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Within the classical field model, we find that the phase of a uniform Bose-Einstein condensate at nonzero
temperature undergoes a true diffusive motion in the microcanonical ensemble, the variance of the condensate
phase change between time zero and time t growing linearly in t. The phase diffusion coefficient obeys a
simple scaling law in the double thermodynamic and Bogoliubov limit. We construct an approximate calcula-
tion of the diffusion coefficient, in fair agreement with the numerical results over the considered temperature
range, and we extend this approximate calculation to the quantum field.
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I. INTRODUCTION

Phase coherence is one of the most prominent properties
of Bose-Einstein condensates, relevant for applications of
condensates in metrology and quantum information �1�. The
issue of condensate phase dynamics and phase spreading at
zero temperature due to interactions has been extensively
studied in theory �2� and experiments �3–5�. There is a re-
newed interest in this issue of temporal phase coherence due
to the recent studies in low-dimensional quasicondensates,
both experimentally �6–8� and theoretically �9�. The present
work addresses the problem of the determination of funda-
mental limits of phase coherence in a true three-dimensional
Bose-Einstein condensate at nonzero temperature.

The effect of a nonzero temperature on phase coherence
in a Josephson junction realized by a condensate trapped in a
double well potential has been studied in �10,11�. The situa-
tion is different when the two condensates are separated. In
this case there is no restoring force for the relative phase
which then evolves independently in the two Bose-Einstein
condensates �BECs� �12�. The effect of thermal fluctuations
in this case, joint to the effect of the interactions, is to pro-
vide a spreading in time of the relative phase.

In a previous work �13�, we considered a condensate pre-
pared in an equilibrium state in the canonical ensemble. In
that case we could show using ergodicity that the phase
change of the condensate during a time t has a variance
which grows proportionally to t2. In other words, the con-
densate phase spreading in the canonical ensemble is ballis-
tic �14� and not diffusive �15–18�. As we could calculate in
�13� using an ergodic theory, the coefficient of this superdif-
fusive thermal spreading is proportional to the variance of
the energy in the considered equilibrium state. If we now
suppress the fluctuations of energy in the initial state, by
moving from the canonical ensemble to the microcanonical
ensemble, the ballistic thermal spreading disappears and one
may expect that the condensate phase undergoes a genuine
diffusion in time. In the present work we show that this is
indeed the case and we study this genuine phase diffusion
numerically within the classical field model �19–22� de-
scribed in Sec. II. The numerical results are presented in Sec.
III, and their analysis shows the existence of simple scaling

laws and of a universal curve giving the phase diffusion co-
efficient in the double thermodynamical limit �atom number
N→�, volume V→�, density �=const� and Bogoliubov
limit �N→�, coupling constant g→0, Ng=const�. In Sec.
IV we derive an aproximate formula for the diffusion coef-
ficient that we compare to the numerical results and that we
also extend to the quantum field. We conclude in Sec. V.

II. CLASSICAL FIELD MODEL AND NUMERICAL
PROCEDURE

We consider a lattice model for a classical field ��r� in
three dimensions. The lattice spacings are l1, l2, l3 along the
three directions of space and dV= l1l2l3 is the volume of the
unit cell in the lattice. We enclose the atomic field in a spatial
box of sizes L1, L2, L3 and volume V=L1L2L3, with periodic
boundary conditions. To guarantee efficient ergodicity in the
system we choose noncommensurable square lengths in the
ratio L1

2 :L2
2 :L3

2=�2: �1+�5� /2:�3. The lattice spacings
squared l1

2, l2
2, l3

2 are in the same ratio.
The field � may be expanded over the plane waves

��r� = �
k

ak
eik·r

�V
, �1�

where k is restricted to the first Brillouin zone, k�

� �−� / l� ,� / l�� and � labels the directions of space.
We assume that, in the real physical system, the total

number of atoms is fixed, equal to N. In the classical field
model, this fixes the norm squared of the field:

dV�
r

���r��2 = N �2�

or equivalently the mean density of the system

� =
N

V
�3�

for each realization of the field. The evolution of the field is
governed by the Hamiltonian �23�
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H = �
k

Ẽkak
*ak +

g

2�
r

dV�*�r��*�r���r���r� , �4�

where Ẽk is the dispersion relation of the noninteracting
waves, and the binary interaction between particles in the
real gas is reflected in the classical field model by a field
self-interaction with a coupling constant

g =
4��2a

m
, �5�

where a is the s-wave scattering length of two atoms.
As a matter of a fact we use here the same refinement as

in �13� consisting of modifying the dispersion relation in
order to obtain for the ideal gas the correct quantum values
of the mean occupation numbers at equipartition

1

e��2k2/2m − 1
=

kBT

Ẽk

. �6�

However, we do not expect this to have a large impact here
as we put a cutoff at an energy of the order of kBT. More
precisely we choose the number of the lattice points in a
temperature dependent way, such that the maximal Bogoliu-
bov energy on the lattice is equal to kBT:

maxk���2k2/2m��2�g + �2k2/2m��1/2 = kBT . �7�

The discretized field has the following Poisson brackets:

i����r1�,�*�r2�	 =
�r1,r2

dV
, �8�

where the Poisson brackets are such that df /dt= �f ,H	 for a
time-independent functional f of the field �. The field then
evolves according to the nonlinear equation �26�

i��t� = 
kBT�exp�− �
�2

2m
	
 − 1� + g���r,t��2�� . �9�

We introduce the density and the phase of the condensate
mode

a0 = ei
�N0. �10�

The quantity of interest is the variance of the condensate
phase change during t:

Var ��t� = ���t�2� − ���t��2, �11�

where

��t� = 
�t� − 
�0� . �12�

The averages are taken over stochastic realizations of the
classical field, as the initial field samples the microcanonical
ensemble with an energy E. For convenience, we param-
etrize the microcanonical ensemble by the temperature T
such that the mean energy of the field in the canonical en-
semble at temperature T is equal to E.

To generate the stochastic initial values of the classical
field we proceed as follows. �i� First we generate 1000 sto-
chastic fields in the canonical ensemble at temperature T, as
explained in �13�, and we compute the average energy of the

field �E�can and its root-mean-squared fluctuations �
=�Var E. �ii� We generate other fields, still in the canonical
ensemble, and we filter them keeping only realizations with
an energy E such that �E− �E�can�
0.01� /2. �iii� We let each
field evolve for some time interval with the Eq. �9� to elimi-
nate transients due to the fact that the Bogoliubov approxi-
mation, used in the sampling, does not produce an exactly
stationary distribution. After this “thermalization” period we
start calculating the relevant observables, as � evolves with
the same equation �9�. In practice this equation is integrated
numerically with the fast Fourier transform �FFT� splitting
technique. The relative error on conservation of energy in the
simulation is at the level of 10−7−10−6. The ensemble of data
reported here has required a CPU time of about 2 years on
Intel Xeon Quad Core 3 GHz processors.

III. NUMERICAL RESULTS AND SCALING LAWS

The first important result that we obtain is the diffusive
behavior of the condensate phase. In Fig. 1 we show an
example of numerical data for Var ��t�. From bottom to top,
five values of kBT /�g are presented for a constant number of
atoms N=2.36�106. The wavy line with error bars is the
phase variance as a function of time obtained with about
1200 stochastic realizations �27�. The solid line is a linear fit
from which we deduce the value of the diffusion coefficient,

Var ��t� �
t→�

2Dt . �13�

In Fig. 2 we show a histogram representing the probability
distribution for the condensate phase change at the final time
of the simulation for one of the curves in Fig. 1. The Gauss-
ian distribution expected for a diffusive motion is also rep-
resented for comparison and remarkably agrees with the
simulation results.
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FIG. 1. �Color online� Variance of the condensate phase change
��t� as a function of time. Wavy line with error bars: numerical
results. Solid lines: a linear fit. From bottom to top, the reduced
temperature kBT /�g is 9.7, 13.2, 15.7, 19.6, and 24.2. The number
of atoms is fixed to N=2.37�106. The high energy cutoff is fixed
according to Eq. �7�, on a grid 323, so that the temperature slightly
varies, from bottom to top: kBT / ��2 /mV2/3�=16 864, 16 411,
16 212, 16 010, and 15 854. The time is in units of mV2/3 /�.
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The diffusive behavior of the condensate phase is strictly
related to the long time behavior of the time correlation func-
tion C of the condensate phase derivative �̇,

C��t� − t��� = ��̇�t���̇�t��� − ��̇�t�����̇�t��� , �14�

where we used the fact that C depends only on �t�− t�� for a
steady state classical field. By writing ��t� in terms of its
time derivative, one obtains �13�

Var ��t� = 2t�
0

t

d�C��� − 2�
0

t

d��C��� . �15�

If C�t� has a nonzero limit at long times, as it was the case in
the canonical ensemble �13�, Var � grows quadratically in
time. Here, in the microcanonical ensemble Var � grows lin-
early in time and we expect that C�t�→0 when t→�. An
illustration of that, for two values of the temperature, is
given in Fig. 3 where, for convenience, C�t� is calculated
with a simplified formula for the phase derivative �28�

��̇ � − �g −
g

V
�
k�0

�Ũk + Ṽk�2�bk�2. �16�

In Eq. �16� the bk are the field amplitudes on the Bogoliubov
modes �29�.

We now investigate numerically how the diffusion coeffi-
cient scales in different limits. First we consider the “Bogo-
liubov limit” introduced in �30�,

N → �, g → 0 with Ng = const, �17�

the other parameters �V , l1 , l2 , l3 ,T� being fixed �31�. In this
limit, the number of noncondensed particles converges to a
nonzero value while the noncondensed fraction vanishes.
The time evolution of the Bogoliubov occupation numbers
nk= �bk�2 is then mainly due to terms in the interaction
Hamiltonian which are cubic in the noncondensed field am-

plitude and linear in the condensate amplitude and thus of
order �=g�N. Physically these cubic terms describe interac-
tions among Bogoliubov modes such as Landau and Beliaev
processes �32–35�, which are included in the classical field
model �19–22,36–40,42�. They lead to evolution rates of the
nk of order �2. We thus expect a phase diffusion coefficient
of the same order �2, which is �1 /N according to Eq. �17�.
This expectation is confirmed numerically as we show in
Fig. 4, where we find that DN is constant within the error
bars over a factor of 5 variation of N and for three considered
temperatures.

We now investigate the existence of a thermodynamical
limit for the quantity DN, given that the Bogoliubov limit is
already reached. The thermodynamical limit is defined as
usual as

N → �, V → � with � = const, �18�

the other parameters �g , l1 , l2 , l3 ,T� being fixed. The result is
shown in Fig. 5 where DN is constant within the error bars,
over a factor of 5 of variation of N and four considered
values of kBT /�g.
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FIG. 2. Probability distribution for the condensate phase change
between time t=0 and time t=16 mV2/3 /�. Histogram: Classical
field simulation obtained with 1200 stochastic realizations for the
parameters corresponding to the curve in Fig. 1 with the highest
ratio of kBT /�g: kBT=15 854�2 / �mV2/3�, N=2.37�106 on a 323

grid. Dashed line: Gaussian probability distribution expected for a
diffusive motion of the phase with a diffusion coefficient D
=0.781�10−3� /mV2/3 extracted from the linear fit in Fig. 1.
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FIG. 3. Correlation function C�t� of the phase derivative �̇�t�
given by the nonoscillating approximation �16�, as a function of
time. Solid line: numerical results. Dashed line: result of Bogoliu-
bov theory. Dashed-dotted line: prediction of the projected Gauss-
ian approach of Sec. IV. The number of atoms is fixed to N=5
�106, and the Gross-Pitaevskii chemical potential is fixed to �g
=700�2 /mV2/3. In �a� the temperature is kBT / ��2 /mV2/3�=5469,
with a grid size 183. In �b� the temperature is kBT / ��2 /mV2/3�
=14 054, with a grid size 303. C�t� is in units of �2 /mV2/3.
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In what follows, using dimensional analysis, we show that
for our cutoff procedure �7�, the dimensionless quantity
�DN /�g is a function of a single parameter kBT /�g once the
Bogoliubov and thermodynamical limits are reached. Six in-
dependent physical quantities are present in the model,

��,m,g,V,kBT,N	 . �19�

The lattice spacings l1, l2, l3 are not independent parameters
since their ratios are fixed and their value is determined by
Eq. �7� once the quantities �19� are fixed. Equivalently we
can replace g by �g and the volume V by kBTc, where Tc is

the transition temperature of the ideal gas given by

�� 2��2

mkBTc

3/2

= ��3/2� . �20�

We then have

�DN

�g
= f��,m,�g,

kBTc

�g
,
kBT

�g
,N
 . �21�

The three quantities �, m, and �g can be recombined to form
a length, a time, and a mass which are three independent
dimensioned quantities. Since f and its other three variables
are dimensionless, f does not depend of its first three vari-
ables. In the thermodynamical limit, N tends to infinity so the
sixth variable of f drops out of the problem. In the Bogoliu-
bov limit, kBTc /�g→� so that the forth variable of f also
drops. We thus conclude that

�DN

�g
= f� kBT

�g

 . �22�

In Fig. 6 we show the graph of f as obtained by our classical
field model collecting all the simulation results of Figs. 5 and
4. We have used a log-log scale in Fig. 6 to reveal that the
function f is approximately a power law in the considered
range of kBT /�g.

IV. PROJECTED GAUSSIAN APPROXIMATION

In this section we propose an approximate analytical for-
mula for the phase diffusion coefficient that gives some
physical insight and can be extended to the quantum field
case.
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FIG. 4. Scaling of the phase diffusion coefficient in the Bogo-
liubov limit �17�, for a factor of 5 variation of the atom number N.
The Gross-Pitaevskii chemical potential is fixed to �g
=700�2 /mV2/3. Points with error bars: Simulation results. The lines
connect the points with the same temperature. From bottom to top:
kBT=5469�2 /mV2/3 with a grid size 183, kBT=6606�2 /mV2/3 with a
grid size 203, and kBT=9231�2 /mV2/3 with a grid size 243.
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FIG. 5. Scaling of the phase diffusion coefficient in the thermo-
dynamic limit �18�, for a factor of 5 variation of the atom number
N. Points with error bars: simulation results. The lines connect the
points with the same kBT /�g. The points most on the left of the
figure, with N=2.37�106, are the ones of Fig. 1, with a grid size
323. The other points are for a grid size 243 �N=106� and for a grid
size 183 �N=4.22�105�.
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FIG. 6. Universal curve for the rescaled phase diffusion coeffi-
cient as a function of kBT /�g in log-log scale. Symbols with error
bars: simulation results. Circles: results of Fig. 4. Squares: results of
Fig. 5. The solid line connects the points with the largest value of N
of Fig. 5, plus the average of the two points of Fig. 4 with the
lowest temperature. Dashed-dotted line with filled diamonds:
Dapprox from the projected Gaussian approach. The �k for the pro-
jected Gaussian approach are calculated on the grids used in the
simulations corresponding to the points connected by the solid line.
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A. Classical field

We wish to calculate the integral of a correlation function
C�t�= �A�t�A�0��− �A�t���A�0�� of an observable A of the
form

A = �
k�0

Ak�bk�2, �23�

where bk are the amplitudes of the field over the Bogoliubov
modes. We thus introduce the M�M covariance matrix Q
with matrix elements

Qk,k��t� = ��nk�t��nk��0�� , �24�

where �nk=nk− n̄k is the fluctuation of the occupation num-
ber of the corresponding Bogoliubov mode and M
=V / �l1l2l3�−1 is the number of Bogoliubov modes. One thus
has

C�t� = A� · Q�t�A� , �25�

where A� is the vector of components Ak. Since the system is
described in this section by the microcanonical ensemble for
the Bogoliubov Hamiltonian, the matrix Q obeys the relation

�� · QX� = 0 ∀ X� , and Q�� = 0� , �26�

where the vector �� collects the Bogoliubov energies �̃k.
By using the microcanonical classical field averages �41�

one directly accesses the t=0 value of the matrix Q,

for k � k�: Qk,k��0� = −
n̄kn̄k�

M + 1
, �27�

for k = k�: Qk,k�0� = n̄k
2M − 1

M + 1
, �28�

where the n̄k=kBT / �̃k are the classical field occupation num-
bers. Remarkably we can express this result in terms of the
result one would have in the canonical ensemble with aver-
age energy equal to the microcanonical energy, adding a pro-
jector which suppresses energy fluctuations:

Q�0� =
M

M + 1
P†QGauss�0�P �29�

with

Pk,k� = �k,k� − �̃k�k�. �30�

The vector �� is adjoint to the vector �� so that P�� =0� . Its
components are given by

�k =
1

M�̃k
�31�

and QGauss is the value of the covariance matrix in the ca-
nonical ensemble

Qk,k�
Gauss�0� = �k,k�n̄k

2. �32�

The apex “Gauss” recalls the fact that the bk have a Gaussian
probability distribution in the canonical ensemble, contrarily
to the case of the microcanonical ensemble.

For the t=0 value of the phase derivative correlation func-
tion one then obtains

C�0� =
M

M + 1��
k�0

Ak
2n̄k

2 −
1

M��
k�0

Akn̄k
2� �33�

with

Ak = −
g

V
�Ũk + Ṽk�2. �34�

We verified that Eq. �33�, represented as a dashed line in Fig.
3, is in agreement with the numerical simulation as one en-
ters the Bogoliubov limit �17�. Note that within the Bogoliu-
bov aproximation bk�t��bk�0�e−i�̃kt�, the phase derivative
correlation function remains equal to its t=0 value �33� at all
times. This is in clear disagreement with the numerical simu-
lation, and it would lead to a ballistic spreading of the con-
densate phase.

Our approximate treatment consists of extending the rela-
tion �29� to positive times, using the fact that in a Gaussian
theory one would have

Qk,k�
Gauss�t� = Qk,k�

Gauss�0�e−�kt. �35�

One indeed assumes in the Gaussian model

��bk
*�t�bk��0��Gauss� = �k,k�n̄ke

−�kt/2 �36�

and one uses Wick theorem to obtain Eq. �35�. Physically Eq.
�36� describes Beliaev-Landau processes that decorrelate the
bk. It can be derived, for example, with a master equation
approach as done in an appendix of �13�.

For the phase derivative correlation function one then ob-
tains the approximate expression

Capprox�t� =
M

M + 1��
k�0

Ak
2n̄k

2e−�kt −
2

M��
k�0

Akn̄k

�� �

k��0

Ak�n̄k�e
−�k�t
 +

1

M2��
q�0

e−�qt

���

k�0
Akn̄k
2� . �37�

We represent Eq. �37� as a dashed-dotted line in Fig. 3. The
resulting approximation on the diffusion coefficient is ob-
tained by integration

Dapprox = �
0

+�

Capprox�t�dt . �38�

In Fig. 6 we compare the approximation �38� �diamonds
linked by a dashed-dotted line� to the numerical simulation
results. The agreement is acceptable in the considered range
of kBT /�g. The Beliaev-Landau damping rates �k are calcu-
lated on the same discrete grid as the simulation points as
explained in �42�.

B. Quantum field

In this section we extend the approximate formula for the
phase diffusion coefficient to the quantum case. The Bogo-
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liubov amplitudes and occupation numbers are now opera-

tors b̂k, n̂k. As in the classical field case we introduce the
covariance matrix of the Bogoliubov occupation numbers

Qk,k��t� = ��n̂k�t��n̂k��0�� . �39�

To obtain the t=0 value of Q we need to compute quantum
averages in the microcanonical ensemble. To this end we use
a result derived in �13� giving the first deviation between the
microcanonical expectation value �O� and the canonical one
�O�can�T� in the limit of a large system for an arbitrary ob-
servable O:

�O� − �O�can�T� � −
1

2
kBT2 d

dT
�d�O�can/dT

d�H�can/dT

 , �40�

where the canonical temperature T is such that the mean
energy �H�can in the canonical ensemble is equal to the mi-
crocanonical energy E.

For k�k�, using dn̄k /dT=�kn̄k�n̄k+1� /kBT2, one finds

Qk,k��0� � −
�k�k�n̄k�n̄k + 1�n̄k��n̄k� + 1�

�q�0�q
2n̄q�n̄q + 1�

, �41�

where the n̄k=1 / �exp���k�−1� are the quantum occupation
numbers. This scales as 1 /M in the thermodynamic limit.
Since the number of off-diagonal terms of Q in Eq. �25� is
about M times larger than the number of diagonal terms of
Q, we have for consistency to calculate the diagonal terms of
Q up to order 1 /M0, that is the deviation from the canonical
value n̄k�n̄k+1� is not required. To exactly obtain the energy
conservation �26�, it is, however, convenient to include,
rather than the exact deviation between the canonical and
microcanonical values, an ad hoc approximate correction of
order 1 /M:

Qk,k � n̄k�n̄k + 1� −
�k

2n̄k
2�n̄k + 1�2

�q�0�q
2n̄q�n̄q + 1�

. �42�

In this way, we recover the structure of Eq. �29�, where the
t=0 value of Q is deduced from the one in the canonical
ensemble,

Qk,k�
Gauss�t = 0� = n̄k�n̄k + 1��k,k� �43�

by the action of a projector P,

Q�t = 0� � P†QGauss�t = 0�P . �44�

The projector P still involves the dyadic structure �30�,

Pk,k� = �k,k� − �k�k�, �45�

with a new expression for the vector �� :

�k =
�kn̄k�n̄k + 1�

�q�0�q
2n̄q�n̄q + 1�

. �46�

As a check, one can apply the classical field limit to the
above quantum expressions. One recovers Eq. �29�, apart
from the global factor M / �M+1�, whose deviation from
unity gives rise to terms beyond the accuracy of the present
calculation.

At positive times, our quantum projected Gaussian ap-
proximation assumes that Eq. �44� still holds,

Qapprox�t� � P†QGauss�t�P �47�

with the Gaussian covariance matrix

Qk,k�
Gauss�t� = �k,k�n̄k�n̄k + 1�e−�kt, �48�

where the Beliaev-Landau damping rate �k is now the usual
one, that is for the quantum field theory. From the quantum
equivalent of Eq. �25� one obtains an approximate expression
for the phase derivative correlation function, and from the
quantum equivalent of Eq. �38� an approximate expression
for the quantum field phase diffusion coefficient �43�:

Dapprox = �
k�0

��PA� �k�2 n̄k�n̄k + 1�
�k

, �49�

where the projection of the vector A� was introduced:

�PA� �k = −
g

V
� ��Uk + Vk�2 − �k

�q�0�q�Uq + Vq�2n̄q�n̄q + 1�
�q�0�q

2n̄q�n̄q + 1� �
�50�

with

Ak = −
g

V
�Uk + Vk�2. �51�

In this expression, the modes amplitudes Uk, Vk and energy
�k have the usual expressions of the quantum field Bogoliu-
bov theory,

Uk + Vk =
1

Uk − Vk
= � �2k2/2m

2�g + �2k2/2m

1/4

, �52�

�k = ��2k2

2m
�2�g +

�2k2

2m

�1/2

. �53�

In Appendix A we give the explicit expression of the
Beliaev-Landau damping rates �k and the approximate phase
diffusion coefficient in the thermodynamic limit. The exis-
tence of such a limit is due to the fact that none of the
momentum integrals involved are infrared divergent, keeping
in mind that �Uk+Vk�2, �k, and �k vanish linearly with k �34�,
while n̄k�n̄k+1� diverges as 1 /k2. As expected from the
analysis of the previous section, the scaled diffusion coeffi-
cient �DapproxN /�g is a function of kBT /�g only, see Eq.
�A16�.

In Fig. 7 we show the values of Dapprox for the quantum
field in the thermodynamic limit for the same values of
kBT /�g as in Fig. 6. To see the effect of an energy truncation
at kBT, we also show the values of Dapprox obtained by intro-
ducing an energy cutoff �q�kBT in Eq. �A16� and the same
cutoff �k�kBT in the integrals �A1� and �A9� giving the
damping rate �q. As expected, the resulting values of Dapprox

are close to the values of Dapprox obtained for the classical
field model in Fig. 6, and that we have reported in Fig. 7 for
comparison. We conclude that the diffusion coefficient is in-
deed affected by an energy cutoff, and the coefficient ob-
tained in the classical field simulations with an energy cutoff
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kBT might differ quantitatively from the real one by a factor
as much as 2, in the considered range of values of kBT /�g.

V. CONCLUSION

Using a classical field model, we have shown that the
phase of a uniform Bose-Einstein condensate undergoes true
diffusion in time, when the gas is initially prepared in the
microcanonical ensemble. Parametrizing the microcanonical
energy E by the temperature T of the canonical ensemble
with average energy E, we could show that the rescaled dif-
fusion coefficient �DN /�g, where N is the fixed number of
particles and �g is the Gross-Pitaevskii chemical potential, is
a function of a single variable kBT /�g in the double thermo-
dynamic and Bogoliubov limit.

We have derived an approximate formula for the diffusion
coefficient, in fair agreement with the classical field simula-
tions. We have generalized the approximate formula to the
quantum field case, showing that it also admits a thermody-
namic limit and that it satisfies the scaling property found for
the classical field. We have used the quantum approximate
formula to evaluate the effect of an energy cutoff, not re-
quired in the quantum theory and unavoidable in the classical
field model.

The perspective of using the condensate phase spreading
to experimentally distinguish among different statistical en-
sembles is fascinating, although the measurement of the in-
trinsic phase diffusion of a Bose-Einstein condensate dis-
cussed here remains a challenge and will be the subject of
further investigations.
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APPENDIX A: BELIAEV-LANDAU DAMPING RATES AND
APPROXIMATE PHASE DIFFUSION COEFFICIENT

IN THE THERMODYNAMIC LIMIT

We start with the Landau damping rate of a Bogoliubov
mode of wave vector q as given in �13�,

�q
L =

g2�

�2�
� d3kLk,k�

2 �n̄k − n̄k�����q + �k − �k�� �A1�

with

Lk,k� = UqVkUk� + �Uq + Vq��UkUk� + VkVk�� + VqUkVk�.

�A2�

The mode of wave vector q scatters an excitation of wave
vector k giving rise to an excitation of wave vector k�. The
final mode has to satisfy momentum conservation so that
k�=k+q. Energy conservation �q+�k=�k� is ensured by the
delta distribution in Eq. �A1�. In the integral over k we use
spherical coordinates of axis q, 
 being the polar angle. We
introduce the momentum q̌ scaled by the inverse of the heal-
ing length � and the mode energy �̌q scaled by the Gross-
Pitaevskii chemical potential �g:

q̌ = q� �2

2m�g

1/2

= q� , �A3�

�̌q =
�q

�g
= �q̌2�q̌2 + 2��1/2. �A4�

As a consequence, the mean occupation number n̄q is a func-
tion of q̌ and of the ratio kBT /�g only, and the mode ampli-
tudes Uq, Vq are functions of q̌ only. Introducing the notation
u=cos 
, one has

���̌q + �̌k − �̌k�� = ��u − u0
L�

�̌q + �̌k

2ǩq̌�1 + ��̌q + �̌k�2�1/2
, �A5�

where

u0
L =

�1 + ��̌q + �̌k�2�1/2 − �1 + q̌2 + ǩ2�

2ǩq̌
. �A6�

One can show that u0
L is in between −1 and 1 for all values of

ǩ and q̌, so that the angular integration is straightforward and
leads to

�q
L =

g

���3�
0

+�

dǩLk,k�
2 ǩ��̌k + �̌q��n̄k − n̄k��

q̌�1 + ��̌q + �̌k�2�1/2 �A7�

with

1 + ǩ�2 = �1 + ��̌q + �̌k�2�1/2. �A8�
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FIG. 7. Approximate phase diffusion coefficient for the quantum
field in the thermodynamic limit as a function of kBT /�g in log-log
scale. Solid line with crosses: Dapprox for the quantum field from Eq.
�A16�. Dotted line with crosses: effect of an energy cutoff equal to
kBT in Eq. �A16�. Dashed-dotted line with filled diamonds: Dapprox

for the classical field from Eq. �38� for finite size grids �data already
shown as filled diamonds in Fig. 6�.
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A similar procedure may be applied to the Beliaev damp-
ing rate for the mode q. From �13� one has

�q
B =

g2�

2�2�
� d3kBk,k�

2 �1 + n̄k + n̄k�����k + �k� − �q�

�A9�

with

Bk,k� = UqUkUk� + �Uq + Vq��VkUk� + UkVk�� + VqVkVk�.

�A10�

Here the mode of wave vector q decays into an excitation of
wave vector k and an excitation of wave vector k�. Momen-
tum conservation imposes k�=q−k. Energy conservation
�k�=�q−�k is ensured by the delta distribution in Eq. �A9�,
and clearly imposes k�q. With the same scaled variables
and spherical coordinates as above, one obtains

���̌k + �̌k� − �̌q� = ��u − u0
B�

�̌q − �̌k

2ǩq̌�1 + ��̌q − �̌k�2�1/2
,

�A11�

where

u0
B =

1 + q̌2 + ǩ2 − �1 + ��̌q − �̌k�2�1/2

2ǩq̌
. �A12�

One can show that u0
B is in between −1 and 1, whatever the

values of q̌ and ǩ� q̌, so that angular integration is straight-
forward and gives

�q
B =

g

2���3�
0

q̌

dǩBk,k�
2 ǩ��̌q − �̌k��1 + n̄k + n̄k��

q̌�1 + ��̌q − �̌k�2�1/2 �A13�

with

1 + ǩ�2 = �1 + ��̌q − �̌k�2�1/2. �A14�

Finally we introduce the rescaled total damping rate,

�̌q =
2�2��3

g
��q

L + �q
B� , �A15�

a dimensionless function of kBT /�g only. From Eq. �49� one
then obtains in the thermodynamic limit an approximate ex-
pression for the phase diffusion coefficient depending only
on kBT /�g,

�DapproxN

�g
= �

0

+�

dq̌q̌2�Aq
P�2 n̄q�1 + n̄q�

�̌q

�A16�

with

Aq
P = �Uq + Vq�2 − �̌q

�0
+�dǩǩ2�̌k�Uk + Vk�2n̄k�n̄k + 1�

�0
+�dǩǩ2�̌k

2n̄k�n̄k + 1�
.

�A17�

APPENDIX B: INFLUENCE OF UMKLAPP PROCESSES
ON BELIAEV-LANDAU DAMPING RATES FOR

THE CLASSICAL FIELD

As mentioned in �23�, our lattice model Hamiltonian con-
tains Umklapp processes, i.e., the interaction term when
written in momentum space involves some scattering pro-
cesses that do not conserve the total momentum �but they of
course conserve it modulo 2�� / li along direction i, where li
is the lattice spacing along that direction�. A real atomic gas
in free space does not present such Umklapp processes. In a
quantum theory, the use of a lattice model is legitimate in the
quasicontinuous limit, as the lattice spacing becomes much
smaller than the physical length scales of the gas such as the

(b)

(a)

FIG. 8. �Color online� Beliaev-Landau damping rates �k as
functions of the quantum Bogoliubov energy �k of the modes in
units of �g. The damping rates are normalized as in Eq. �A15�. Red
squares: classical field model used in the present work �grid 323�,
including Umklapp processes. Black circles: classical field model
without the Umklapp processes �grid 323�. Crosses: quantum model
with lattice spacings li reduced by a factor of 2 �grid 643�; the
displayed values of �k are limited to modes on the diagonal of the
numerical grid �kx=ky =kz�0, with �k�kBT�. Solid line: quantum
result in the thermodynamic and quasicontinuous limit. Parameters:
�a� N=2.37�106, kBT / ��2 /mV2/3�=16 864, kBT /�g=9.7, corre-
sponding to the lowest curve in Fig. 1. �b� N=2.37�106,
kBT / ��2 /mV2/3�=15 854, kBT /�g=24.2, corresponding to the high-
est curve in Fig. 1.
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healing length and the thermal de Broglie wavelength, while
remaining larger than the scattering length to ensure that the
interaction potential remains positive �44�. In our implemen-
tation of the classical field model one cannot take the quasi-
continuous limit since an energy cutoff of order kBT is intrin-
sically necessary, so that we expect an effect of the Umklapp
processes on the dynamics.

To assess the importance of this effect, in this appendix
we calculate the Beliaev-Landau damping rates �k for two
different lattice models, with and without Umklapp pro-
cesses, and we compare them to the well-established quan-
tum result in the thermodynamic limit.

In Fig. 8 we plot the Beliaev-Landau damping rates cal-
culated using the perturbative method of �42� for all the Bo-
goliubov modes present in our numerical grid, as functions
of the quantum Bogoliubov energy �k. The red squares are
for the classical field model used in the present work, includ-
ing Umklapp processes. The black circles are for a second
classical field model, deduced from the first one by project-
ing out the Umklapp processes in the interaction term. The
solid line is the quantum result in the thermodynamic limit.
Note that the classical field damping rates calculated on the
grid are spread over a large range of values for a given en-
ergy.

At low energy �k�kBT the two classical field models
�with and without Umklapp� agree. At higher energies the

model with Umklapp processes gives larger rates which are
closer to the quantum theory. The fact that the model without
Umklapp processes gives lower damping rates is understand-
able as many scattering processes happening close to the
cutoff region are inhibited. Finally, for �k�kBT in the cor-
ners of the numerical grid, both classical field models show
small damping rates very far from quantum reality.

We thus conclude that for the parameters range we con-
sidered, and for our specific way of relating the grid spacing
to the temperature, the classical model with Umklapp pro-
cesses is actually preferable to the projected one, since it
avoids the emergence of a large number of modes with an
anomalously low damping rate.

As a consistency check, in Fig. 8 we also plot the results
of a third model �crosses� which is the quantum version of
our lattice model �with the usual quadratic dispersion rela-
tion Ek=�2k2 /2m�, on a larger grid: i.e., reducing the lattice
spacings by a factor of 2 with respect to the classical field
model for a fixed volume of the box. We see that these quan-
tum damping rates, calculated only for the modes along the
diagonal of the numerical grid kx=ky =kz�0, agree well with
the prediction of the well-established Beliaev-Landau theory
in the thermodynamic limit �solid line� exposed in
Appendix A.
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