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I. INTRODUCTION

Considerable interest has been shown in the study of the
properties of the so-called low-dimensional systems. The ad-
vances in nanotechnology allows nowdays the realization of
quasi-two-dimensional systems such as quantum dots �1,2�.
In a different context, the experimental achievement of
trapped ultracold atom gases allows us to study quantum-
mechanical effects of quantum statistics in such gases �3�.
The abovementioned physical systems have originated a
great volume of theoretical work in order to understand such
a fascinating world in a reduced physical space �4�. In this
context, using the canonical Bloch density matrix as a tool,
exact analytical expressions have been obtained for the par-
ticle and the kinetic energy densities in spatial coordinates at
zero and nonzero temperatures �5�. Very recently, this
method has been generalized to take into account the effect
of a uniform perpendicular magnetic field on a confined
charged two-dimensional quantum gas �6�. In the present
work, we are interested in obtaining exact analytical expres-
sions for the Wigner transforms of both, the canonical Bloch
density matrix and the first-order density matrix. Our interest
in the Wigner transform is based on the fact that it provides
a useful tool to study various properties of many-body sys-
tems �7�. In addition to the fact that it allows a reformulation
of quantum mechanics in terms of classical concepts, and it
is also used to generate semiclassical approximations �8,9�,
the Wigner transform may help to gain a better understand-
ing of the properties of the system. It is also very interesting
because with the recent progress of the experimental tech-
niques, phase space densities can be nowdays measured for
certain quantum systems �10�.

The canonical Bloch density matrix is defined as
C�r ,r� ,��=� j� j�r��

j
*�r��exp�−�� j�, where � j�r� and � j are

eigenfunctions and eigenvalues of a one particle Hamiltonian
H associated to the system. Here, � is to be interpreted as a

mathematical variable, which in general, is taken to be com-
plex, and not necessarily the inverse temperature. The Bloch
density matrix is of particular interest since its knowledge
enables the first-order density matrix ��r ,r�� to be found,
through the inverse Laplace transform �11�. In fact at T=0,
the first-order density matrix, for a given Fermi energy �, is
given by

��r,r�� =
1

2�i
�

c−i�

c+i�

d�
C�r,r�,��

�
e��. �1�

The system we are going to study is a harmonically confined
charged atom gas in a two-dimensional x-y plane subjected
to a perpendicular homogeneous magnetic field B=Bk, taken
along the z axis. The one particle Hamiltonian is then given
by

H =
1

2m*
��

i
� +

e

c
A�2

+
1

2
m*	0

2r2 �2�

with r2=x2+y2, A= 1
2 �B
r� is the vector potential, m* and

−e are, respectively, the effective mass and the charge of the
particle and 	0 is the oscillation frequency of the confining
potential. For the Hamiltonian under study, a closed analyti-
cal expression was obtained long time ago for the corre-
sponding Bloch density �12�. Here we rewrite it in the fol-
lowing useful form:

C�r,r�,�� =
m*�/2��

sinh ���
exp	− 2m*�/�

sinh ���

R2 sinh

���−

2


sinh
���+

2
+

s2

4
cosh

���−

2
cosh

���+

2

+ i
�R 
 s� · k

2
sinh ��	L�� , �3�*bencheikh.kml@gmail.com
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where R= �r+r�� /2 and s=r−r� are, respectively, the center-
of-mass and relative coordinates and

	L =
eB

2m*c
, � = 
	0

2 + 	L
2, �� = � � 	L. �4�

	L is the Larmor frequency and �� are two frequencies that
correspond to excitations in the center-of-mass motion–the
so-called “Kohn modes” �13�. Note that, the Hamiltonian in
Eq. �2� has the same partition function, Z
=1 / �4 sinh����+ /2�sinh����− /2��, as that an anisotropic
two dimensional harmonic oscillator with frequencies �−
and �+.

The rest of the paper is organized as follows. In the next
section, we calculate the Wigner transform of the Bloch den-
sity and alternative useful analytical forms for such Wigner
transform are also derived. The Wigner phase space density
matrix is calculated at zero and nonzero temperatures in Sec.
III, showing some interesting plots of it. In Sec. IV, we de-
rive a closed analytical form, in terms of Laguerre polyno-
mials, for the so called autocorrelation function. The high
magnetic field strength case is examined in Sec. IV. In the
last section, a summary and outlook are given.

II. THE WIGNER TRANSFORM OF THE BLOCH DENSITY
MATRIX

In the following we shall calculate the Wigner transform
of the Bloch density matrix given in Eq. �3�. The Wigner
transform of an arbitrary one particle operator A, defined by
its matrix elements in spatial coordinates A�r+ s

2 ,r− s
2 �, is the

following function AW of the phase space variables r and p
�14�:

AW�r,p� = �
R2

A�r + s/2,r − s/2�e−ip·s/�ds , �5�

where its inverse transform is

A�r + s/2,r − s/2� = �
R2

dp

�2���2AW�r,p�eip·s/�. �6�

According to Eq. �6�, the local part of the operator A can be
computed as

A�r,r� � A�r� = �
R2

dp

�2���2AW�r,p� . �7�

We can now calculate, by making use of Eq. �5�, the Wigner
transform of the Bloch density matrix �3�. Let us take the
Wigner transform of C�r+ s

2 ,r− s
2 ,�� and call it CW�r ,p ,��,

so that

CW�r,p,�� =
m*�/2��

sinh ���
exp
−

2m*�

� sinh�����


sinh
���−

2
sinh

���+

2
r2�


�
R2

exp
−
m*�

2� sinh�����


�cosh
���−

2
cosh

���+

2
�s2

− i�m*� sinh ��	L

� sinh�����
�k 
 r� +

p

�
� · s�ds .

�8�

The above two-dimensional integral can be easily evaluated
by using the well known identity

�
R2

dse−as2−ib·s =
�

a
e−b2/�4a� �9�

to obtain the result

CW�r,p,�� =
e−f���r2

e−g����p + u����k 
 r��2

cosh
���+

2
cosh

���−

2

, �10�

where for notational simplicity we have introduced the fol-
lowing functions of �

f��� =

2m*� sinh
���+

2
sinh

���−

2

� sinh�����
,

g��� =
sinh�����

2m*�� cosh
���+

2
cosh

���−

2

,

u��� =
m*� sinh ��	L

sinh�����
. �11�

It can be easily checked that when the magnetic field is ab-
sent, so that 	L=0 then �+=�−=	0 and �=	0, Eq. �10�
yields to the correct Wigner transform for a harmonic oscil-
lator in two dimensions, that is �8�

CW
B=0�r,p,�� =

exp�−

2 tanh
��	0

2

�	0
� p2

2m*
+

m*	0
2

2
r2��

cosh2 ��	0

2

�12�

For the case of an unconfined system subjected to a magnetic
field, i.e. 	0=0, then �=	L, �−=0, �+=2	L, and Eq. �10�
reduces to

CW
	0=0�r,p,�� =

exp
−
tanh ��	L

2m*�	L
�p +

e

c
A�2�

cosh ��	L
, �13�

which is the correct expression of the Wigner transform �15�.
In the following, we present two alternative analytical

forms of the result in Eq. �10�, which can be rewritten as
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CW�r,p,�� =
1

cosh
���+

2
cosh

���−

2

exp�− G�r,p,���

�14�

with

G�r,p,�� = �f + gu2�r2 + gp2 + 2guLz �15�

and Lz is the component of the orbital angular momentum
along the z axis. We show in Appendix A that G�r ,p ,��
takes the following simple form:

G�r,p,�� =
H0 + �Lz

��
tanh

���+

2
+

H0 − �Lz

��
tanh

���−

2
.

�16�

Substitution of this result into Eq. �14�, leads to the factor-
ized analytical form

CW�r,p,�� =

exp�−

tanh
���+

2

��
�H0 + �Lz��

cosh
���+

2




exp�−

tanh
���−

2

��
�H0 − �Lz��

cosh
���−

2

, �17�

where

H0 =
p2

2m*
+

m*�2

2
r2. �18�

Let us now obtain a third closed expression for Wigner trans-
form of the Bloch density. For that purpose, we use the fol-
lowing expansion in terms of Laguerre polynomials �16�:

exp�− x tanh y�
cosh y

= 2e−x�
n=0

�

�− 1�nLn�2x�exp
− 2y�n +
1

2
��
�19�

for x= �H0��Lz� /�� and y=���� /2, Eq. �17� becomes

CW�r,p,�� = 4 exp
−
2H0

��
��

n=0

�

�
m=0

�

�− 1�n+m


Ln�2�H0 + �Lz�
��

�Lm�2�H0 − �Lz�
��

�

exp�− �En,m� , �20�

where

En,m = ��+�n + 1/2� + ��−�m + 1/2� �21�

are the eigenvalues of the Hamiltonian �2�. To our knowl-
edge, the results given in Eqs. �10�, �17�, and �20� are new
and seem not to have been reported before in the literature.

III. QUANTUM WIGNER PHASE SPACE DISTRIBUTION
AT ZERO AND NONZERO TEMPERATURES

A. Phase space distribution at zero temperature

Having established in the previous section various ana-
lytical forms for the Wigner transform of the Bloch density,
we shall now calculate analytically the expression for the
quantum Wigner phase space distribution or Wigner trans-
form density of the first-order density matrix ��r ,r��. Let
�W�r ,p� denote such density, defined as

�W�r,p� = �
R2

��r +
s

2
,r −

s

2
�e−ip·s/�ds . �22�

The above distribution can also be obtained through the use
of the Wigner phase space version of Eq. �1�, that is,

�W�r,p� =
1

2�i
�

c−i�

c+i�

d�
CW�r,p,��

�
e��. �23�

Inserting Eq. �20� into Eq. �23�, and performing the inverse
Laplace transform �17�

1

2�i
�

c−i�

c+i� d�

�
e���−En,m� = 
�� − En,m� , �24�

where 
 is the Heaviside step function, we find

�W�r,p� = 4e−2H0/���
n=0

�

�
m=0

�

�− 1�n+mLn�2�H0 + �Lz�
��

�

Lm�2�H0 − �Lz�

��
�
�� − En,m� . �25�

Due to the presence of the step function, the quantum num-
bers n ,m are restricted to ��+�n+1 /2�+��−�m+1 /2���.
The highest allowed value for n, N+, is given by

N+ = Int
 �

��+
−

�

�+
� , �26�

where Int�x� denotes the integer part of x�0. For a given
allowed value of n, the maximum allowed value of m, N−, is

N− = Int
 �

��−
−

�+

�−
n −

�

�−
� . �27�

Therefore, the density distribution in Eq. �25�, can be rewrit-
ten as

�W�r,p� = 4e−2H0/���
n=0

N+

�
m=0

N−

�− 1�n+mLn�2�H0 + �Lz�
��

�

 Lm�2�H0 − �Lz�

��
� . �28�

Notice that the above density depends not only on the moduli
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�r� and �p�, but also on the relative angle � between r and p,
i.e., �W�r ,p�=�W�r , p ,��. For N=20 particles, Fermi energy
�=6.35�	L and 	0 /	L=1, we display in Figs. 1�a�–1�d� this
Wigner phase space density for �=0,� /6,� /3,� /2, respec-
tively.

In the absence of a magnetic field, the system becomes of
a pure harmonic oscillator with frequency 	0 and thus all the
� are all equal to 	0, we show in Appendix B, that the above
density has indeed the correct limit, given by �18�

�W
B=0�r,p� = 4e−2H0/�	0�

p=0

M

�− 1�pLp
1�4H0

�	0
� , �29�

where Ln
1 is the generalized Laguerre polynomial of order

one and the quantum number M is related to the Fermi en-
ergy by �=�	0�M +1�.

In what follows, we shall deduce from Eq. �25� a result
which will greatly simplify us the treatment when we will
deal, in the next subsection, with the finite temperature case.
Let �n,m�r� denote the eigenfunction of the Hamiltonian �2�
with eigenvalues En,m given in Eq. �21�. In terms of the
single particle wave functions, the first-order density matrix
is

��r +
s

2
,r −

s

2
� = �

m,n=0

�

�n,m�r +
s

2
��

n,m
* �r −

s

2
�
�� − En,m� ,

�30�

where � is the Fermi energy. Taking the Wigner transform of
Eq. �30�, we get

�W�r,p� = �
m,n=0

�

W
�n,m�r +
s

2
��

n,m
* �r −

s

2
��
�� − En,m� .

�31�

Here the symbol W stands for Wigner transform. Comparing
this result with Eq. �25�, we deduce that

W
�n,m�r +
s

2
��

n,m
* �r −

s

2
�� = 4e−2H0/���− 1�n+m


Ln�2�H0 + �Lz�
��

�

Lm�2�H0 − �Lz�

��
� .

�32�

Thus, we have found the Wigner transform of the product
�n,m�r+s /2��

n,m
* �r−s /2� without the explicit use of the

single particle wave functions. As stated before this result
will immediately be used in the following subsection.

B. Wigner phase space distribution at nonzero temperatures

Here, we shall generalize the result obtained in Eq. �25�,
valid for T=0, to nonzero temperatures. We start with the
definition of the first-order density matrix at temperature T,
��r+s /2,r−s /2,T�, in terms of the normalized single par-
ticle wave functions �n,m, which reads for fermions

�F�r +
s

2
,r −

s

2
,T� = �

n=0

�

�
m=0

� �n,m�r +
s

2
��

n,m
* �r −

s

2
�

exp�En,m − �

kBT
� + 1

,

�33�

where �exp�
En,m−�

kBT �+1�−1 is the Fermi distribution function
for the level energy En,m, kB is Boltzmann’s constant and �
the chemical potential. Taking the Wigner transform of both
sides in Eq. �33� and using obvious notations, we get

�W
F �r,p,T� = �

n=0

�

�
m=0

� W��n,m�r + s/2��
n,m
* �r − s/2��

exp�En,m − �

kBT
� + 1

,

�34�

where we have used the fact that, the Fermi distribution is
not affected by the Wigner transformation. Substituting Eq.
�32� into Eq. �34�, one arrives at

�W
F �r,p,T� = 4e−2H0/���

n=0

�

�
m=0

�

�− 1�n+mLn�2�H0 + �Lz�
��

�

Lm�2�H0 − �Lz�

��
� 1

e�En,m−��/kBT + 1
. �35�

Since, in the T→0 limit the Fermi distribution function be-
comes the step function, with �=��T=0� as the Fermi en-
ergy, that is,

1

exp�En,m − �

kBT
� + 1

→ 
�� − En,m� , �36�

the result �35� reduces to the correct zero temperature limit
given in Eq. �25�. As can be seen in Eq. �35�, the Fermi
distribution function enters in a simple way in the expression
of the phase space distribution. This suggests to examine a
similar situation for the case of bosons. In this case, the
first-order density matrix in spatial coordinates at tempera-
ture T is

�B�r +
s

2
,r −

s

2
,T� = �

n=0

�

�
m=0

� �n,m�r +
s

2
��

n,m
* �r −

s

2
�

exp�En,m − �

kBT
� − 1

,

�37�

where we have included the Bose distribution function. Fol-
lowing the same derivation as done for Fermions, one imme-
diately gets for the phase space density of bosons at finite
temperature, the result
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�W
B �r,p,T� = 4e−2H0/���

n=0

�

�
m=0

�

�− 1�n+mLn�2�H0 + �Lz�
��

�

Lm�2�H0 − �Lz�

��
� 1

e�En,m−��/kBT − 1
. �38�

This last equation may constitute a useful starting point to
study thermodynamical properties in phase space of charged
Bose gas, in particular at low temperatures.

IV. THE AUTOCORRELATION FUNCTION

The autocorrelation function, also called the reciprocal
form factor �19�, is known to provide information on the
off-diagonal part of the density matrix ��r ,r�� and is defined
in spatial coordinates as

B�s� = �
R2

exp�−
ip · s

�
�n�p�dp �39�

with s=r−r� and n�p� is the density profile in momentum
space. The latter is defined by a similar relation as in Eq.
�30�, where one has to convert the normalized spatial wave
functions �n,m into their analogs �̃n,m�p� in momentum
space, that is,

n�p� = �
n=0

�

�
m=0

�

�̃n,m�p��̃
n,m
* �p�
�� − En,m� . �40�

On the other hand, the momentum density n�p� can also be
obtained through the Wigner phase space distribution

n�p� = �
R2

�W�r,p�
dr

�2���2 �41�

and is normalized to the total particle number N of the sys-
tem

�
R2

n�p�dp = N . �42�

Therefore, it follows from Eq. �39�, that B�0�=N. In the fol-
lowing we shall derive a closed analytical result for B�s�. To
do so, we first insert Eq. �23� into Eq. �41�, to obtain

n�p� =
1

2�i
�

c−i�

c+i�

d�
e��

�
�

R2

dr

�2���2CW�r,p,�� �43�

to carry out the r integration, we use the analytical form of
CW�r ,p ,�� given in Eq. �10� and we rewrite it as follows:

CW�r,p,�� =
1

cosh
���+

2
cosh

���−

2

exp
−
fg

f + gu2p2�

 exp
− �f + gu2��r +

gu

f + gu2 �p 
 k��2� ,

�44�

where we have used �p
k�2=p2, since p is a planar vector.
The above result can now be inserted into Eq. �43�, to obtain

ΡW��, �, 0�

0

1

2

3

�

0

1

2

�

0

2

ΡW��, �,
Π

6
�

0

1

2

3

�

0

1

2

�

0

2

ΡW��, �,
Π

3
�

0

1

2

3

�

0

1

2

�

0

2

ΡW��, �,
Π

2
�

0

1

2

3

�

0

1

2

�

0

2

(a)

(c)

(b)

(d)

FIG. 1. �Color online� �a�–�d�
correspond to plots of the Wigner
phase space density �W�r ,p�
=�W�r , p ,�� for N=20 particles at
�=0,� /6,� /3,� /2, respectively.
We have chosen parameters
	0 /	L=1 with Fermi energy �
=6.35�	L. Lengths are plotted in
units of the magnetic length l
=
�c /eB for r and in units of l−1

for the momentum p.
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n�p� =
1

2�i
�

c−i�

c+i�

d�
exp����
�2���2�� 1

cosh
���+

2
cosh

���−

2

�

�f + gu2�
exp�−

fg

f + gu2p2��
=

1

2�i
�

c−i�

c+i�

d�
exp����
�2���2�

� 2��

m*� sinh�����
exp�−

2 sinh
���+

2
sinh

���−

2

�m*� sinh�����
p2�� , �45�

where we have used Eq. �11�. Putting this result with this present form into Eq. �39� and using Eq. �9�, one then finds

B�s� =
1

2�i
�

c−i�

c+i�

d�
exp����

2��m*�� sinh�������R2
dp exp�−

2 sinh
���+

2
sinh

���−

2

�m*� sinh�����
p2 −

ip · s

�
��

=
1

2�i
�

c−i�

c+i�

d�
exp����

� � 1

4 sinh
���−

2
sinh

���+

2

exp�−
m*�

8�

sinh�����

sinh
���+

2
sinh

���−

2

s2�� . �46�

Remember that, �= ��++�−� /2, so that

sinh�����

sinh
���+

2
sinh

���−

2

= coth
���+

2
+ coth

���−

2

�47�

plugging this result into the exponential of Eq. �46�, to get

B�s� =
1

2�i
�

c−i�

c+i�

d�
e��

� � exp
−
m*�

8�
�coth

���+

2
�s2�

2 sinh
���+

2




exp
−
m*�

8�
coth����−

2
�s2�

2 sinh
���−

2
� . �48�

At this level, we can carry out explicitly the inverse Laplace
transform by first using the following expansion in terms of
Laguerre polynomials �16�

exp
− x coth�����

2
��

sinh�����

2
� = 2e−x�

n=0

�

Ln�2x�e−�����n+1/2�

�49�

and followed by Eq. �24�, one then finds

B�s� = e−m*�/4�s2 �
m,n=0

�

Ln�m*�

4�
s2�Lm�m*�

4�
s2�
�� − En,m� .

�50�

Notice that an interesting feature of the above autocorrela-
tion function is that it is expressed in terms of Laguerre

polynomials with same arguments, note also that it is isotro-
pic in spatial coordinates, i.e., depends only on the length �s�
of the vector s. Setting s=0, one obtains B�0�=N, as it is
required. In Fig. 2 we display the T=0 spatial dependence of
the autocorrelation function for N=20 particles, choosing the
following values of the parameters 	0 /	L=1 and Fermi en-
ergy �=6.35�	L.

Finally, let us come to the finite temperature expression of
B�s�. In a similar way as was done in the previous section,
one can immediately write down its expression. For Fermi-
ons, this is simply achieved by replacing the 
��−En,m� in
Eq. �50� by the Fermi function

B�s� = e−�m*�/4��s2 �
m,n=0

� Ln�m*�

4�
s2�Lm�m*�

4�
s2�

exp�En,m − �

kBT
� + 1

. �51�

For bosons, all that is required is the replacement of the
Fermi function by the Bose function

B�s� = e−�m*�/4��s2 �
m,n=0

� Ln�m*�

4�
s2�Lm�m*�

4�
s2�

exp�En,m − �

kBT
� − 1

. �52�

2 4 6
s

10

20

B�s�

FIG. 2. �Color online� The T=0 autocorrelation function B�s�
=B�s� for N=20 particles, with 	0 /	L=1 and Fermi energy �
=6.35�	L. Lengths are plotted in units of the magnetic length l
=
�c /eB.
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V. STRONG MAGNETIC FIELD CASE

The strong magnetic field case at low temperature is of
particular interest in quantum dots. In this limit only a few
Landau levels are occupied and the magnetic field length l
= ��c /eB�1/2 is small leading to slowly varying confining ex-
ternal harmonic potential on the scale of l. In what follows
we shall examine the strong magnetic field �SB� case, where
one has 	0 /	L�1 then ��	L, �+�2	L and �−
�	0

2 / �2	L� which yields, respectively, for the functions
given in Eq. �11�, to the leading order

f��� � �m*	0
2/2, g��� �

tanh���	L�
2m*�	L

, u��� � m*	L.

�53�

Substituting this results into Eq. �10�, gives immediately the
result for the Wigner transform of the Bloch density

CW
SB�r,p,�� =

e−�m*	0
2r2/2

cosh ��	L
exp
−

tanh ��	L

2m*�	L
�p +

e

c
A�2� .

�54�

In this case, the net result we get is a product of the Bloch
density of free charged particles in magnetic field �see Eq.
�13�� and an exponential factor limiting the spatial distribu-
tion. Let us now, calculate the corresponding Wigner phase
space density. Inserting Eq. �54� into Eq. �23� and making
use of Eqs. �19� and �24�, one obtains

�W
SB�r,p� = 2 exp
−

Hmagn

�	L
��

n=0

�

�− 1�nLn�2Hmagn

�	L
�



�� − �2n + 1��	L −
m*	0

2

2
r2� , �55�

where Hmagn= �p+ �e /c�A�2 / �2m�� is the Hamiltonian for a
particle in the presence of the magnetic field alone. One im-
mediately recognizes in the argument of the Heaviside func-
tion the discrete Landau level energies �2n+1��	L. As can
be seen, the phase space density in above has a simple ana-
lytical form, therefore we can easily obtain, in this high mag-
netic field limit, the corresponding density matrix ��r
+s /2,r−s /2� in spatial coordinates. To do so, we make use
of the inverse Wigner transformation. According to Eq. �6�,
one has

�SB�r + s/2,r − s/2�

= 2�
n=0

�

�− 1�n
�� − �2n + 1��	L −
m*	0

2

2
r2�


�
R2

dp

�2���2e+ip·s/�e−Hmagn/�	LLn�2Hmagn

�	L
� .

�56�

The last integral can be carried out as follows. Denoting it by
I and using the canonical momentum K=p+ �e /c�A, one ob-
tains

I = e−i�e/�c�A·s�
R2

dK

�2���2eiK·s/�e−�K2/2m*�	L�Ln� K2

m*�	L
� ,

�57�

and changing to the variable t=K /
m*�	L, we get

I =
m*�	L

�2���2 e−i�e/�c�A·s�
0

�

te−t2/2Ln�t2�dt


�
0

2�

d�ei�
m*	L/��ts cos �

=
e−i�e/�c�A·s

4�l2 �
0

�

te−t2/2Ln�t2�J0�
m*	L/�ts�dt , �58�

where we have made use of the relation �16�

�
0

2�

d�eix cos��� = 2�J0�x�

to get the last line, J0�x� being the Bessel function. The fol-
lowing relation �16�:

�
0

�

xe−x2/2Ln�x2�J0�xy�dx = �− 1�ne−y2/2Ln�y2�

helps us to perform the integral in Eq. �58�, to find

I =
�− 1�n

2�l2 e−i�e/�c�A·se−�m*	L/2��s2
Ln�m*	L

�
s2� . �59�

Substituting this result into Eq. �56�, yields

�SB�r +
s

2
,r −

s

2
� =

e−i�e/�c�A·s

2�l2 e−�m*	L/2��s2�
n=0

�

Ln�m*	L

�
s2�


 
„� − �2n + 1��	L − m*	0
2r2/2… .

The local density is obtained by setting s=0,

�SB�r� =
1

2�l2 �
n=0

�


�� − �2n + 1��	L −
m*	0

2

2
r2� . �60�

In their study of a two-dimensional electron gas subjected to
a magnetic field and partially confined by a harmonic poten-
tial, the authors of Ref. �20� obtained a similar result for the
spatial density using a different approach �we note that their
parabolic potential is taken only in the x direction, i.e.,
V�x ,y�=m*	0

2x2 /2�. As noticed by these authors, the density
contains compressible and incompressible regions.

In order to rewrite Eq. �60� in a more compact form, we
use the following identity relating the Heaviside and the in-
teger part functions:

�
n=0

�


�x − n� = 
�x + 1�Int�x + 1� . �61�

Then, ��r� becomes
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��r� =
1

2�l2
�� − m*	0
2r2/2 + �	L

2�	L
�


 Int�� − m*	0
2r2/2 + �	L

2�	L
� . �62�

In Fig. 3 we plot the above zero-temperature spatial density
for the case of N=200 particles with parameters 	0 /	L
=0.2048 and Fermi energy �=4.1�	L.

For ultrastrong magnetic field, such that all the particles
reside in the lowest Landau level �LLL�, Eq. �60� reduces to

�LLL�r� =
1

2�l2
�� − �	L − m*	0
2r2/2� . �63�

Before closing this section, it is intersting to calculate the
momentum density or the momentum distribution n�p� in the
strong magnetic field case. This important distribution was
already introduced in the previous section but its calculation
has not been fully completed since this density was used
there as an intermediate to obtain the autocorrelation func-
tion. In a short, we start from its expression given in Eq. �46�
and introduce the strong magnetic field approximations we
used above, namely, sinh����+ /2��sinh ��	L,
sinh����− /2����	0

2 / �4	L�, and sinh������sinh ��	L
to get

nSB�p� =
1

2�i
�

c−i�

c+i�

d�
exp����

�2���m*	L�

exp�− �
	0

2

2m*	L
2 p2�

sinh ��	L
.

�64�

At this level, it is easy to perform the inverse Laplace trans-
form by using the expansion

1

sinh���	L�
= 2�

n=0

�

exp�− �2n + 1���	L�

with Eq. �24�, which results in

nSB�p� =
2l2

��2 �
n=0

�


�� − �2n + 1��	L −
	0

2

2m*	L
2 p2� .

�65�

As with the spatial density in Eq. �60�, the momentum den-
sity exhibits the same structure consisting of a series of wide
steps in momentum space. The above results have been ob-
tained for spinless charged particles at T=0 and the generali-
zation to finite temperatures can be done without any particu-
lar difficulties.

VI. SUMMARY AND OUTLOOK

We have derived some simple exact closed expressions
for the Wigner transform of the canonical Bloch density of
two-dimensional harmonic oscillator in a uniform magnetic
field. We have also obtained exact analytical form for the
Wigner phase space density at zero and nonzero temperature.
Our results are valid for arbitrary magnetic field strengths
and hold for both fermions and bosons. For the system under
study, we have found simple and exact analytical expression
for the so-called autocorrelation function. The high magnetic
field case has been examined. Our investigation in phase
space complement the recent works in spatial coordinates.
The results we obtained would constitute useful starting
point for the study, in phase space, of thermodynamical prop-
erties in the field of cold atom gases.
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APPENDIX A

The purpose of this appendix is to derive the expression
of the function G�r , p ,�� given in Eq. �16�. First, we evalu-
ate the various functions of � in Eq. �15�, namely, U���
= �f���+g���u2����, g��� and V���=2g���u���. Using Eq.
�11�, we get for U���

U��� =

2m*� sinh
���−

2
sinh

���+

2

� sinh�����

+
m*�sinh2 ��	L

2� sinh�����cosh
���−

2
cosh

���+

2

=
m*�/2�

sinh ���

sinh����−�sinh����+� + sinh2 ��	L

cosh
���−

2
cosh

���+

2

.

�A1�

10 20 30
r

1

2
Ρ�r�

FIG. 3. �Color online� Plot of the spatial density ��r�=��r� in
units of �2�l2�−1 at T=0 in a harmonic oscillator potential with
	0 /	L=0.2048 and Fermi energy �=4.1�	L, corresponding to N
=200 particles. Lengths are plotted in units of the magnetic length
l=
�c /eB.

K. BENCHEIKH AND L. M. NIETO PHYSICAL REVIEW A 78, 053614 �2008�

053614-8



From sinh����−�sinh����+�= 1
2 �cosh�����−+�+��

−cosh�����−−�+���, and �−+�+=2�, �−−�+=−2	L, we
obtain

U��� =
m*��cosh 2��� − cosh ��	c + 2 sinh2 ��	L�

4� sinh�����cosh����−

2
�cosh

���+

2

=
m*� sinh ���

2� cosh
���−

2
cosh

���+

2

.

If we use again �−+�+=2�, the above result becomes

U��� =
m*�

2�
�tanh

���+

2
+ tanh

���−

2
� . �A2�

We now turn to the two remaining functions. For conve-
nience, we rewrite the function g���, given in Eq. �11�, as

g��� =
1

2m*��
�tanh

���+

2
+ tanh

���−

2
� . �A3�

For the function V���, one simply gets

V��� =
sinh 2��	L

� cosh
���−

2
cosh

���+

2

,

and using �+−�−=2	L, one ends with

V��� =
1

�
�tanh

���+

2
− tanh

���−

2
� . �A4�

Substituting Eqs. �A1�–�A3� into Eq. �15�, simple manipula-
tions yield to the desired result �16�.

APPENDIX B

In this appendix we shall show that, in the absence of
magnetic field, the phase space density in Eq. �28� reduce to
the result in Eq. �29�. In this limit Eq. �28� becomes

�W
B=0�r,p� = 4e−2H0/�	0�

n=0

N+

�
m=0

N−

�− 1�n+mLn�2�H0 + 	0Lz�
�	0

�

Lm�2�H0 − 	0Lz�

�	0
� . �B1�

Here, N+=Int� �

�	0
�−1 and N−=Int� �

�	0
−n−1�=N+−n. The

physical meaning of N+ is only but the quantum number of
the last occupied harmonic oscillator shell, denoted by M in
Eq. �29�. The Hamiltonian H0 appearing in Eq. �B1� refers to
Eq. �18� but with �=	0. Putting p=n+m, Eq. �B1� rewrites

�W
B=0�r,p� = 4e−2H0/�	0�

p=0

M

�− 1�p�
m=0

p

Lp−m�2�H0 + 	0Lz�
�	0

�

Lm�2�H0 − 	0Lz�

�	0
� , �B2�

and using the identity �m=0
p Lp−m�x�Lm�y�=Lp

1�x+y� �see Ref.
�16��, the result in Eq. �29� is then recovered.
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