correction to this
normal state result to lowest order in ���2. More precisely we
want to correct what corresponds to the self-energy if we had
a single particle propagator. In the present case this is the
irreducible vertex in the particle-particle channel, which by
definition cannot be separated in two disconnected parts by
cutting two fermion propagators. More precisely, since the
bare interaction between fermions is already taken into ac-
count in T2�P�, this is the part of this irreducible vertex be-
yond the bare interaction we are interested in. This part
�irr�q1 ,q2 ;q1� ,q2�� of the irreducible vertex depends on the
quadrivectors q1 and q2 of the entering particles, as well as
on those q1� and q2� of the outgoing particles. Assuming for
the moment quite generally that the full vertex
��p1 , p2 ; p1� , p2�� depends also on these four quadrivectors, we
can write a Bethe-Salpeter equation, which is shown dia-
grammatically in Fig. 5�a�,

��p1,p2;p1�,p2��

= T2�p1 + p2 = p1� + p2�� + �
q1,q1�

T2�p1 + p2 = q1 + q2�

��irr�q1,q2;q1�,q2����q1�,q2�;p1�,p2��

+ �
q1,q1�

T2�p1 + p2 = q1 + q2��irr
a �q1,q2;− q1�,− q2��

��a�− q1�,− q2�;p1�,p2�� , �30�

where �q� i�d3qd� / �2��4. We have made explicit the fact
that the normal state dimer propagator T2�P� depends only
on the sum P= p1+ p2= p1�+ p2� of the incoming and outgoing
fermions quadrivectors. In Eq. �30� the first sum is com-
pletely analogous to what should be written in the normal
state. However we had also to write the second sum, which
describes the anomalous processes where a dimer can be
annihilated into the condensate or can be created from the
condensate. This leads to introduce, in correspondence with
the first sum, an anomalous irreducible vertex �irr

a where four
fermions are entering �annihilated into the condensate� and
none is going out. Correspondingly we need to introduce an
anomalous full vertex �a with only outgoing fermion lines.
Naturally in order to close our set of equations we have to
write for this vertex the corresponding Bethe-Salpeter equa-
tion, which is shown diagrammatically in Fig. 5�b�, the ma-
jor difference with the preceding one being that there is no
normal state term,

�a�− p1,− p2;p1�,p2��

= �
q1,q1�

T2�− p1 − p2 = − q1 − q2��irr�− q1�,− q2�;− q1,− q2�

��a�− q1�,− q2�;p1�,p2�� + �
q1,q1�

T2�− p1 − p2 = − q1 − q2�

��̄irr
a �− q1,− q2;q1�,q2����q1�,q2�;p1�,p2�� , �31�

where we have introduced the irreducible vertex �̄irr
a where

there are only outgoing fermions, physically created from the
condensate.

Now it is explicit in Eq. �30� that ��p1 , p2 ; p1� , p2�� depends
only on P= p1+ p2. By time reversal symmetry it depends
also only on p1�+ p2�= P, this last equality resulting from
momentum-energy conservation. Hence, just as T2�P�, it de-
pends only on the total momentum and energy P, and we
merely denote this function as ��P�. Similarly
�a�−p1 ,−p2 ; p1� , p2�� depends only on −P=−p1− p2= p1�+ p2�
and we call it merely �a�−P�. In this way Eq. �30� becomes
simply

��P� = T2�P� + T2�P��irr�P���P� + T2�P��irr
a �P��a�− P� ,

�32�

and similarly

FIG. 5. Bethe-Salpeter equations for the full vertex in the
particle-particle channel. �a� Normal part. �b� Anomalous part.

FIG. 6. Diagrammatic representation for the irreducible vertices
coming in the collective mode propagator, at second order in �. �a�
Normal irreducible vertex �irr�P�. �b�, �c� Anomalous irreducible

vertices �irr
a �P� and �̄irr

a �P�.
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�a�− P� = T2�− P��irr�− P��a�− P� + T2�− P��̄irr
a �− P���P� ,

�33�

where we have introduced

�irr�P� � �
q1,q1�

�irr�q1,P − q1;q1�,P − q1�� , �34�

�irr
a �P� � �

q1,q1�

�irr
a �q1,P − q1;− q1�,− P + q1�� , �35�

�̄irr
a �P� � �

q1,q1�

�̄irr
a �− q1,− P + q1;q1�,P − q1�� . �36�

These equations are naturally quite similar to the ones we
had for the single fermion Green’s function. Their solutions
are

��P� =
T2

−1�− P� − �irr�− P�

�T2
−1�P� − �irr�P���T2

−1�− P� − �irr�− P�� − �irr
a �P��̄irr

a �− P�
�37�

and

�a�− P� =
�̄irr

a �− P�

�T2
−1�P� − �irr�P���T2

−1�− P� − �irr�− P�� − �irr
a �P��̄irr

a �− P�
�38�

As it could be expected physically, these equations are formally identical to those obtained for pure bosons �25�. In the same

spirit we note, for later use, that we could also introduce an anomalous full vertex �̄a with only ingoing fermion lines. It is
easily shown, by writing the equivalent of Eq. �32� with this vertex, to be related to the preceding ones by

�̄a�P��̄irr
a �−P�=�a�−P��irr

a �P�. This gives

�̄a�P� =
�irr

a �P�

�T2
−1�P� − �irr�P���T2

−1�− P� − �irr�− P�� − �irr
a �P��̄irr

a �− P�
�39�

We have now to find the expressions of �irr, �irr
a , and �̄irr

a

within our expansion in powers of �. Since � corresponds to
diagrams with two ingoing fermions and �* to two outgoing
fermions, particle conservation implies that the expansions
start at second order with �irr proportional to ��*, �irr

a pro-
portional to �2, and �̄irr

a proportional to �*2. Since it can be
seen that it is not required to go to higher order, the expres-
sions of our irreducible vertices will be given by these
second-order expressions. Since we have written explicitly
the various factors � and �*, the coefficients in the expres-
sions of �irr, �irr

a , and �̄irr
a correspond to diagrams containing

only normal state propagators.
For �irr �see Fig. 6�a��, we have to write the expression

for all the normal state diagrams with one ingoing dimer
propagator and one outgoing dimer �from the very definition
of �irr�. Moreover there are in addition two lines ingoing
from �* and two lines outgoing to �. These last two couples
of lines have to be treated as dimer lines, which means that
they are not allowed to interact immediately in the normal
state diagrams we are drawing, because such interactions are
already taken into account in � and �*, and allowing them
would amount to double counting. In summary we have to
write all possible normal state diagrams with two ingoing
dimer lines and two outgoing dimer lines �these diagrams are
automatically irreducible in the sense of the definition of �irr,
that is with respect to a single dimer propagator, since the
four ingoing normal state lines cannot disappear�. This is

depicted diagrammatically in Fig. 6�a�. But this set of dia-
grams is just by definition the normal state dimer-dimer scat-
tering vertex T4 introduced in �16�. More precisely, since the
total momentum energy linked to � and �* is zero and the
total momentum energy of the ingoing lines is P, this vertex
is T4�P /2, P /2; P /2� with the notations of Ref. �16�, which
gives for �irr the explicit expression

�irr�P� = ���2T4�P

2
,
P

2
;
P

2
� �40�

With completely analogous arguments for �irr
a , we obtain

�irr
a �P� =

1

2
�2T4�P,0;0� , �41�

and similarly

�̄irr
a �P� =

1

2
�*2T4�0,P;0� , �42�

corresponding to the diagrams found in Fig. 6�b� and Fig.
6�c�. In Eqs. �41� and �42� we had to put a 1 /2 topological
factor corresponding to the fact that, for example, exchang-
ing the two factors � in Eq. �41� �that is precisely the set of
diagrams they correspond to� does not produce a different
diagram, whereas this diagram would appear twice if we had
just written �2T4.
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Finally it is worth pointing out that T4 satisfies
T4�−p1 , p2 ; P�=T4�p1 , p2 ; P�. This is physically obvious
since it corresponds to state that exchanging the arguments
of the two ingoing dimer lines does not change the value of
the vertex, since we exchange two bosons. But this property
can also be proved directly from the integral equation �16�
satisfied by T4. Similarly we have
T4�p1 ,−p2 ; P�=T4�p1 , p2 ; P�.

Let us consider now more specifically the collective mode
dispersion relation. It is given by the pole of the collective
mode propagator, that is,

�T2
−1�P� − �irr�P���T2

−1�− P� − �irr�− P�� − �irr
a �P��̄irr

a �− P�

= 0. �43�

Naturally we have first to check that for zero wave vector
P=0, the frequency � is zero, that is P=0 is solution of this
dispersion relation. For this case we have from Eq. �29�, for
the bare dimer propagator,

T2
−1�0� =

m3/2

4�
��Eb − �2���� . �44�

On the other hand we have

�irr�0�
���2

=
2�irr

a �0�
�2 =

2�̄irr
a �0�

�*2 = T4�0,0;0� =
1

16�
m3a2aM ,

�45�

where the last equality comes from Ref. �16�, and we have
used the fact that, in T4�0,0 ; 	0 ,−Eb+2���
�, we may, at the
order we are working, replace ��� by its zeroth order value,
namely ���=Eb /2 �we recall that we have to shift all the
frequencies of Ref. �16� by 2��. Since we have already
found that �2���=�Eb− ���2m3/2a2aM /8, we can easily check
that Eq. �43� is indeed satisfied in this case.

Now, as we will see, we are more specifically interested in
the collective mode dispersion relation for wave vectors �P�
�1 /a and frequencies ��Eb. Since Eb and 2��� are of the
same order of magnitude, we can expand the bare dimer
propagator to first order as

T2
−1�P� = T2

−1�0� −
m3/2

8��2���
� P2

4m
− �� . �46�

On the other hand the typical scale of variation of T4 on its
arguments is 1 /a for the wave vectors and Eb for the ener-
gies, since we deal with a normal state quantity and there are
accordingly no other scales in the corresponding problem.
Hence, for the wave vectors and frequencies we are consid-
ering, we can still take

�irr�P�
���2

�
2�irr

a �P�
�2 �

2�̄irr
a �P�

�*2 � T4�0,0;0� =
1

16�
m3a2aM .

�47�

On the other hand the above result at P=0 implies also that
we have T2

−1�0�−�irr�0�=−�1 /2��irr�0�=−��irr
a �0��, and Eq.

�43� for the collective mode frequency �cm�P� can be rewrit-
ten as

�cm
2 �P� = � P2

4m
�2

+ 2�B
P2

4m
= � P2

4m
�2

+
�naM

m2 P2, �48�

where we have set �B=4��2����irr�0� /m3/2 and in the last
step we have used the lowest-order expressions for ��� and
���2 to calculate this quantity. Naturally Eq. �48� is just the
Bogoliubov dispersion relation, with the proper scattering
dimer-dimer scattering length.

V. COLLECTIVE MODE CONTRIBUTIONS
TO THE SELF-ENERGIES

As we have already indicated in the introduction, the
LHY term arises from the collective mode contributions to
the self-energies. If we were to continue naturally our above
procedure and go to next order in �, i.e., to order �4 for
example in the calculation of the normal self-energy, we
would find singular results �as it can be checked by proceed-
ing to such a formal expansion in the explicit calculations
performed below�. This is due to the fact that the collective
mode is gapless, and the lack of gap in the excitation spec-
trum leads to a singularity in the perturbative expansion.
Hence, instead of the next order terms, we include the whole
contribution coming from the collective mode. Avoiding in
this way to proceed immediately to a � expansion is equiva-
lent to a series resummation, which allows to take care of
singularities.

Writing the collective mode contributions to the self-
energy is formally easy, when one notices for example the
analogy of the normal part of the collective mode propagator
with the product of �* and �. Indeed the term �* acts as a
“source” of fermions in our diagrams, coming physically out
of the condensate, while � acts as a “sink” of fermions going
into the condensate. These source and sink related to the
condensate are required since, at T=0, ��0, no fermions
are present except coming from the superfluid. However
when we allow to insert the normal part of a collective mode
propagator, the starting part of the propagator acts as a sink
for the rest of the diagram while the end part acts as a source.
Hence we have just to substitute ��* by the normal part of a
collective mode propagator. We will proceed in a similar way
for the anomalous parts. Naturally we will have to take care
that the self-energy contributions already calculated above
are not counted twice, by removing the corresponding terms.

A. Contribution to the normal self-energy

Hence the collective mode contribution �cm�p� to the nor-
mal self-energy is obtained by replacing, in our lowest order
expression, the product ��* by the collective mode propa-
gator, more specifically its diagonal component ��P� given
by Eq. �37�, as depicted diagrammatically in Fig. 7. We have
naturally to sum over the variable P of the collective mode.
Corresponding to Eq. �8�, this leads to

�cm�p� = �
P

T3�p,p;p + P���P� . �49�

In principle this expression is improper because it con-
tains, when we perform its expansion in powers of ���2, con-
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tributions of zeroth and first order in ���2 which have already
been taken explicitely into account in our above expansion.
However in the present case these two contributions are zero.
For the zeroth order term, this is fairly obvious physically
since it corresponds to a normal state diagram with a normal
state dimer propagator, and at T=0 no dimers are present
which makes all diagrams of this kind equal to zero. Math-
ematically this would happen because, in this diagram, the
presence of a normal state dimer would necessarily imply,
since there is no down-spin entering line, the presence of a
down-spin loop �if we calculate the up-spin self-energy�
which cannot be present as explained in Appendix B.

The conclusion is the same for the first-order term, but the
argument is slightly more complicated. The factor of ���2 in
this term is �PT3�p , p ; p+ P��T2�P��2T4�P /2, P /2; P /2�,
which is a normal state diagram �see Fig. 8�. It is actually a
part of the diagrams belonging to T3�p , p ; p� since it has one
entering fermion line and one entering dimer line, with the
same for the outgoing lines. However we have seen, as it is
detailed in Appendix C, that only the Born term in T3 gives a
nonzero contribution to the particle number. On the other
hand, the term �PT3�p , p ; p+ P��T2�P��2T4�P /2, P /2; P /2�
does obviously not contain the Born term of T3 since this last
one reduces to a simple propagator, whereas the presence of
the factor T2�P� implies at least two lines, with interaction
between them. Actually one can see more precisely that our
term is equal to zero, since it contains necessarily propaga-
tors going backward in time �see Appendixes B and C�. Tak-
ing the Born contribution for T3 and T4 in �PT3�p , p ; p
+ P��T2�P��2T4�P /2, P /2; P /2� gives a good example of this.
Finally, after these considerations, we see that we can still
use Eq. �49� for �cm�k�. The conclusion will be different for

the mode contribution to the anomalous self-energy dis-
cussed below.

Now when we look for the contribution ncm to the density
corresponding to Eq. �49�, we have to replace G�p� in Eq.
�10� by G0�p��cm�p�G�p�, just as it is done below Eq. �10�.
Quite similarly it will be enough to replace here G�p� by
G0�p� to obtain the lowest-order contribution of the collec-
tive mode we are interested in. This gives

ncm = �
p

�cm�p��G0�p��2 = �
p,P

T3�p,p;p + P���P��G0�p��2,

�50�

where again �p�−�2��−4�dpd� and p��p , i��. Now the
argument runs just as below Eq. �11�. We integrate first on
the frequency variable � of the quadrivector p. As shown in
Appendix C, it turns out that, except for the Born contribu-
tion, T3�p , p ; p+ P� is analytical in the upper complex half
plane of the variable �. Since �G0�p��2= �i�−	p�−2 is also
analytical in this half plane, one obtains by closing the inte-
gration contour at infinity in this half plane that only the
Born part −G0�P− p� of T3�p , p ; p+ P� contributes to the re-
sult. Hence for the integration over �, we have just to calcu-
late


−�

� d�

2�

1

�i� − ��� − 
p�2

1

i� − i� − ��� − 
P−p

= −
1

�i� − 2��� − 
p − 
P−p�2 �51�

and we are left with

ncm = − dpdP

�2��6
−�

� d�

2�

��P�
�i� − 2��� − 
p − 
P−p�2 . �52�

The factor of ��P� is analytical in the upper complex half
plane of � �which corresponds to the negative frequency half
plane when we go back to the standard frequency language�.
Hence by closing the � contour in this half plane, we are left
to consider the singularities of ��P�. Physically they corre-
spond to the two-fermions excitations of the system, that is
the collective mode and the broken molecule excited states.
In the standard frequency language, the corresponding singu-
larities are on the real frequency axis �the imaginary axis for
��, on the negative as well as on the positive side.

Let us first consider the low frequency singularities. For a
fixed value of P, we have just as singularity a single pole
corresponding to the collective mode frequency. Let us call
�cm�P� the positive solution of Eq. �48�. Our pole is located
at �= i�cm�P�. In Eq. �37�, which gives ��P�, for low fre-
quency and wave vector, the denominator becomes
m3��cm

2 �P�−�2� / �128�2����, while from Eq. �46� the nu-
merator is −��1 /2��irr�0�+m3/2�P2 /4m+�� / �8��2�����. Af-
ter going to imaginary frequency �→ i�, this gives in ��P�,
for the pole at i�cm�P�, a residue

FIG. 7. Diagrammatic representation of �cm�p�. The diagonal
component ��P� of the collective mode propagator is depicted by
the heavy line

FIG. 8. First-order term in ���2 in the collective mode contribu-
tion to the normal self-energy Eq. �49� depicted in Fig. 7
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Z�P� =
4��2���

im3/2 �1 −

P2

4m
+ �B

�cm�P�
� . �53�

On the other hand, for small � and P, the p integration in
Eq. �52� reduces to

 dp

�2��3

1

�2��� + 2
p�2 =
m3/2

8��2���
. �54�

This leads to

ncm = −
m3/2

8��2���
 dP

�2��3 iZ�P�

=
�4m�B�3/2

4�2 
0

�

dxx2� x2 + 1
�x4 + 2x2

− 1� �55�

where in the last step we have made the change of variables
P= �4m�B�1/2x. The numerical integral is �2 /3 and our final
result is

ncm =
�2m�B�3/2

3�2 �
�4�naM�3/2

3�2 , �56�

where in the last equality we have made use of the lowest
order result for ���2, given by Eq. �13�. Naturally, once we
have taken care of T3, we are essentially back to the elemen-
tary boson theory �25,28� and one recognizes in Eq. �56� the
standard “depletion of the condensate” for the dilute Bose
gas, with 	= �4m�B�−1/2 being its coherence length.

We have first considered the contribution of the low fre-
quency singularities. We have now to finish up by showing
that the higher frequency ones give a negligible contribution.
First we see that, in Eq. �52�, the denominator plays in this
respect an unimportant role, since its modulus is larger than
�2���+
p�2. Hence to have an upper bound for the contribu-
tions we are investigating, we can replace this denominator
by this lower bound, which gives after integration over p an
unimportant factor m3/2 / �4����1/2�. Hence we are again left
with the evaluation of �d���P�.

It is now more convenient to go back to real frequencies
�equivalent to the change of variables i�=��. The integra-
tion is now over the imaginary � axis and is closed in the
negative � half plane. The contour can be deformed to
merely enclose the negative � axis, and corresponding to the
singularities on this axis, Im ��P� has a jump across this
axis. Hence we have

− 
−�

� d�

2�
��P� = − 

0

−� d�

�
Im ��	P,� + i

�

= 
0

−� d�

�

Im �−1�	P,� + i

�
��−1�	P,� + i

��2

. �57�

Now, from Eq. �37�, �−1�	P ,�+ i

� contains a first term
T2

−1�P�−�irr�P� which has all its singularities on the real
positive � axis, corresponding to the continuous spectrum of
the broken dimer �for T2�P�� and of the broken pair of dimers
�for �irr�P�= ���2T4�P /2, P /2; P /2��. Hence it is real on the
negative � axis and does not contribute to Im �−1 in Eq.

�57�. From Eq. �37� the second term of �−1 is

−�irr
a �P��̄irr

a �−P� / �T2
−1�−P�−�irr�−P��, which is directly pro-

portional to ���4 from the product �irr
a �P��̄irr

a �−P�. Accord-
ingly we have proved basically our point since our result,
being proportional to ���4�n2, is indeed negligible com-
pared to the result, Eq. �56�, which is proportional to n3/2.

Actually, to complete our proof, we have to be more care-
ful and evaluate the coefficient of ���4. This is quite obvious
since Eq. �56� is in fact a contribution contained in Eq. �57�
�we have made no approximation to reach Eq. �57��. This
detailed analysis is performed in Appendix D.

B. Contribution to the anomalous self-energy

We will now proceed in a similar way to obtain the mode
contribution �cm�k� to the anomalous self-energy ��k�. This
contribution is obtained by replacing, in the diagrams which
lead to the second term of Eq. �17�, any second-order prod-
uct ��*, ��, or �*�*, by the corresponding collective mode
propagator. Accordingly we replace specifically ��* by the
diagonal component ��P�, and �� by the off-diagonal one

�̄a�P�. This is depicted diagrammatically in Fig. 9. Just as in
Eq. �17� this last term comes with a topological factor 1 /2 to
avoid double counting. On the other hand, since the two
dimer outgoing lines in the first term play inequivalent roles,
such a topological factor does not apply to this first term. It is
worth noticing that, since the collective mode propagator de-
pends only on the total momentum-energy four-vector, we do
not meet at this stage the problems linked to the k depen-
dence of ��k�, discussed in Appendix A.

Just as in Sec. III B, we should not include the terms of
��q1 ,q2 ; p2 , P� leading to reducible contributions to the self-
energy. These are easily obtained from the diagrams dis-
played in Fig. 4 by making the above substitution of ��* by
��P�. This implies in the same way the replacement of
��q1 ,q2 ; p2 , P� by ���q1 ,q2 ; p2 , P�. However, as in Sec.
III B, it is more convenient to add these reducible terms to
both members of the equation for �. In the left-hand side one
obtains �G0�p��−1F�p��G0�−p��−1, while in the right-hand
side one recovers � instead of ��. Finally we restrict our-
selves to the contribution of the low frequency collective
mode, the higher frequency contributions being expected to
be of order �5 and thus negligible, just as in Sec. V A. Ac-

cordingly the variable P in ��P� and �̄a�P� is small. This

FIG. 9. Diagrammatic representation of �cm�p�. The diagonal
component ��P� of the collective mode propagator is depicted by

the heavy line with a single arrow and the off-diagonal one �̄a�P�
by the heavy line with two arrows. For the two diagrams the slash
in the heavy lines means that the terms which are first order in ���2
have been removed.
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implies that ��p ,−p ; P /2, P /2�, which comes as a factor of
��P�, can be replaced by ��p ,−p ;0 ,0� at the order we are
working. Similarly ��p ,−p ; P ,0�, which comes as a factor
of �̄a�P�, can also be replaced by ��p ,−p ;0 ,0�. After mul-
tiplication by G0�p�G0�−p� this leads to the equation

F�p� = G0�p�G0�− p��1�p� + �G0�p�G0�− p���p,− p;0,0�

��1

2
���2 + �

P

��P� +
1

2�
P

�”̄ a�P�� , �58�

which comes in place of Eq. �19�.
In the preceding Section V A we have already calculated

�P��P� at the level of Eq. �55� and found �P��P�
=8��2���m−3/2ncm, where ncm is defined by Eq. �56�. In prin-

ciple the calculation of �P�̄a�P� follows the same line as the
one of �P��P�. One performs first the frequency integration

by noticing that, for fixed P, �̄a�P� has a pole at �

= i�cm�P�. The corresponding residue Z̄a�P� is obtained from
the residue Z�P� for ��P� by comparing Eq. �38� with
Eq. �37�. One has to multiply Z�P� by
�irr

a �P� / �T2
−1�−P�−�irr�−P��, evaluated at the pole, to obtain

Z̄a�P�. This gives merely

Z̄a�P� =
�

�*

4��2���
im3/2

�B

�cm�P�
. �59�

Now if we proceed as in Eq. �55� we come to an integral
with an ultraviolet divergence, which would invalidate our
procedure.

The reason for this problem is that we have not yet con-
sistently removed in our calculation the terms of order zero
and one in ���2, as we have done precedingly. That we should

do it was already apparent in Eq. �58� by the notation �”̄ a

instead of �̄a �which implies also a multiplication by �* /��.
We recall that these terms have to be subtracted out because
they have already been taken into account in our preceding
lowest-order calculation. However in the above preceding
cases, it turned out that these terms were equal to zero, which
made the subtraction transparent. Here this is not the case.
The most efficient way to perform this subtraction is to note

that, from Eq. �39�, �̄a�P� contains already an explicit factor
�irr

a �P� in the numerator, proportional to ���2, which gives
directly the factor �B in Eq. �59�. Hence the term of order
���2 to be subtracted is merely obtained by taking the other
factors to order zero in ���2, that is by replacing �cm�P� in
Eq. �59� by its zeroth order expression P2 /4m. Actually this
argument is a bit too fast. It misses the fact that we may at
the same time evaluate ��p ,−p ;0 ,0� in Eq. �58� with the
chemical potential taken as −Eb /2, even for the �1 /2����2
term, as we had done in Eq. �25�. Hence this whole step is
taken up in more details in Appendix 12. We find in this way

�
P

�”̄ a�P� = −
4��B

�2���
m3/2  dP

�2��3� 1

�cm�P�
−

4m

P2 � .

�60�

Making again the change of variables P= �4m�B�1/2x, this
gives

�
P

�”̄ a�P� = −
16�B

3/2�2���
�


0

�

dx� x
�x2 + 2

− 1�
=

32

�
�B

3/2���1/2 =
24��2���

m−3/2 ncm = 3�
P

��P� .

�61�

Hence the last bracket in Eq. �58� can be written �1 /2����2
+ �5 /2��P��P�.

The rest of the argument proceeds just as in Sec. III B,
provided �1 /2����2 is replaced by the above bracket. This
leads to the replacement of Eq. �27� by

1

a
− �2m��� =

m2a2

4
aM�1

2
���2 +

20��2���
m3/2 ncm� . �62�

We may eliminate ���2 by making use of the number equa-
tion, which reads now from Eq. �12�

n − ncm =
m2���2

8��2m����1/2 . �63�

This gives

1

a
− �2m��� = �a2aM�2m����1/2�n + 4ncm� = �aaM�n + 4ncm� ,

�64�

where in the last equality our replacement of 2m ��� by 1 /a2

introduces only errors of order n2 in the equation of state. To
the same order this leads us to

2� = −
1

ma2 +
2�aM

m
�n + 4ncm� . �65�

In the last term we may replace ncm by its expression, Eq.
�56�, ncm= �4�naM�3/2 /3�2. This gives the familiar Lee-
Huang-Yang result for the chemical potential of a dimer, tak-
ing its binding energy as reference,

2� +
1

ma2 =
4�naM

2m
�1 +

32

3
�naM

3

�
�1/2� . �66�

VI. CONCLUSION

In this paper we have presented a general theoretical
framework to deal with fermionic superfluidity on the BEC
side of the BEC-BCS crossover. Our approach involves no
approximation in principle, but in order to obtain explicit
results we have to proceed to an expansion in powers of the
anomalous self-energy, which is basically equivalent to an
expansion in powers of the gas parameter na3. We have ap-
plied our method to the T=0 thermodynamics and calculated
the terms in the expansion of the chemical potential in pow-
ers of the density. We have in this way shown explicitly that
the mean-field contribution is indeed given by the standard
expression in terms of the dimer-dimer scattering length aM.
We have then proved that the Lee-Huang-Yang contribution
to the chemical potential retains also its standard expression
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from elementary boson superfluid theory provided aM is used
in its expression. Departures from elementary boson theory
appear at the order n2. Naturally our approach can be used to
obtain other physical quantities and extended, for example,
to finite temperature and dynamical properties. This will be
considered elsewhere. On the other hand the prospects for
extending our approach to the whole BEC-BCS crossover do
not look good, since the fact that we deal with a negative
chemical potential plays an essential role in our calculations.
Nevertheless one may hope that some features of our method
could be included in approximate treatments to obtain an
improved description of the whole crossover, in particular
one leading naturally to the correct dimer-dimer scattering
length in the BEC limit.
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APPENDIX A: EXPRESSION OF �(2) IN TERMS
OF T3 IN THE GENERAL CASE

If we note T3
aa�p , p� , p�� the sum of all normal diagrams,

with one single atom p line going in and out, two entering
atom lines �p� , ↑ � and �−p� , ↓ � corresponding to an ingoing
dimer, and two outgoing atom lines �p� , ↑ � and �−p� , ↓ � cor-
responding to an outgoing dimer, we have

��2��p� = �
p�p�

�*�p����p��T3
aa�p,p�,p�� �A1�

In order to obtain an expression for T3
aa�p , p� , p��, one can

find in the spirit of Ref. �16� integral equations for this quan-
tity, and then identify in them a quantity which is precisely
T3�p1 , p2 ; P�. Another slightly more direct way is to separate,
in T3

aa, all the diagrams where 0 or 1 dimer lines are present,
right at the beginning or right at the end of T3

aa�p , p� , p� �.
We do not enter into the details but only give the result, on
which the above-mentioned separation is clear,

T3
aa�p,p�,p��

= − G�− p��p,p��p,p� + �G�− p���2G�p��T2�p − p���p�,p�

+ G�p��G�− p��G�p��G�− p��T2�p − p��

�T2�p − p��T3�p�,p�;p� , �A2�

where �p,p� is the Kronecker symbol, and T2�p� is the normal
state dimer propagator. One can check, by making use of Eq.
�A2� and of the integral equation �16� satisfied by T3, that
Eq. �A1� reduces to Eq. �8� when ��p� does not depend on p.

APPENDIX B: ABSENCE OF LOOPS IN NORMAL
STATE DIAGRAMS

Since we are at T=0 with a negative chemical potential,
there is no Fermi sea and no possibility of fermionic holes.
When we consider the propagation of a fermionic atom, it

has to be created before being destroyed. This corresponds to
the fact that the free fermion propagator is retarded. In
�imaginary� time and wave vector representation we have for
the free atom Green’s function,

G0�p,�� = − e−	p����� , �B1�

where ���� is the Heaviside function.
We consider now the contribution coming from any loop

in a diagram. For clarity we do not write the wave vectors,
which do not play any role in the argument. The loop starts,
for example, at a vertex with time �0, with successive inter-
actions at times �1 ,�2 , . . . ,�n. This implies in the term corre-
sponding to this diagram the presence of the product G0��0

−�1�G0��1−�2�… .G0��n−�0�. In order to have each term be-
ing nonzero in this product of retarded Green’s function, we
need �0�1�2 ¯ �n�0, which is impossible to sat-
isfy. Hence one of the Green’s function in this product will
necessarily be zero, and the contribution of any diagram with
a loop will also be zero. Note that the argument applies also
if there is a single Green’s function in the loop �25�. If we
were to carry out calculations in frequency, rather than time,
representation the corresponding free atom Green’s function
is analytical in the upper complex half plane, and the above
result would appear through integration over frequencies
with contours closed in the upper complex half plane.

We have considered for consistency the imaginary time
formalism. Naturally exactly the same arguments apply if we
consider the real time representation.

APPENDIX C: ANALYTICAL PROPERTIES
OF T3(k ,k ;k+P)

We give first an explicit proof of the analytical property of
T3 indicated in the text. We start from the integral equation
satisfied by T3 with at first essentially the notations of Ref.
�16�,

T3�p1,p2;P� = − G0�P − p1 − p2� − �
q

G0�P − p1 − q�

�G0�q�T2�P − q�T3�q,p2;P� . �C1�

We follow Ref. �16� and perform the frequency integration in
the second term, making use of the fact that the only singu-
larity in the lower half complex plane comes from G0�q� and
is located at q2 /2m− i0+. We write then explicitely the result-
ing equation for p1=K= 	K , i�
, p2=k= 	k , i�
, while P
= 	P , i�
 is replaced by k+ P, keeping in mind that the fre-
quencies p1 and p2 have to be shifted by � �and k+ P by 3��
and that we work now with imaginary frequencies. This
gives

SUPERFLUID EQUATION OF STATE OF COLD … PHYSICAL REVIEW A 78, 053621 �2008�

053621-15



T3�K,k;k + P� = −
1

� + i�� − �� − �P − K�2/2m
−

4�

m3/2  dq

�2��3

1

2� + i�� − � + �� − q2/2m − �k + P − K − q�2/2m

�
�Eb + ��P + k − q�2/4m − �i�� + �� + 3� − q2/2m�

i�� + �� + 3� − q2/2m − �P + k − q�2/4m + Eb
T3�	q,q2/2m − �
,k;k + P� . �C2�

When we write this equation for K=k, we see that the first
term, which is the Born contribution, has a pole in the upper
complex half plane, at �=�+ i����+ �P−k�2 /2m�. On the
other hand, in the integral, the first factor does not depend on
frequency �. The singularities coming from the dimer term
will be in the lower complex half plane with Im ��−�3���
−Eb��0 �since we will have ����Eb /2�. Regarding the
T3�	q ,q2 /2m−�
 ,k ;k+ P� term, if we write Eq. �C2� for the
variable K evaluated on the shell, i.e., K= 	K ,K2 /2m−�
,
we obtain an integral equation for T3�	q ,q2 /2m−�
 ,k ;k
+ P�. In this equation the Born term does not depend on
frequency. The first term in the integral has its poles satisfy-
ing Im ��−3����0 and the dimer term has again its singu-
larities in the lower complex half plane. Hence by a recursive
argument �or equivalently by iteration of the equation�, we
conclude that the singularities of T3�	q ,q2 /2m−�
 ,k ;k+ P�
are also in the lower complex half plane. This shows that
indeed, except for the Born contribution, T3�k ,k ;k+ P� is
analytical in the upper complex half plane of the frequency
variable �.

Naturally we do not expect such a result to come by
chance and we discuss now its physical origin. It is more
easily seen in real time, rather than frequency, representation.
The particle number, Eq. �10�, is merely given by

n = �
k

�ck↑
† �
�ck↑�0�� �C3�

with 
→0+. The average corresponds to a full propagator
Gk↑�−
� in time representation, where the particle is created

at time t=
, later than the time t=0 at which it is destroyed.
In standard �25� diagrammatic representation �see Fig.
10�a��, with time going from left to right and the propagator
starting at the destruction time and ending at the creation
time �25�, we have to draw diagrams where the ↑ particle
propagator starts from t=0 and goes globally forward �that is
to the right in Fig. 10� in time, ending up at t=
. However
when we write the perturbation expansion of this propagator,
we have to use free particle propagators G0 which are re-
tarded and go only forward in time �i.e., the arrows go to the
left in Fig. 10 when we use the standard Green’s function
representation �25��. Hence the zeroth order in our perturba-
tion expansion is obviously zero. When we go to second
order, corresponding to Eq. �11�, we can use �* which cre-
ates, at some given time, a pair of particles �q↑ ,−q↓ � �this
process is instantaneous in time because, at lowest order, �
does not depend on frequency�. Similarly � annihilates a pair
of particles. The simplest combination of these ingredients,
giving a nonzero result for n, is shown in Fig. 10�b��: �* is
located at positive time, and � at negative time, allowing to
have G0’s going only to the left. This is just the Born term of
T3. However one sees easily that it is not possible to draw
any other second-order diagrams having the same property
shown in Fig. 10�b��. They would necessarily imply G0’s
going at some stage backward in time �i.e., with arrows
pointing to the right in Fig. 10�, which is not allowed. Indeed
we have to dispose of the ↑ propagator starting at t=0, and
this can only be done by annihilating it with � at some
negative time. Similarly the ↑ propagator ending up at t=

has to come from �*, acting at some positive time. Then we
are left with a ↓ propagator which can only go from �* to �.
Any interaction between the ↑ and ↓ propagators is forbidden
since this would merely amount to double count processes
which are already taken into account in �* and �. In this
way we end up with the conclusion that only the Born term
leads to a nonzero contribution to n.

APPENDIX D: DETAILED ANALYSIS OF THE NEXT
ORDER CONTRIBUTION TO THE NORMAL

SELF-ENERGY

In calculating the coefficient of ���4 in Eq. �57�, it is clear
that we can evaluate all the other factors to zeroth order in �,
since we have already an explicit factor ���4. This implies in
particular to make 2���=Eb=1 / �ma2� in these terms. This
leaves us with

− 
−�

� d�

2�
��P� = 

−�

0 d�

�
Im��irr

a �P��̄irr
a �− P�T2�− P��

��T2�P��2 �D1�

with again P= 	P ,�+ i

. Naturally this result could have

FIG. 10. �a� Diagrammatic representation of the propagator
Gk↑�−
� involved in the calculation of the particle number n. We use
the standard representation where the propagator starts at the de-
struction time and ends at the creation time. �b� Born term in the
diagrammatic expansion of the propagator represented in �a�. �c�
Example of a diagram which gives a zero contribution due to the
presence of a loop.
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been obtained more directly, by a straight expansion of ��P�
in powers of �, instead of resumming a whole perturbation
series, as we have done in Sec. IV, and then expanding the
result.

We may first apply this formula for the collective mode
contribution. In the present case it comes from the factor
T2�−P�, which has a pole for �=−P2 /4m. This is indeed the
frequency of the Bogoliubov mode, once the frequency is
high enough for the zeroth order approximation in � to be
valid. Correspondingly we have
Im T2�−P�=8�2 / �m2a����+P2 /4m�. On the other hand, we
have for this value of the frequency T2�P�= �4�a /m��1
−�1+P2a2 /2�−1. This has to be inserted in Eq. �D1� and the
integration over P has still to be performed. However if we

concentrate on the low P range �where �irr
a �P��̄irr

a �P�
����4T4

2�0,0 ;0� /4�, we obtain a divergent integral �dP /P4

��d�P� / �P�2. This is due to the fact that, in this range, our
zeroth order handling in ��� is not careful enough. From Eq.
�48�, we see that the dispersion relation has to be modified
for �P�m��m�B�1/2��naM�1/2����. If we evaluate the low
frequency contribution by putting a lower cutoff �P�m in the
integral, we obtain �d�P� / �P�2�1 / �P�m�n−1/2����−1/2 and
the overall result is of order n3/2. This is just the contribution
equation �56�, where we have obtained the precise coefficient
by our careful handling of this low frequency domain. Now,
if we define the low momentum region as �P�� P0, where P0
is large compared to �P�m, but small compared to 1 /a, our
above treatment of the low frequency region is fully valid in
this domain. On the other hand the integral in Eq. �55� has
already converged at the upper bound x0= P0 / �4m�B�1/2, and
we may replace it by �, just as we have done in Eq. �55�.
Hence the contribution from the domain �P�� P0 is exactly
given by Eq. �56�. On the other hand, there are no diver-
gences in the domain �P�� P0 and its contribution is of order
���4, and accordingly negligible compared to Eq. �56�.

To be complete we have also to verify that there are no
other sources of divergence in Eq. �D1�, analogous to what
we have found at low momentum. Since there is no singu-
larity arising at finite frequency or momentum, the only pos-
sibility comes from the large frequency ����c, large mo-
mentum �P� Pc region. In order to evaluate the contribution
in this domain, it is more convenient to go back to the imagi-
nary axis contour by performing backward the first step of
Eq. �57� and write this overall contribution as

− 
�P�Pc

dP

�2��3
����c

d�

2�
�irr

a �P��̄irr
a �− P�T2

2�− P�T2�P� .

�D2�

The scattering amplitudes T4�P ,0 ;0� and T4�0,−P ;0�, intro-

duced by �irr
a �P� and �̄irr

a �−P�, may be shown to be equal and
are dominated as expected in this range by the Born contri-
bution. They are real on this imaginary frequency axis. The
Born term has been obtained explicitely in �16�, and
T4�P ,0 ;0� is proportional to 1 / ��P����� for large �P� and ���.
From Eq. �29� there is in the modulus of the integrand a
factor 1 / ��2+ �P2 /4m�2�3/4 coming from T2

2�−P�T2�P�. Then

the overall integral is easily seen to be convergent for large
�P� and ���, which completes our proof.

APPENDIX E: DETAILS ON THE CONTRIBUTION OF
THE COLLECTIVE MODE TO THE ANOMALOUS

SELF-ENERGY

Since there is no zeroth-order term in powers of ��� in

�̄a�P�, we have only to remove the term proportional to ���2

to avoid double counting, and go in this way from �̄a�P� to

�”̄ a�P�. The corresponding diagram in F�p� is shown in Fig.
11. This leads to

�”̄ a�P� − �̄a�P� = − �irr
a �P�T2�P�T2�− P� , �E1�

where �irr
a �P� is given by Eq. �41�. Let us first replace the

dimer propagator T2�P�, given by Eq. �29�, by its value
T2

0�P� where � is replaced by its zeroth-order value −Eb /2.
When we consider the contribution from the low frequency
and momentum contribution, we may replace �irr

a �P� by
�irr

a �0�, and the pole of T2
0�−P� at �= iP2 / �4m� gives

− 
−�

� d�

2�
�− �irr

a �P�T2
0�P�T2

0�− P�� =
4��B

�Eb

m3/2
4m

P2 .

�E2�

This is indeed the second term in the right-hand side of Eq.
�60� since in this last equation, which turns out to be of order
���3, we have to make consistently 2���=Eb �and similarly
we have to take �B=4��Eb�irr�0� /m3/2, with �irr�0�
=2��* /���irr

a �0��.
We are now left with the evaluation of the difference be-

tween our original expression and the one we have just con-
sidered, namely,

− �irr
a �P��T2�P�T2�− P� − T2

0�P�T2
0�− P�� , �E3�

which gives at the level of Eq. �24�, after insertion at the
level of Eq. �58� and summation over p and P,

−
1

4
�*�2�

P

T4�0,P;0��T2�P�T2�− P�

− T2
0�P�T2

0�− P��T4�P,0;0� , �E4�

where we have used Eq. �41� for �irr
a �P� and the relation �see

Ref. �16�� between T4 and �, namely T4�0, P ;0�
=�pG0�−p�G0�p���−p , p ; P ,0�.

We show now that this difference is just what is required
to be allowed to replace 1

2����2T4�0,0 ; 	0 ,2�
�
= 1

2����2�pG0�−p�G0�p���−p , p ;0 ,0� in Eq. �25� by
1
2����2T4�0,0 ; 	0 ,−Eb
�, which is directly related to the
dimer-dimer scattering scattering length aM by Eq. �26�. In-

FIG. 11. Diagrammatic representation of the difference between

�”̄ a�P� and �̄a�P�
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deed it has been shown in �16� that scattering amplitude
T4�p1 , p2 ; P� satisfies quite generally an integral equation
analogous to the standard integral equation for elementary
bosons, namely,

T4�p1,p2;P� = �4�p1,p2;P� +
1

2�
q

�4�p1,q;P�T2�P + q�

�T2�P − q�T4�q,p2;P� , �E5�

where �4�p1 , p2 ; P� is the sum of all irreducible diagrams
with respect to cutting two dimer propagators, which is itself
obtained from an integral equation with explicit kernel �16�.
Formally this equation can be rewritten in terms of operators
as

�4
−1 = T4

−1 + D , �E6�

where we have introduced the diagonal operator D�q ; P�
��1 /2�T2�P+q�T2�P−q� �the factor 1 /2 is again topologi-
cal�. We consider now this equation for p1= p2=0 and P=0.
With respect to the energy variable corresponding to P, we
take the two values 2� and −Eb �we note the operators with
this last value with a superscript 0�. The crucial point is that
the difference between �4 and �4

0 is of order 2�+Eb, that is
the expansion of �4 in powers of 2�+Eb is regular. Such a
difference is negligible at the order we are working at. The
regularity of the expansion can be seen from the integral
equation �Eq. �B2� of Ref. �16�� satisfied by �4, which is
completely analogous to the one satisfied by � �Eq. �9� of
Ref. �16��, except that the last term �with two dimer propa-
gators� in the equation for � is not present for �4. This
integral equation can be transformed in the same way, lead-
ing to more explicit expressions �see Eq. �11� and Eq. �13� of
Ref. �16��. On these expressions one checks easily that, for �
in the vicinity of −Eb /2, the propagator T2 is evaluated for

values of its argument which are never in the vicinity of its
pole. Hence one can proceed to a regular expansion. By con-
trast one sees also on the equations for � that, for the term
containing two dimer propagators the argument does reach
the pole value, which makes the expansion singular. This
explains why we cannot argue that the difference between
T4�0,0 ; 	0 ,2�
� and T4�0,0 ; 	0 ,−Eb
� is of order 2�+Eb and
negligible. The equation for P= 	P ,−Eb
 reads

��4
0�−1 = �T4

0�−1 + D0. �E7�

Writing the difference with Eq. �E6� and taking into account
�4��4

0, we have

�T4
0�−1 − T4

−1 = D − D0, �E8�

which can be rewritten explicitly, after premultiplication by
T4,0 and postmultiplication by T4 as

T4�0,0;	0,2�
� − T4�0,0;	0,− Eb
�

=
1

2�
q

T4�0,q;	0,− Eb
�

��T2�q�T2�− q� − T2
0�q�T2

0�− q��T4�q,0;	0,− Eb
� ,

�E9�

where in the last term we have been allowed to replace 2�
by Eb at the order we are working. The same substitution is
allowed in Eq. �E4�, which completes our proof.

Let us finally note that, with respect to this part, our pro-
cedure has obvious strong analogies with the work of Beli-
aev �20�. Indeed, as soon as we have established the non-
trivial result that, at our level of approximation, the structure
of �4 can be omitted which makes it analogous to an effec-
tive interaction, our dimers behave as elementary bosons and
we are basically back to the situation investigated by Beliaev.
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