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We consider a mixture of two-species atomic Bose-Einstein condensates coupled to a bound molecular state
at zero temperature via an interspecies Feshbach resonance. The interspecies Feshbach coupling precludes the
possibility of doubly mixed phases while enables not only the pure molecular superfluid but also the pure
atomic superfluids to exist as distinct phases. We show that this system is able to support a rich set of phase
separations, including that between two distinct mixed atom-molecule phases. We pay particular attention to
the effects of the Feschbach coupling and the particle collisions on the miscibility of this multicomponent
condensate system.
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I. INTRODUCTION

The experimental realization of multicomponent conden-
sate systems in the late-1990s �1–3� has renewed the interest
in the subject of miscibility of two distinguishable conden-
sates in a binary mixture �4–8�. Whether two condensates
coexist in the same spatial volume �miscibility� or repel each
other into separate spatial regions �immiscibility or phase
separation� or even collapse when they are brought together
is largely determined by the relative strength between inter-
and intra-species s-wave scattering lengths. The ability to
change the two-body interactions by tuning the magnetic
field across the Feshbach resonance in atomic systems has
enabled the observation of phase separations, that are other-
wise impossible with traditional condensed matter environ-
ments, to be accessed experimentally. The recent experimen-
tal demonstration of rich phase structure including the phase
separation in an unbalanced fermionic superfluidity system
�9,10� serves as a great testament to the remarkable control-
lability that the technique of Feshbach resonance can bring to
the atomic system.

In this paper, we consider a model where bosonic atoms
of two different species are coupled to a bound heteronuclear
molecular state via the interspecies Feshbach resonance �we
will simply refer to it as the heteronuclear model in this
paper�. Chiefly due to their large permanent electric dipole
moments, ultracold heteronuclear molecules are thought to
hold great promise in applications such as quantum comput-
ing and simulation �11,12� and precision measurement of
fundamental symmetry �13–15� and constants �16–18�. As
such, the study of cold heteronuclear molecules has evolved
into one of the most hotly pursued topics in the field of
atomic, molecular, and optical physics �19�. The recent ex-
perimental efforts both in achieving the tunable interaction
between 41K and 87Rb �20� and in demonstrating the ability

of the Feshbach resonance to control the miscibility of a
85Rb-87Rb dual-species Bose-Einstein condensate �BEC�
�21� have further stimulated our interest in the proposed
model.

In an earlier paper �22�, we concentrated on the coherent
creation of heteronuclear molecular condensates �similar
studies can also be found in Ref. �23��. In this paper, we will
focus on constructing zero-temperature phase diagrams, pay-
ing particular attention to phase separation and collapse. In
models with a broad Feshbach resonance, the molecular
component can be adiabatically eliminated; this approxima-
tion leads to an effective binary condensate system, whose
properties were investigated extensively in the past �4–8�. In
general, we must treat the molecular component as an inde-
pendent degree of freedom, regarding our model as a genu-
ine three-species condensate system. However, our system is
fundamentally different from the independent gas model
�24,25�, where no interspecies conversions can take place.
The conversion between atoms and molecules can lead to
phenomena unconventional to the independent gas model, as
has been pointed out by Radzihovsky et al. �26� and Romans
et al. �27�. The surprise, that the homonuclear model admits
the molecular superfluid �MSF� but not the pure atomic su-
perfluid �ASF�, was traced to the intraspecies Feshbach pro-
cess which takes two atoms from the same species to form
one molecule. This is no longer the case for the interspecies
Feshbach process which requires only one atom from each
species to produce one molecule; but, it creates a new
surprise—the doubly mixed phases with two nonvanishing
order parameters which are ubiquitous in the independent
gas model are completely absent from our system. For the
same reason, not only the pure molecular phase but also the
pure atomic superfluids can exist in the heteronuclear model.
This along with the possibility of simultaneously tuning the
Feshbach energy and the atomic population imbalance �an
extra control “knob” unique to the heteronuclear model�
makes the number of experimentally accessible phase sepa-
rations �summarized in Sec. VI� far greater in the hetero-
nuclear model than in the homonuclear model.

This paper is organized as follows. In Sec. II, we describe
our model and the Hamiltonian by defining all the system
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parameters. In Sec. III, we derive the equilibrium conditions
by minimizing a total grand canonical Hamiltonian under the
premise that the system is in an arbitrary state of phase sepa-
ration. A general classification of various phases supported
by our system is summarized in Sec. IV. The same section
also presents the nonlinear coupled equation governing the
mixed atom-molecule superfluid phase and generalizes the
stability conditions to our three-component system. In Sec.
V, we provide numerical examples that showcase the ability
of our system to support a rich set of phase separation pos-
sibilities while at the same time elucidate the effects of the
Feshbach coupling and the particle collisions on the misci-
bility property of our system. Finally, a summary is given in
Sec. VI.

II. MODEL AND HAMILTONIAN

Our model consists of two distinct atomic species of
states �1� and �2� and a molecular species of state �3�. The
state �3� differs in energy from the atomic states by an
amount �. In our model, particles can interact with each
other through collisions. At low temperature, we use �ij to
denote the collisional strength of the s-wave scattering in-
volving either the same species �i= j� or different species �i
� j�. In addition, atoms of state �1� can combine with atoms
of state �2� to coherently create molecules of state �3� via
Feshbach resonance characterized with atom-molecule cou-
pling strength g and Feshbach detuning �, tunable by chang-

ing the magnetic field. Let �̂i�r� be the field operator for the
ith component, and mi be the mass of species i with m3
=m1+m2. We describe our system with the following Hamil-
tonian:

Ĥ =� d3r� 	
i=1,2,3

�̂i
†�r�
−

�2�2

2mi
��̂i�r� + ��̂3

†�r��̂3�r�

+
g

2
��̂3

†�r��̂1�r��̂2�r� + h.c.�

+ 	
i,j

�ij

2
�̂i

†�r��̂ j
†�r��̂ j�r��̂i�r�� , �1�

which can be easily generalized from the Hamiltonian for the
homonuclear model �26,27�.

In this paper, we limit our study to the homogeneous con-
densate system at zero temperature where each species has
already condensed into the zero momentum mode. As such,
we can describe such a system in the spirit of the mean-field

approximation in which �̂i�r� is replaced with the uniform c
number �i exp�i�i�, where �i�0 and �i are two real num-
bers, representing, respectively, the modulus and the phase of
the corresponding complex order parameter. It can be easily

shown that the mean-field energy density E= Ĥ� /V �with V
being the total volume� is a function of the “relative phase”
�=�1+�2−�3 and is minimized when �=� �assuming,
without loss of generality, that g�0�. With these consider-
ations, we derive from Eq. �1� the following mean-field �low
branch� energy density:

E = ��3
2 − g�1�2�3 + 	

ij

�ij

2
�i

2� j
2, �2�

which will be used in the next section as the starting point
for studying phase and phase separations.

III. GENERAL CONDITIONS FOR PHASE SEPARATION

To begin with, we imagine that our system at the ground
state is phase separated into a number of arbitrary phases �yet
to be determined�, each of which occupying a volume of Vi.
For the purpose of easy illustration, without loss of general-
ity, we consider the case that the system separates into two
different phases. The total energy of the system, when the
interface energies are ignored �5,8�, then becomes

Etotal = V1E�1� + V2E�2�, �3�

where E�n� is the mean-field energy density of the nth phase
and is equivalent to E in Eq. �2� when �i is replaced with
�i

�n�, the order parameter of the ith component in the nth
phase. The ground state energy without phase separation is
then a special case where, for example, V2=0 and V1=V.

To determine the ground state, we construct a generalized
�mean-field� grand canonical Hamiltonian

Ktotal = Etotal − 	N − hNd − mV , �4�

where 	, h, and m are three Lagrangian multipliers associ-
ated, respectively, with the conservation of the total particle
number

	
n=1

2

���1
�n��2 + ��2

�n��2 + 2��3
�n��2�Vn = N , �5�

the total atom number difference

	
n=1

2

���1
�n��2 − ��2

�n��2�Vn = Nd, �6�

and finally the total volume

V1 + V2 = V . �7�

To proceed further, we first define the free energy density

K = − 	
i

	i�i
2 − g�1�2�3 + 	

ij

�ij

2
�i

2� j
2. �8�

When the use of Eqs. �3�, �5�, and �7� is made, we find that

Ktotal = V1K�1� + V2K�2� − m�V1 + V2� , �9�

where K�n� is equivalent to K in Eq. �8� with �i and 	i

substituted with �i
�n� and 	i

�n�, respectively. In Eq. �8�,

	i
�1� = 	i

�2� = 	i,

with 	1=	+h, 	2=	−h, and 	3=2	−�. Thus, as expected,
the chemical potentials in equilibrium are balanced as a con-
sequence of the particle number conservation laws �Eqs. �5�
and �6��. Minimization of Ktotal with respect to V1 and V2
results in
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K�1� = K�2�. �10�

Thus we conclude that �1� for such a phase separation to
be possible, phase 1 and phase 2 must coexist for a given set
of 	1, 	2, and 	3 or must overlap in the chemical potential
space, and �2� phase separation takes place along the first-
order phase transition line where the energy density of phase
1 equals that of phase 2 �28�. Evidently, the same conclusion
holds for phase separation involving an arbitrary number of
phases.

IV. POSSIBLE PHASES AND STABILITY CRITERIA

A. Possible phases

In order to determine the possible phases, we minimize
Eq. �9� with respect to �i

�n�. This procedure results in the
following set of saddle-point equations:

	1�1 = −
g

2
�2�3 + �1	

i

�1ini,

	2�2 = −
g

2
�1�3 + �2	

i

�2ini,

	3�3 = −
g

2
�1�2 + �3	

i

�3ini, �11�

where we have replaced �i
�n� with �i and used ni=�i

2 to de-
note the density of the ith species. The possible phases,
which correspond to different solutions of Eqs. �11�, can then
be broadly divided into five groups:

�i� vacuum with �1=�2=�3=0;
�ii� atomic superfluid of species 1 �ASF1� with �1

=�	1 /�11, �2=�3=0;
�iii� atomic superfluid of species 2 �ASF2� with �2

=�	2 /�22, �1=�3=0;
�iv� molecular superfluid �MSF� with �3=�	3 /�33, �1

=�2=0; and
�v� mixed atom-molecule superfluid �AMSF� with �1�0,

�2�0, and �3�0.
We first note that our model allows the existence of both

MSF and ASF, in contrast to the homonuclear model, which
supports MSF but not ASF. In our model, the energy density
due to the Feshbach coupling is g�1�2�3, which is symmet-
ric with respect to the exchange of any pair of states and
hence does not favor the formation of one pure phase to
another. In the homonuclear model, on the other hand, the
energy density due to the Feshbach coupling is in the asym-
metric form of g�3�1

2. With such a form, condensation of
atoms will inevitably lead to the formation of the molecular
condensate while condensation of molecules can take place
in the absence of the atomic population.

We emphasize that this classification holds only in the
presence of the Feshbach coupling �g�0�. In a typical three
interacting gas system where g=0, the system supports, be-
sides all the phases listed above, doubly mixed phases, for
example, ASF1-MSF in which �1�0, �3�0, and �2=0. The
absence of the doubly mixed phases can again be attributed

to the unique form of the Feshbach coupling, g�1�2�3, in the
heteronuclear model. This term dictates that the existence of
condensate population in any pair of states will lead to the
condensation in the third component, which precludes the
possibility of forming the doubly mixed phases where the
population in the third component is zero.

We also comment that for a given set of chemical poten-
tials, while ASF1, ASF2, and MSF are unique, AMSF, due to
the highly nonlinear nature of Eq. �11�, may itself be divided
into different types depending on the density distribution
among three species. Such an example will be given in Sec.
V C 2.

Finally, this classification, although obtained under the
condition of zero temperature, can provide a useful road map
for understanding the phase diagrams at finite temperature.
At finite temperature, state �i� becomes the so-called normal
state where the gas mixture does not possess any order, and
other states become mixed in the sense that superfluidities
and thermal densities are both present. Lowering temperature
reduces the entropy and restores the order to the gas system,
thereby giving rise to a hierarchy of critical temperatures
associated with phase transitions that break symmetries at
various levels. The subject of finite temperature phase dia-
grams will be left as a future study.

B. Stability criteria

From Eq. �11� we have determined the possible phases,
which correspond to the critical points �extrema or saddle
points� of the free energy density K. We now turn our atten-
tion to studying their stability properties by identifying the
local minimum of the function K. For this purpose, we first
introduce the Hessian matrix

Hessian = � f11 f12 f13

f12 f22 f23

f13 f23 f33
� , �12�

where the matrix element is defined as f ij =��i
��j

K, which,
with the help of Eq. �8�, are shown to have the form

f12 = − g�3 + 4�12�1�2,

f13 = − g�2 + 4�13�1�3,

f23 = − g�1 + 4�23�2�3,

f ii = 4�iini + 2	
j=1

3

�ijnj − 2	i.

Note that we have defined the partial derivatives in the Hes-
sian matrix to be taken with respect to �i instead of ni so that
we can carry out the stability analysis of both pure and
mixed phases in a unified manner.

A state �phase� is thermodynamically stable if it is a local
minimum of the function K for a given set of chemical po-
tentials. This requires the Hessian matrix to be positive
semidefinite, which, for a symmetric matrix as in Eq. �12�, is
possible if and only if all the principal minors of Hessian
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matrix are non-negative. This leads to a hierarchy of stability
conditions

f ii 
 0, �13a�

f iif j j − f ij
2 
 0, �i � j� , �13b�

f11f22f33 + 2f12f13f23 − f11f23
2 − f22f13

2 − f33f12
2 
 0,

�13c�

which reflects the underling philosophy that for a three-
component miscible system to be stable, all the subsets with
single, double, and triple components must also indepen-
dently satisfy the relevant stability conditions �24�.

V. RESULTS AND DISCUSSIONS

In this section, we construct phase diagrams and discuss
phase separations under a variety of conditions. In all the
numerical examples, we use two quantities, n0 with the di-
mension of the density and E0=�2n0

2/3�m1+m2� /m1m2 with
the dimension of the energy, to define a scaling which con-

sists of the following set of dimensionless variables: K̄
=K /E0n0, n̄i=ni /n0, �̄i=�i /�n0, 	̄i=	i /E0, �̄=� /E0, ḡ
=g�n0 /E0, and �̄ij =�ijn0 /E0. To gain a familiarity with the
parameters, we consider the interspecies Feshbach resonance
around 35 G in the 41K-87Rb mixture, which is characterized
with a magnetic field width �B=5.1 G, a magnetic moment
difference �	=0.005	B �	B being the Bohr magneton�, and
a background scattering length abg=284a0 �a0 being the
Bohr radius� �20,29�. For a typical density n0=1015 cm−3, the
energy unit is around E0�2.4�10−29 J. Thus g
=�2��2abg�B�	 /m12, when converted into the unitless
form, becomes ḡ�0.96. Additionally, based on a11=99a0,
a22=60a0, and a12=640a0 �29� where we have designated
87Rb as species 1 and 41K as species 2, we estimate that
�̄11�0.2, �̄22�0.3, and �̄12�2.13.

In our discussions below, we first map out the phase dia-
grams in the chemical potential space. This includes solving
Eqs. �11� to obtain different phases and to perform stability
analysis according to the criteria �13�. These diagrams enable
us to identify the regions where different phases overlap and
hence help to answer the question of into which phases an
unstable homogeneous system will separate. However, from
the experimental point of view, more useful are the phase
diagrams in the �-d ��n1−n2� space, which are directly ac-
cessible to experiments via two control “knobs,” the Fesh-
bach detuning � and the two species atomic condensate
population difference d.

A. Collisionless limit

In order to identify the roles of collisions more clearly in
later sections, we first consider a situation where we artifi-
cially turn off all the s-wave scatterings. For pedagogical
reasons, here we only present the phase diagrams in the �-d
space, which are in practice translated from the phase dia-
grams in the chemical potential space �see the example in

Sec. V B for more details regarding the mapping between the
two types of diagrams�.

1. Without Feshbach coupling (g=0)

In the collisionless limit and without the Feshbach cou-
pling �g=0�, our system simplifies to a three-species ideal
gas model, where Eqs. �11� reduce to

	i�i = 0. �14�

Figure 1�a� is the corresponding phase diagram in the �-d
space. This model is simple enough that the features in Fig.
1�a� are almost self-explanatory. Take as an example the dou-
bly mixed phase ASF1-MSF with �1�0, �3�0, and �2=0.
Such a phase is possible only when 	1=	3=0 but 	2 is
arbitrary according to Eq. �14�. This means that d=�1

2−�2
2

=�1
2�0 and �=	1+	2−	3=	20, where the inequality is

due to the stability criterion �13a�. This is why the top left
region of Fig. 1�a� hosts ASF1-MSF. Other features can be
similarly explained. We note that Fig. 1�a� has similar prop-
erties as in Fig. 5 of Ref. �25�. The physics is very clear: as
the Feshbach detuning is tuned from positive to negative or
equivalently as the molecular energy level is lowered from
above to below the atomic levels, the system makes a tran-
sition from the atomic side with atomic phases to the mo-
lecular side dominated with phases involving the molecular
component.

2. With finite Feshbach coupling (gÅ0)

Figure 1�b� is the phase diagram in the �-d space, when
the Feshbach coupling is turned on. Noticeable changes,
compared to Fig. 1�a� where g=0, are the disappearance of
the doubly mixed phases into the AMSF phase and the cor-
responding transition boundaries into an atom-molecule
crossover region �see Sec. IV A for the explanation�. In ad-

FIG. 1. The phase diagrams in the �-d space where �a� and �b�
are produced with ḡ=0 for �a� and ḡ=1 for �b�, and �c� and �d�
correspond, respectively, to �a� and �b� while collisional coefficients
are set at �̄11=0.2, �̄22=0.3, �̄12=2, and �̄3i=0. See the text for
units. For the sake of clarity, the labels for ASF1 and ASF2, which

are located at d̄=1 and −1, respectively, are omitted.
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dition, the MSF transition is shifted to �̄=−ḡ /�2, owing
to the modification of the molecular binding energy by the
Feshbach coupling �26,27,30�.

We explain below that without collisions, the AMSF
phase will collapse. Let us begin with Eqs. �11� which, in the
absence of collisions, reduce to 2	1�1=−g�2�3, 2	2�2
=−g�1�3, and 2	3�3=−g�1�2. Thus within the chemical po-
tential space defined by

	1  0, 	2  0, 	3  0 �or 	1 + 	2  �� , �15�

there exists a physical AMSF solution ��i�0� with a density
distribution

n1 =
4	2	3

g2 , n2 =
4	1	3

g2 , n3 =
4	1	2

g2 . �16�

This AMSF phase is unstable because the left-hand side of
the stability condition �13c� is found to be 32	1	2	3, which
turns out to be less than zero as a result of the condition �15�.
The only other homogeneous solution besides this AMSF is
the vacuum, which is stable within the space defined by Eq.
�15� according to Eq. �13a�. Thus we conclude that the only
route for this unstable AMSF to take is to collapse. The
system may, however, be stabilized by kinetic energy without
going into a complete collapse, exhibiting the so-called rari-
fied liquidlike behavior �31�. The dynamics of phase separa-
tion and collapse may lead to quite complex spatial patterns
�32�.

B. Collisions involving atoms only

In general, collisions greatly complicate the construction
and understanding of the phase diagrams because Eqs. �11�
then become highly nonlinear and may support several
AMSFs. In light of the fact that the collisional coefficients
involving the molecular state are not known in most experi-
ments, we ignore in this section all the collisions involving
the molecular component ��i3=0�, and take into consider-
ation only the atomic collisions. In particular, we focus our
discussion on the case with �̄11=0.2 and �̄22=0.3, and �̄12
=2, where the interspecies collision is far stronger than the
intraspecies collisions.

1. Without Feshbach coupling (g=0)

Figure 1�c� is the phase diagram in the �-d space when
g=0. Figure 1�c� contains, in addition to all the phases oc-
curring in Fig. 1�a� where collisions are turned off, a unique
AMSF given by

n1 =
�12	2 − �22	1

�12
2 − �11�22

, n2 =
�12	1 − �11	2

�12
2 − �11�22

, �17�

n3= �1−n1−n2� /2, and 	3=0. This AMSF is surrounded by
three lines,

d = −
�

�12 + �22
,

d =
�

�12 + �11
,

d =
2� − �11 − 2�12 − �22

�11 − �22
,

serving as the borders between AMSF and MSF, ASF1-MSF,
and ASF1-ASF2, respectively. These equations are obtained
from the conditions that ni=0 �i=1,2 ,3�, respectively. Evi-
dently, all the lines are collapsed into a vertical line at �=0
and no AMSF is possible in the absence of collisions as in
Fig. 1�a�. Understandably, ASF1-ASF2 and its next level of
hierarchy, AMSF, are both expected to be unstable against
phase separation due to the strong repulsion between the two
atomic components �8,24�.

2. With finite Feshbach coupling (gÅ0)

In the case of finite Feshbach coupling, we first obtain
from Eqs. �11� that

�3 = −
g

2	3
�1�2, �18�

which, when substituted into the other two equations, gives a
unique AMSF solution with the following atom density dis-
tribution:

n1 =
�22	1 − �12� 	2

�11�22 − �12�
2 , n2 =

�11	2 − �12� 	1

�11�22 − �12�
2 , �19�

where �12� =�12+g2 /4	3 plays the role of an effective inter-
action between the two atomic species. The extra term
g2 /4	3 can be traced to the Feshbach coupling; an atom of
species 1 appears to interact with an atom of species 2 via the
molecular state by the Feshbach coupling of the strength g.
This interaction becomes virtual when � is large but can
become substantial when � is near resonance. Unlike the
AMSF in the case of g=0, where 	3=0, 	3 here must be less
than zero �	30�. Thus we always have �12� �12. It is well-
known that a double BEC mixture is stable when �12�

2

�11�22, and otherwise, it is unstable and will separate when
�12� �0 and collapse when �12� 0 �8,24�.

Figure 1�d� shows the phase diagram in the �-d space
when g is finite. For the reason given previously, we observe
that the regions of doubly mixed phases give away to the
AMSF crossover region. With our choice of �ij, the system
has a natural tendency to phase separate. However, we see
that a narrow strip of stable AMSF emerges from the region
near the Feshbach resonance. This is possible because �12�
can be substantially smaller than �12 while remaining posi-
tive. This illustrates how one can change the mixture from
immiscible to miscible by varying the Feshbach detuning
�21�.

In addition, in the region around the MSF line, because
most populations will accumulate in the molecular compo-
nent, 	3=−g�1�2 /2�3 will take a small negative value,
which in turn makes the contribution from g2 /4	3 to the
effective interparticle interaction �12� relatively strong. So the
system will collapse in this region but phase separate outside
this region where the repulsive interaction becomes domi-
nant again.
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C. Collisions involving both atoms and molecules

The main feature when collisions involving molecules are
also included is that more than one AMSF may emerge. To
demonstrate this feature, we consider, for simplicity, a model
in which a finite �33 is introduced in addition to the atomic
collisional terms �while still keeping �13=�23=0�. By solv-
ing Eqs. �11�, we find that the AMSF phase is governed by
equations the same as Eqs. �18� and �19� except that 	3 is
now replaced with 	3�=	3−�33n3. As can be seen, the chemi-
cal potential is now modulated by a Kerr nonlinear term
−�33n3. It is well-known that the Kerr nonlinear term can
lead to multiple solutions that can result in multistability in
nonlinear systems. Here, we find �not shown� that n3 is gov-
erned by a fifth-order polynomial equation, and hence may
support more than one physical solution.

1. One stable AMSF and one unstable AMSF

Let us consider here a case where we choose the
molecule-molecule collisional coefficient to be �̄33=0.245,
and all the atomic collisional parameters the same as in Figs.
1�c� and 1�d� except that the interspecies repulsion is now set
at a moderate value of �̄12=0.1225. The phase diagram in the
�-d space for this case is displayed in the uppermost figure of
Fig. 2, which is all occupied by the AMSF state except for
the line at d=0 marked with MSF. Because of the much
reduced �12, the system has a natural tendency to be in a
miscible state and the AMSF will not phase separate �the
white area� except in a small parameter region �the gray area�
close to the Feshbach resonance. Unlike in Fig. 1 where we
continue to label the phase separated region as AMSF, in Fig.
2 we will not show the unstable AMSF, instead, we divide it
into regions and label them according to how the homoge-
neous �but unstable� AMSF is going to phase separate. For
example, AMSF-ASF1 means that the homogeneous AMSF
within the gray region of that label will phase separate into
one AMSF and one ASF1.

The origin of this rich set of phase separations can be best
understood from the chemical potential and density space.

Consider, for example, �̄=0.5. In Fig. 2�a�, we construct the
phase diagram in the chemical potential space. For a fixed set
of chemical potentials, the coupled equations �11� are then
found to support two physical AMSFs in some parameter
regimes: one is stable and the other is unstable. Only the
stable AMSF is shown here. As Fig. 2�a� illustrates, the
stable AMSF coexists and shares the first-order transition
line, respectively, with ASF1, ASF2, and vacuum. The first-
order transition line in Fig. 2�a� is transformed into the gray
region in Fig. 2�c� when the phase diagram is mapped from
the chemical potential to the density space �33,34�. For our
purpose, we find it convenient to define the densities n1t
=n1+n3 and n2t=n2+n3 so that n1t+n2t and n1t−n2t �=d� rep-
resent the total density and the population imbalance, respec-
tively. For a system operating within the gray region in Fig.
2�c�, it will phase separate into AMSF and ASF1, or AMSF
and ASF2, and/or AMSF and vacuum. The separated phases
in each set have different densities, and phase separation is a
natural course for a system to take in order to maintain the
average densities specified within the respective domain of

the phase separation. The phase separation into AMSF-
vacuum signals collapse.

As � is reduced, for example, to �̄=−0.8, a new phase
separation, AMSF-MSF, appears in the uppermost figure,
which is again supported by Figs. 2�b� and 2�d� in the chemi-

cal potential and density space. Compared to �̄=0.5 where
the AMSF is unstable irrespective of the value of d, the

AMSF at �̄=−0.8 becomes a stable one when the population
imbalance between the two atomic species is sufficiently
large.

2. Two stable AMSFs and one unstable AMSF

The nonlinearity of Eqs. �11� may provide the opportunity
for an unstable homogeneous AMSF to phase separate into
two different AMSFs. Consider the model that shares the
same parameters as in Fig. 2 except that �12 is set back to a

FIG. 2. �Color online� The phase diagrams in the �-d space �the
uppermost figure, with total density n̄t=1�, the chemical potential
space ��a� and �b��, and the density space ��c� and �d�� when ḡ=1,
�̄11=0.2, �̄22=0.3, �̄33=0.245, �̄12=0.1225, and �̄13= �̄23=0. Addi-

tionally, �a� and �c� are produced with �̄=0.5 while �b� and �d� are

produced with �̄=−0.8. The gray area in �a� and �b� represents the
region where two stable phases can coexist. The red dashed lines
inside the gray area are the first-order phase transition lines at
which the ground state changes from one phase to the other. See the
inset for more details of the region around the first-order line. Con-
sult the text for units and for a detailed explanation of each
diagram.
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value ��̄12=2� the same as in Fig. 1. It is found that Eqs. �11�
support three physical AMSF solutions, two of which satisfy
the stability conditions �13� and are hence stable. The phase
diagrams corresponding to this model are shown in Fig. 3. A
coexistence region between two stable AMSFs having differ-
ent population distributions is identified from the chemical

potential space both for �̄=1 �Fig. 3�a�� and �̄=0.5 �Fig.
3�b��. However, in experiments where the total population is
fixed, AMSF1-AMSF2 is accessible only to sufficiently

small Feshbach detunings, for example, �̄=0.5 �see the
phases crossed by the �imagined� line n̄1t+ n̄2t=1 in both
Figs. 3�c� and 3�d��. We emphasize that so far we have not
seen reports of phase separation into two AMSFs both in
theory and in experiments. In particular, we mention that the
homonuclear systems are known to only support phase sepa-
rations involving one AMSF �26�. For this reason, we sus-

pect that this may be a phenomenon quite unique to the
heteronuclear model.

This case also provides an example for us to see the effect
of the molecule-molecule interaction on the stability of the
AMSF. Compared to Fig. 1�d� where �33=0, the uppermost
diagram of Fig. 3 shows that the presence of �33 stabilized
the AMSF on the molecular side of the Feshbach resonance.

VI. SUMMARY

In conclusion, we have studied the zero-temperature
mean-field phase diagrams of two-species atomic BEC mix-
tures with the interspecies Feshbach resonance under a vari-
ety of conditions, with special attention being given to the
subject of phase separation. We have found that on one hand,
the Feshbach coupling alone cannot create a stable AMSF; to
create a stable AMSF, collisions must be present, and on the
other hand, the Feshbach coupling may stabilize a system
that has a natural tendency to phase separate under colli-
sions. We have shown that the molecule-molecule collision
can stabilize the AMSF on the molecular side of the Fesh-
bach resonance. We have identified the interspecies Feshbach
interaction to be the cause for the absence of the doubly
mixed phases, as well as the reason for the presence of both
pure atom and pure molecule phases in our model. This pro-
vides the opportunity, as we have indeed verified numeri-
cally, for observing the phase separation not only between
AMSF and MSF but also those between AMSF and pure
ASFs. We have also studied the collapse or partial collapse
of the AMSF as special phase separations where one of the
separated components is the vacuum. Under certain condi-
tions, we have even found that our system is able to phase
separate into two distinct AMSFs, which, we speculate, is a
property unique to the heteronuclear model.
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FIG. 3. �Color online� The phase diagrams similarly defined as
in Fig. 2. The parameters are the same as those in Fig. 2 except that

�̄12=2. Additionally, �a� and �c� are produced with �̄=1 while �b�
and �d� are produced with �̄=0.5. The red dashed lines have the
same meanings as that in Fig. 2. Consult the text for units.
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