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A set of universal relations between various properties of any few-body or many-body system consisting of
fermions with two spin states and a large but finite scattering length have been derived by Shina Tan. We derive
generalizations of the Tan relations for a two-channel model for fermions near a Feshbach resonance that
includes a molecular state whose detuning energy controls the scattering length. We use quantum field theory
methods, including renormalization and the operator product expansion, to derive these relations. They reduce
to the Tan relations as the scattering length is made increasingly large.
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I. INTRODUCTION

Many-body systems of fermions have long been of great
importance in astrophysics, nuclear physics, and solid state
physics. The development of trapping and cooling techniques
for ultracold atoms has made them important in atomic phys-
ics as well. In this case, the strength of the interaction is
governed by the two-body scattering length which can be
controlled experimentally, adding a new dimension to the
problem �1�.

If the scattering length a is much larger than the range of
the interactions, the system has universal properties that are
determined only by the large scattering length. For suffi-
ciently low number density n, the universal properties can be
calculated using perturbative methods. If n�a�3 is comparable
to 1 or larger, the problem is nonperturbative. In the special
case of two equally populated spin states, systematically im-
provable calculations are possible using Monte Carlo meth-
ods �2�. If the populations are not equal, this approach suffers
from the fermion sign problem. If there are three or more
spin states, the problem is complicated by the Efimov effect
�3�. The challenging nature of the general problem makes
exact results very valuable. One case in which exact results
are known is the unitary limit a= ��, where they can be
derived by exploiting scale invariance �4� and conformal in-
variance �5�.

Tan has derived a number of universal relations between
various properties of an arbitrary system consisting of fermi-
ons in two spin states with a large scattering length �6–8�.
The Tan relations include the coefficient of the 1 /k4 tail in
the momentum distribution �6�, a decomposition of the en-
ergy E into terms that are insensitive to short distances �6�,
an expression for the local pair density �6�, the rate of change
of E from changes in the scattering length �7�, the relation
between the pressure and the energy density in a homoge-
neous system �7�, the virial theorem for a system in a har-
monic trapping potential �8�, and an expression for the in-
elastic two-body loss rate �9�. These relations all involve a
property of the system that Tan called the integrated contact

intensity. For brevity, we will refer to it simply as the contact
and denote it by C. It can be expressed as the integral over
space of the contact density, which we will denote by C. The
Tan relations hold for any state of the system: few-body or
many-body, homogeneous or in a trapping potential, super-
fluid or normal, zero or nonzero temperature. Tan derived his
relations within the framework of the many-body
Schrödinger equation. He used novel methods involving gen-
eralized functions to implement the Bethe-Peierls boundary
condition associated with the large two-body scattering
length.

In Ref. �10�, Braaten and Platter derived the Tan relations
using a quantum field theory formulation of the problem.
They identified the contact density C as the expectation value
of a local composite operator constructed from the quantum
fields. To derive the Tan relations, they used standard meth-
ods of renormalization together with the operator product
expansion �OPE�. The OPE was invented independently by
Ken Wilson �11� and by Leo Kadanoff �12� in 1969. The
OPE expresses the product of local operators separated by a
short distance as an expansion in local operators with coef-
ficients that are functions of the separation of the operators.

OA�R −
1

2
r�OB�R +

1

2
r� = �

C

CA,B
C �r�OC�R� . �1�

The sum is, in general, an infinite sum over all possible local
operators OC�R�. The functions CA,B

C �r� are called Wilson
coefficients or short-distance coefficients. Some of the Wil-
son coefficients can be singular at r=0. The OPE is an
asymptotic expansion for small r: for any power N, only a
finite number of terms on the right side of the OPE have
Wilson coefficients that go to zero more slowly than rN as
r→0 �13�.

Wilson proposed the OPE as an alternative framework to
the Lagrangian or Hamiltonian formulations of quantum field
theory �11�. His motivation was the problem of the strong
interactions associated with the nuclear force. Some aspects
of the strong interactions had been successfully explained
using current algebra, which is the algebra satisfied by the
currents associated with the symmetries of a quantum field
theory. For example, if the charge operators associated with a
symmetry satisfy the Lie algebra �Qa ,Qb�= ifabcQc, the asso-
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ciated charge density operators �a�R� satisfy the equal-time
commutation relations

	�a�R −
1

2
r�,�b�R +

1

2
r�
 = ifabc�3�r��c�R� . �2�

This is a special case of the general short-distance expansion
in Eq. �1�. Wilson observed that in a scale-invariant theory,
the dependence of the coefficients CA,B

C �r� on the separation r
is determined up to a multiplicative constant by scale invari-
ance and other symmetries. He used this observation to de-
rive nontrivial results for the strong interactions that fol-
lowed only from the assumption of scale invariance. The
quantum field theory that describes the strong interactions
was eventually determined to be quantum chromodynamics
�QCD�. Wilson’s assumption of scale invariance in the strong
interactions was justified by the discovery that the coupling
constant of QCD is asymptotically free at short distances
�14,15�. QCD and the electroweak gauge theory that together
comprise the standard model of elementary particle physics
are Lagrangian quantum field theories. Thus the OPE has not
proved to be essential as an alternative formulation of the
relativistic quantum field theories that describe elementary
particles. However, the OPE has become a standard tool for
developing systematic approximations to the standard model
�16�.

Kadanoff used the OPE to understand critical phenomena
in condensed matter physics �12�. He showed that the critical
exponents that describe the scaling behavior of correlation
functions at a critical point can be deduced from the knowl-
edge of which Wilson coefficients are singular as r→0. The
OPE therefore provides powerful constraints on critical be-
havior in condensed matter systems �17�. A critical point is
usually characterized not only by scale invariance but also by
conformal invariance. The long-distance behavior near the
critical point can therefore be described by a statistical field
theory with conformal symmetry, i.e., a conformal field
theory. The OPE is one of the basic tools that is used to study
conformal field theories. The quantum field theory that de-
scribes fermionic atoms with two spin states in the unitary
limit is a conformal field theory. The classification of local
operators based on conformal symmetry has been exploited
by Nishida and Son �18� and by Mehen �19�. However, until
Ref. �10�, the OPE had not been applied directly to the prob-
lem of fermionic atoms with a large scattering length.

The T-matrix element for S-wave atom-atom scattering
can be written as

T�k� =
4�

m

1

k cot �0�k� − ik
, �3�

where m is the mass of the atoms, k is the relative wave
number, and �0�k� is the S-wave phase shift. If the interac-
tions have a finite range, the phase shift has a low energy
expansion that is conveniently expressed in the form

k cot �0�k� = − 1/a +
1

2
rsk

2 + ¯ . �4�

This expansion, which is called the effective range expan-
sion, defines the scattering length a and the effective range

rs. The Tan relations apply to any system in which the phase
shift at the accessible energies can be approximated by the
first term in the effective range expansion. We will consider
the generalizations of these relations in two scattering mod-
els that are specified by the S-wave phase shift.

In the zero-range model, the phase shift is given by the
leading term in the effective range expansion up to arbitrarily
high energy as follows:

k cot �0�k� = − 1/a . �5�

This model can be formulated as a renormalizable local
quantum field theory. Braaten and Platter derived the Tan
relations by applying standard renormalization methods and
the OPE to the quantum field theory for the zero-range
model �10�. One advantage of this derivation is that it can be
generalized in a straightforward way to any model that can
be formulated as a renormalizable local quantum field theory
�20�. One such model is the resonance model in which the
S-wave phase shift is given by

k cot �0�k� = − 4��� −
g2

m� − k2�−1

, �6�

where �, g, and � are real parameters. This model was first
formulated as a quantum field theory by Kaplan �21� and by
Kokkelmans et al. �22�. It is of practical importance in cold
atom physics because it provides a natural description of
fermions near a Feshbach resonance. An important special
case of the resonance model is the effective range model,
which can be obtained by setting �=0. The equation for the
S-wave phase shift in Eq. �6� reduces in this limit to the form

k cot �0�k� = − 1/a +
1

2
rsk

2, �7�

where a is the scattering length and rs	0 is the effective
range. The effective range must be negative for this phase
shift to arise from a local quantum field theory that is renor-
malizable �23�. The effective range model has been proposed
by Petrov as a model for a narrow Feshbach resonance �24�.

In this paper, we derive the generalizations of the Tan
relations for the resonance model and the effective range
model. We begin in Sec. II by enumerating the Tan relations.
In Sec. III, we summarize the derivation of these relations in
Ref. �10� using the quantum field theory for the zero-range
model. In Sec. IV, we describe the formulation of the reso-
nance model as a renormalizable local quantum field theory.
The generalizations of the Tan relations in the resonance
model are derived in Secs. V–XI. We use the OPE to identify
the contact density operator. The generalizations of the Tan
relations involve the expectation values of two other local
operators besides the contact density operator. In limits in
which the scattering length becomes arbitrarily large, the
generalized Tan relations of the resonance model must re-
duce to the original Tan relations. The resulting constraints
on matrix elements of local operators are derived in Sec. XII.
In Sec. XIII, we derive the generalizations of the Tan rela-
tions for the effective range model by exploiting the fact that
it is a limiting case of the resonance model. Our results are
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summarized in Sec. XIV. The diagrammatic methods that we
use to calculate the Wilson coefficients in the OPE are de-
scribed in the Appendix.

II. TAN RELATIONS

In a series of papers �6–8�, Tan derived some universal
relations for states consisting of fermions with two spin
states that interact through a large scattering length a and
may be trapped in an external potential V�R�. We will refer
to the fermions as atoms, although this problem also has
applications in condensed matter physics and in nuclear
physics. We label the two spin states by 
=1,2. The Hamil-
tonian can be expressed as the sum of a kinetic term T, an
interaction term I, and an external potential term V: H=T
+ I+V. The Tan relations all involve a quantity C that we call
the contact. There are seven distinct Tan relations:

�1� Tail of the momentum distribution �6�. The momentum
distribution �
�k� for atoms with spin 
 has a power-law tail
that decreases at large wave number k like 1 /k4.

�
�k� → C/k4. �8�

The coefficient C is the same for both spin states.
�2� Energy relation �6�. The energy E= �H�= �T�+ �I�

+ �V� can be decomposed into four terms that are each insen-
sitive to distances much smaller than �a�.

E = �



 d3k

�2��3

k2

2m
��
�k� −

C

k4� +
C

4�ma
+ �V� . �9�

The interaction energy �I� has been separated into two terms
proportional to C. One of them has been combined with the
kinetic term to make the integral over k convergent.

�3� Local pair density �6�. If Npair�R ,s� is the number of
pairs of atoms with spins 1 and 2 in a small ball of volume
4
3�s3 centered at the point R, the contact density C at that
point can be expressed as

C�R� = lim
s→0

�4/s4�Npair�R,s� . �10�

Note that Npair�R ,s� scales as s4 as s→0 instead of s6, so the
number of pairs with small separation s is much larger than
one might naively expect.

�4� Adiabatic relation �7�. The rate of change of the en-
ergy E= �H� due to a change in the scattering length is

d

da
E =

�2

4�ma2C . �11�

�5� Pressure relation �7,8�. For the homogeneous system
with constant external potential, the pressure P and the en-
ergy density E are related by

P =
2

3
E +

�2

12�ma
C , �12�

where C is the contact density.
�6� Virial theorem �8�. The virial theorem for atoms in a

harmonic trapping potential in the unitary limit a= �� was
derived in Ref. �25�. Tan derived the virial theorem for the
case of finite a �8� as follows:

E = 2�V� −
�2

8�ma
C . �13�

�7� Inelastic two-body loss rate �9�. If a pair of atoms has
inelastic scattering channels, the scattering length a has a
negative imaginary part. To leading order in Im a, the rate at
which the atoms are depleted by inelastic collisions is

� �
�2�− Im a�
2�m�a�2

C . �14�

The adiabatic relation in Eq. �11� can be used as an op-
erational definition of the contact. A simple example in the
case a
0 is the shallow diatomic molecule, or dimer,
formed by atoms with spins 1 and 2. The energy of a dimer
at rest is E=−�2 / �ma2�. From Eq. �11�, the contact for the
dimer is

C = 8�/a . �15�

In Ref. �7�, Tan used the adiabatic relation in Eq. �11� to
determine the contact density for the homogeneous gas con-
sisting of equal populations of atoms with spins 1 and 2 in
three limits: the BCS limit �a→0−�, the unitary limit �a
→ ���, and the BEC limit �a→0+�. If the total number
density of atoms is n, the contact densities in these three
limits are

C → 4�2n2a2 as a → 0−, �16a�

→
2�

5�
�3�2n�4/3 as a → � � , �16b�

→4�n/a as a → 0+, �16c�

where � in Eq. �16b� is a universal constant whose value was
estimated in Ref. �7� to be approximately 1.

The most promising systems for testing the Tan relations
experimentally are cold trapped atoms near a Feshbach reso-
nance. Some of the possibilities have been discussed by Tan
in Refs. �6,7�. The momentum distributions �
�k� can be
measured by suddenly turning off the trapping potential and
simultaneously using the Feshbach resonance to change the
scattering length to 0. The cloud of atoms will expand and
the initial momentum distribution can be determined from its
density distributions after the expansion. There should be a
scaling region in which �
�k� has the form in Eq. �8� and the
contact C is simply the coefficient. As pointed out by Tan in
Ref. �6�, the energy relation in Eq. �9� can be used to deter-
mine the sum �T�+ �I� of the kinetic and interaction energies
from the momentum distribution. The potential energy �V�
can be determined from the density distributions before the
expansion. The virial theorem in Eq. �13� is a nontrivial re-
lation between �T�+ �I�, �V�, and C that can be tested experi-
mentally. The adiabatic relation in Eq. �11� can also be tested
by using the Feshbach resonance to change the scattering
length and then measuring the changes in �T�+ �I�, �V�, and
C.
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III. ZERO-RANGE MODEL

In Ref. �10�, the Tan relations were rederived using the
quantum field theory for the zero-range model. They follow
straightforwardly from standard renormalization methods
and from the OPE. This analysis revealed that the contact C
can be expressed as the integral over space of the expectation
value of a local operator. In this section, we summarize the
derivations in Ref. �10�.

A quantum field theory that describes atoms with two spin
states must have two quantum fields �
�r�, 
=1,2. The
Hamiltonian for a local quantum field theory can be ex-
pressed as the integral over space of a Hamiltonian density:
H=�d3rH. If the atoms are in an external potential V�r�, the
Hamiltonian density is the sum of a kinetic term T, an inter-
action term I, and an external potential term V: H=T+I
+V. The simplest quantum field theory that describes atoms
with a large scattering length is the zero-range model, in
which the phase shift has the simple form given in Eq. �5� up
to arbitrarily large momentum. For the zero-range model, the
three terms in the Hamiltonian density are1

T = �



1

2m
� �


† · ��

���, �17a�

I =
�0���

m
�1

†�2
†�2�1

���, �17b�

V = V�R��



�

†�
. �17c�

For simplicity, we have set �=1. The superscripts ��� on the
operators in Eqs. �17a� and �17b� indicate that their matrix
elements are ultraviolet divergent and an ultraviolet cutoff is
required to make them well defined. For the ultraviolet cut-
off, we impose an upper limit �k�	� on the momenta of
virtual particles. In the limit �→�, the Hamiltonian density
in Eq. �17� describes atoms with the phase shift given by Eq.
�5� if we take the coupling constant to be

�0��� =
4�a

1 − 2a�/�
. �18�

The connected Green’s function for the scattering of a pair of
atoms with spins 1 and 2 has a well-behaved limit as �
→�.

A�E� =
4�/m

− 1/a + �− mE − i�
, �19�

where E is the total energy of the two atoms in their center-
of-mass frame. The T-matrix element for scattering of a pair
of atoms with momenta +p and −p is obtained by setting
E= p2 /m. Comparing with the expression for the T-matrix
element in Eq. �3�, we obtain the phase shift in Eq. �5�.

In Ref. �10�, the contact C in the Tan relations was iden-
tified as the integral over space of the expectation value of

the local operator �0
2����1

†�2
†�2�1

��� �see footnote 1�. Matrix
elements of the operator, which is the product of four quan-
tum fields, are ultraviolet divergent, as indicated by the su-
perscript ���, but the dependence of the matrix elements on
� is precisely canceled by the prefactor �0

2���. Since this
operator has ultraviolet finite matrix elements, we suppress
the dependence on � and denote it by �0

2�1
†�2

†�2�1. The con-
tact can be expressed as2

C =
 d3R�X��0
2�1

†�2
†�2�1�R��X� . �20�

This expression makes explicit the dependence of the contact
on the state �X�. It also reveals that the contact is an extensive
quantity.

For some of the Tan relations, the derivations in Ref. �10�
followed in a straightforward way from the renormalization
of the quantum field theory once one realizes that
�0

2�1
†�2

†�2�1 is a finite operator. For example, the energy re-
lation in Eq. �9� can be derived by separating the interaction
term �d3R�X�I�X� into two terms by using the identity

�0 = −
�

2�2�0
2 +

1

4�a
�0

2. �21�

The adiabatic relation in Eq. �11� can be derived from the
Feynman-Hellman theorem,

dE/da =
 d3R�X��H/�a�X� , �22�

together with the identity

d

da
�0 =

1

4�a2�0
2. �23�

The pressure relation in Eq. �12� can be derived by applying
dimensional analysis to the free energy density �or thermo-
dynamic potential density� F, which requires

�T
�

�T
−

1

2
a

�

�a
�F =

5

2
F . �24�

The virial theorem in Eq. �13� can be derived by applying
dimensional analysis to the energy E=�d3R�X�H�X�, which
requires

��
�

��
−

1

2
a

�

�a
�E = E . �25�

The expression for the inelastic loss rate � in Eq. �14� can be
derived from the adiabatic relation in Eq. �11� by identifying
− 1

2� as the imaginary part of the energy E that results from
adding a small negative imaginary part to the scattering
length a to take into account the effects of the inelastic scat-
tering channels.

The derivations of the tail of the momentum distribution
in Eq. �8� and the expression for the contact density C in
terms of the local pair density in Eq. �10� require the OPE.

1In Ref. �10�, the authors used the operator �1
†�2

†�1�2 in which the
last two quantum fields appear in the opposite order. The ordering
we use here is preferred because it makes the operator positive.

2We denote the product of local operators OA�R� and OB�R� at
the same point in space by OAOB�R�.
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The number density operator for atoms with spin 
 is
�


†�
�R�. The momentum distribution for atoms with spin 

in the state �X� can be expressed as

�
�k� = �X��̃

†�k��̃
�k��X� , �26�

where �̃
�k� is the Fourier transform of the quantum field
�
�r�. The expression for the momentum distribution in
terms of the quantum field is

�
�k� =
 d3R
 d3reik·r�X��

†�R −

1

2
r��
�R +

1

2
r��X� .

�27�

The OPE for the bilocal operator inside the expectation value
has the form

�

†�R −

1

2
r��
�R +

1

2
r� = �

n

C
,n�r�On�R� , �28�

where the sum is over all possible local operators. The local
operators can be expressed as products of any number of
quantum fields �
�R� and an equal number of quantum fields
�


†�R�, with any number of gradients applied to those fields.
If the OPE in Eq. �28� is inserted into Eq. �27�, the momen-
tum distribution reduces to

�
�k� = �
n
�
 d3reik·rC
,n�r�� 
 d3R�X�On�R��X� .

�29�

Since the OPE is an asymptotic expansion for small r, Eq.
�29� is an asymptotic expansion for large k. If a Wilson
coefficient C
,n�r� can be expanded as a power series in the
vector r, the corresponding integral in Eq. �29� can be ex-
pressed in terms of the Dirac delta function in k and deriva-
tives of the Dirac delta function. A power-law tail in �
�k� at
large k can arise only from a term whose Wilson coefficient
is not an analytic function of the vector r at r=0.

As shown in Ref. �10�, the OPE in Eq. �28� can be ex-
pressed as

�

†�R −

1

2
r��
�R +

1

2
r� = �


†�
�R� +
1

2
r · ��


† � �
�R�

− ��

†�
�R��

−
r

8�
�0

2�1
†�2

†�2�1�R� + ¯ ,

�30�

where we have written explicitly all terms whose Wilson
coefficients go to zero more slowly than r2 as r→0. The first
two terms on the right-hand side of the OPE in Eq. �30� can
be obtained by multiplying the Taylor expansions of the two
operators. The third term arises from quantum fluctuations
involving pairs of atoms with small separations. Its Wilson
coefficient is proportional to r= �r�, which is not an analytic
function of the vector r at r=0. Its Fourier transform at
nonzero values of k is given by


 d3rreik·r = −
8�

k4 . �31�

This can be derived by differentiating the Fourier transform
of 1 /r. The corresponding term in Eq. �29� gives a power-
law tail in the momentum distribution as follows:

�
�k� →
 d3R�X��0
2�1

†�2
†�2�1�R��X�/k4. �32�

Comparing with Eq. �8�, we obtain the expression for the
contact C in Eq. �20�.

The expression for C in terms of the local pair density in
Eq. �10� follows from the OPE for �1

†�1�R+r� and �2
†�2�R

+r��. In Ref. �10�, it was shown that the OPE includes the
operator �0

2�1
†�2

†�2�1 with a Wilson coefficient proportional
to �r�−r�−2 as follows:

�1
†�1�R + r��2

†�2�R + r�� =
1

16�2�r� − r�2
�0

2�1
†�2

†�2�1�R�

+ ¯ . �33�

Only the most singular term as r�→r is shown explicitly on
the right-hand side. Integrating the left-hand side over r� and
r inside a small ball of radius s, we obtain an operator that
counts the number of pairs of atoms with spins 1 and 2 inside
that ball. If the right-hand side of Eq. �33� is integrated over
the same region and multiplied by 4� /s, the only term that
survives in the limit s→0 is the one that is shown explicitly.
Taking the expectation value of both sides, we obtain the
expression for the contact density C in Eq. �10�.

IV. RESONANCE MODEL

A practical method for controlling the scattering length of
atoms is by exploiting Feshbach resonances. A Feshbach
resonance occurs at a value B0 of the magnetic field for
which a molecular state in a closed channel with a higher
two-atom threshold is in resonance with a pair of atoms at
threshold in the channel of interest. Near the Feshbach reso-
nance, the dependence of the scattering length a on the mag-
netic field B can be approximated by

a�B� = abg�1 −
�

B − B0
� , �34�

where abg is the background scattering length far from the
resonance and B0+� is the position of a zero of the scatter-
ing length.

A natural description for atoms near a Feshbach resonance
is provided by the resonance model, in which the molecule
responsible for the resonance is treated as a point particle.
The resonance model has three parameters �, g, and � that
can be defined by the S-wave phase shift given in Eq. �6�.
The scattering length and the effective range are

a =
1

4�
�� −

g2

m�
� , �35a�
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rs = − 8��� −
g2

m�
�−2 g2

m2�2 . �35b�

The effective range is negative definite. The scattering length
in Eq. �35a� can be made arbitrarily large by tuning � to near
0. In this case, the limiting value of the effective range is
rs→−8� /g2. The standard expression for the scattering
length near a Feshbach resonance in Eq. �34� can be repro-
duced by taking � to be linear in the magnetic field B while
g2 and � are constants:

� = − ��B − B0� , �36a�

g2 = − 4�mabg�� , �36b�

� = 4�abg. �36c�

The parameter � in Eqs. �36� is the difference between the
magnetic moment of the molecule and twice the magnetic
moment of an isolated atom. Away from the Feshbach reso-
nance, the parameter � can be interpreted as the detuning
energy of the molecular state relative to the two-atom thresh-
old. Near the Feshbach resonance, the strong coupling be-
tween the molecular state and two-atom scattering states
makes the interpretation of � more complicated.

The resonance model was first formulated as a local quan-
tum field theory by Kaplan �21� and by Kokkelmans et al.
�22�. In the sector that consists of states containing two at-
oms or one diatomic molecule, the model can be solved ana-
lytically. The solution reveals that the model is renormaliz-
able, at least in this sector. Kaplan used dimensional
regularization to remove ultraviolet divergences, thus avoid-
ing the need for explicit renormalization of the parameters
�21�. Kokkelmans et al. �22� derived the renormalizations of
the parameters that are required to make the observables in-
dependent of the ultraviolet momentum cutoff. They used
numerical solutions of mean-field integral equations for this
model to demonstrate the feasibility for achieving superflu-
idity in ultracold gas of fermionic atoms.

In the quantum field theory formulation of the resonance
model for fermionic atoms with two spin states, there are
three quantum fields: fermionic fields �1 and �2 that annihi-
late atoms and a bosonic field � that annihilates a diatomic
molecule. The Hamiltonian density for the resonance model
is the sum of a kinetic term T, an interaction term I, and an
external potential term V: H=T+I+V. The individual terms
are

T =
1

2m
� �1

† · ��1
��� +

1

2m
� �2

† · ��2
��� +

1

4m
� �† · �� ,

�37a�

I = �0�†� +
g0

m
��†�2�1

��� + �1
†�2

†����� +
�0

m
�1

†�2
†�2�1

���,

�37b�

V = V�R���1
†�1 + �2

†�2 + 2�†�� . �37c�

To avoid ultraviolet divergences, an ultraviolet cutoff � must
be imposed on the momenta of virtual particles. The super-
scripts ��� on some of the operators in Eqs. �37a� and �37b�
indicate that they have matrix elements that are ultraviolet
divergent. For the model to have a nontrivial finite limit as
�→�, the parameters �0, g0, and �0 in the interaction term
in Eq. �37b� must depend on �. We will refer to them as the
bare parameters. The parameters �, g, and � in the phase
shift in Eq. �6� do not depend on �. We will refer to them as
the renormalized parameters. The values for the bare param-
eters that are required to reproduce the phase shift in Eq. �6�
are

�0��� = Z���� , �38a�

g0��� = Z���g , �38b�

�0��� = � − �1 − Z����
g2

m�
, �38c�

where the renormalization constant Z is

Z��� = �1 −
��

2�2�−1

. �39�

There are two simple combinations of the parameters that are
renormalization invariants.

g

�
=

g0

�0
, �40a�

� −
g2

m�
= �0 −

g0
2

m�0
. �40b�

The amplitude for the scattering of a pair of atoms can be
calculated by solving the Lippmann-Schwinger integral
equation, which is represented diagrammatically in Fig. 1.
After evaluating the loop integral using Eq. �A14a�, the in-
tegral equation reduces to an algebraic equation as follows:

= +

+ +

FIG. 1. Integral equation for the scattering of a pair of atoms in
the resonance model. Single lines denote atom propagators and
double lines denote molecule propagators. The blob represents the
amplitude iA�E�. The solid dots represent the interaction vertices
−i�0 /m and −ig0 /m.
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A�E� = −
1

m
��0 +

g0
2/m

E − �0 + i�
�

��1 + mA�E�� �

2�2 −
1

4�
�− mE − i��� , �41�

where � is an ultraviolet momentum cutoff. The solution
A�E� depends on the total energy E of the pair of atoms in
the center-of-mass frame and not separately on their mo-
menta. After substituting Eqs. �38� for the bare parameters,
the amplitude becomes independent of the ultraviolet cutoff:

A�E� = −
1

m
��� +

g2/m
E − � + i�

�−1

−
1

4�
�− mE − i��−1

.

�42�

The T-matrix element for scattering of a pair of atoms with
momenta +p and −p is obtained by setting E= p2 /m. Com-
paring with the expression for the T-matrix element in Eq.
�3�, we obtain the phase shift in Eq. �6�.

Since the resonance model can be formulated as a quan-
tum field theory, the methods used to derive the Tan relations
in Ref. �10� can be applied equally well to this model. Be-
cause the resonance model is a local quantum field theory,
we can use the OPE to identify the contact density operator.
Because it is renormalizable, we can use standard renormal-
ization methods to derive the analogs of some of the other
Tan relations. In the following seven sections, we deduce the
generalized Tan relations for the resonance model.

V. TAIL OF THE MOMENTUM DISTRIBUTION

The Tan relation in Eq. �8� states that the momentum dis-
tributions �
�k� have power-law tails proportional to 1 /k4,
with the coefficient for both spin states given by the contact
C. We will use the OPE to show that the momentum distri-
butions in the resonance model also have power-law tails
proportional to 1 /k4 and we will express the contact C as the
integral over space of the expectation value of a local opera-
tor.

Our starting point is the expression for the momentum
distribution �
�k� in Eq. �27�, which involves the expectation
value of �


†�R− 1
2r��
�R+ 1

2r�. Inserting the OPE in Eq. �28�
for this bilocal operator, we obtain the asymptotic expansion
of �
�k� for large k in Eq. �29�. A power-law tail in �
�k�
can only come from terms in the OPE whose Wilson coeffi-
cients C
,n�r� are not analytic functions of r at r=0. Such
terms can arise from short-distance quantum fluctuations in-
volving pairs of atoms.

The Wilson coefficients on the right-hand side of the gen-
eral OPE in Eq. �1� can be determined by a procedure called
matching. First, matrix elements of the bilocal operator
OA�R− 1

2r�OB�R+ 1
2r� between appropriate states are calcu-

lated and expanded in powers of r= �r�. Second, matrix ele-
ments of the local operators OC�R� between the same states
are calculated. Finally, the coefficients CA,B

C �r� are deter-
mined by demanding that the expansions in powers of r on
both sides of the equation match. The coefficient of OC�R�
can be determined by matching matrix elements between any

states �X� and �X�� for which �X��OC�R��X� is nonzero. We
can exploit the fact that the OPE is an operator equation by
choosing the simplest possible states for the matching.

The matrix elements of the operators in the OPE can be
evaluated using diagrammatic methods by applying the
Feynman rules given in the Appendix. The bilocal operator
�


†�R− 1
2r��
�R+ 1

2r� can be represented diagrammatically
by a pair of open dots with an atom line ending at the dot
associated with �
 and an atom line beginning at the dot
associated with �


† , as in Fig. 2�a�. The atom lines should be
labeled by the spin 
, but we suppress that label. Local op-
erators that annihilate one atom and create one atom, such as
�


†�
 and �

†� j�
−� j�


†�
, can be represented diagram-
matically by a single open dot, with an atom line ending at
the dot and another atom line beginning at the dot, as in Fig.
2�b�. Local operators that annihilate a pair of atoms with
spins 1 and 2 or a molecule and create a pair of atoms or a
molecule, such as �1

†�2
†�2�1, �1

†�2
†�, �†�2�1, and �†�, can

be represented diagrammatically by a single open dot, with
two atom lines or a molecule line ending at the dot and two
atom lines or a molecule line beginning at the dot, as in Fig.
3.

The Wilson coefficients for operators that annihilate one
atom and create one atom can be obtained by matching ma-
trix elements between the one-atom states consisting of a
single atom with specified momentum and spin. For the bilo-
cal operator �


†�R− 1
2r��
�R+ 1

2r�, the matrix element be-
tween one-atom states is given by the diagram in Fig. 2�a�.
The expression for the matrix element is simply the Feynman
rule for the operator, which is an exponential function of r.
For local operators that annihilate one atom and create one
atom, such as �


†�
�R�, the matrix element is given by the
diagram in Fig. 2�b�. Their Wilson coefficients can be deter-
mined by matching the matrix elements between the one-
atom states. The Wilson coefficients are identical to those
that would be obtained by multiplying the Taylor expansions
of the operators �


†�R− 1
2r� and �
�R+ 1

2r�.

(a) (b)

FIG. 2. Diagrammatic representations of �a� the bilocal operator
�


†�R− 1
2r��
�R+ 1

2r� and �b� local operators that annihilate one
atom and create one atom, such as �


†�
�R�.

(a) (b)

(c) (d)

FIG. 3. Diagrammatic representations of the local operators �a�
�1

†�2
†�2�1, �b� �1

†�2
†�, �c� �†�2�1, and �d� �†�.
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The Wilson coefficients of local operators that annihilate
one atom and create one atom, such as �


†�
�R�, could also
be determined by matching matrix elements between two-
atom states, but the calculations are more complicated. The
diagrams for the matrix element of the bilocal operator
�


†�R− 1
2r��
�R+ 1

2r� are shown in Fig. 4. The blobs repre-
sent the infinite series of diagrams that are summed up by the
integral equation in Fig. 1. The contributions from each of
the three diagrams in Figs. 4�a�–4�c� are analytic functions of
r. The diagram in Fig. 4�d� is evaluated in Sec. 2 a of the
Appendix. It is an exponential function of r= �r�, so it is not
analytic at r=0. The diagrams for the matrix element of a
local operator that annihilates one atom and creates one
atom, such as �


†�
�R�, are shown in Fig. 5. Given the Wil-
son coefficients determined by matching matrix elements be-
tween one-atom states, the three diagrams in Figs. 5�a�–5�c�
match the expansions in powers of r of the corresponding
diagrams in Figs. 4�a�–4�c�. The diagram in Fig. 5�d�
matches the even powers of r in the expansion of the dia-
gram in Fig. 4�d� in powers of r. The diagram in Fig. 4�d� is
evaluated in Sec. 2 b of the Appendix. However, for opera-
tors whose Wilson coefficient is an odd function of r, such as
�


† ��
−��

†�
, the diagram in Fig. 4�d� vanishes. The odd

powers of r in the expansion of the diagram in Fig. 4�d�,
which are not analytic at r=0, must be matched by more
complicated operators whose matrix elements between one-
atom states are zero. The next most complicated operators
with nontrivial matrix elements between two-atom scattering

states have one factor of �2�1 or � and one factor of �1
†�2

† or
�†.

To identify the operators on the right-hand side of the
OPE whose matrix elements between one-atom states are
zero but whose matrix elements between two-atom scattering
states are nonzero, we consider the lines in the diagram in
Fig. 4�d� whose energies and momenta are integrated over.
Those lines are shown in Fig. 6, where the momenta are
labeled. The solid dots are vertices whose Feynman rule is
−i�0 /m if a pair of atom lines is attached and −ig0 /m if a
molecule line is attached. Nonanalytic dependence on r can
arise only from the integration region with large momentum
q. There can be a significant contribution from this region
only if the coordinates associated with the end points of the
lines carrying momentum q are close together. Contributions
from this region therefore correspond to shrinking those lines
to a single point. If we include the lines attached to the solid
dots in Fig. 6, the shrinking of the large-momentum lines to
a point gives one of the four vertices in Fig. 3. These four
vertices correspond to the operators �1

†�2
†�2�1, �†�2�1,

�1
†�2

†�, and �†�, respectively. They appear with relative
weights �0

2, �0g0, �0g0, and g0
2, respectively. It is convenient

to introduce a composite operator ��R� defined by

��R� = �0�2�1
����R� + g0��R� . �43�

The simplest combination of operators that corresponds to
the large-momentum region of the diagram in Fig. 4�d� is
therefore �†��R�.

The Wilson coefficient of the �†��R� term can be deter-
mined by matching matrix elements between two-atom scat-
tering states. The matrix element for �†��R� can be repre-
sented by the sum of the four diagrams in Fig. 7, together
with 12 other diagrams in which there is no scattering of the
two incoming lines or no scattering of the two outgoing lines
or both. The sum of all these diagrams is calculated in Sec. 2
c of the Appendix. The dependence on the initial and final
states is exactly what is required to match the term linear in
r in the expansion of the diagram in Fig. 4�d�. By matching,
we determine the Wilson coefficient of the operator �†� to
be −r / �8��. Thus the analog of the OPE in Eq. �30� in the
resonance model is

�

†�R −

1

2
r��
�R +

1

2
r� = �


†�
�R� +
1

2
r · ��


† � �
�R�

− ��

†�
�R�� −

r

8�
�†��R�

+ ¯ . �44�

(a) (b)

(c) (d)

FIG. 4. The diagrams for matrix elements of the bilocal operator
�


†�R− 1
2r��
�R+ 1

2r� between two-atom scattering states. The open
dots represent the operators.

(a) (b)

(c) (d)

FIG. 5. The diagrams for matrix elements of local operators that
annihilate an atom and create an atom, such as �


†�
 or �

† ��


−��

†�
, between two-atom scattering states. The open dot repre-

sents the operator.

FIG. 6. The lines in the diagram of Fig. 4�d� whose energies and
momenta must be integrated over. The solid dots are vertices to
which are attached either a pair of atom lines or a molecule line.
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We can now identify the coefficient C of the 1 /k4 tail in
the momentum distribution in Eq. �8�. The leading term in
the asymptotic expansion of the momentum distribution in
Eq. �29� comes from the term with operator �†�. The Fou-
rier integral of its Wilson coefficient −r / �8�� is given by Eq.
�31�. Comparing with Eq. �8�, we find that the contact in the
resonance model is

C =
 d3R�X��†��R��X� , �45�

where ��R� is the composite operator defined by Eq. �43�. In
subsequent sections, we will suppress the state �X� and de-
note the expectation value �X �O �X� of an operator in that
state simply by �O�.

VI. ENERGY RELATION

Tan’s energy relation in Eq. �9� is a decomposition of the
energy into terms that are separately insensitive to the range
of the interactions between the atoms. In a quantum field
theoretic formulation of the problem, the analogous relation
is a decomposition of the energy into terms that are insensi-
tive to the ultraviolet cutoff. To accomplish this separation
for the resonance model, we use the facts that �†� and �†�
are operators with ultraviolet-finite matrix elements. For
�†�, this follows from it being the contact density operator.
For �†�, this follows from an adiabatic relation derived later
in Sec. VIII. Using the expressions for the bare coupling
constants in Eqs. �38�, the interaction term I in the Hamil-
tonian density in Eq. �37b� can be expressed in the form

I = �� −
g2

m�
��†� + � 1

m�
−

�

2�2m
��†� . �46�

We can now decompose the sum of the kinetic energy den-
sity and the interaction energy density into five terms, each
of which has ultraviolet-finite matrix elements.

T + I =
1

2m
�


���


† · ��

��� −

�

2�2�†�� +
1

4m
� �† · ��

+ �� −
g2

m�
��†� +

1

m�
�†� . �47�

To see that the term that is summed over 
 in Eq. �47� has
ultraviolet finite matrix elements, we consider the integral
over space of its expectation value as follows:

�T

�sub�� =

1

2m

 d3R����


† · ��

���� −

�

2�2 ��†��� .

�48�

This differs from the expectation value of the kinetic energy
of atoms with spin 
 by a subtraction that is linear in the
ultraviolet cutoff �. By expressing the quantum fields � and
�† in terms of their Fourier transforms and using the expres-
sion for the momentum distribution �
�k� in Eq. �26�, we can
express the subtracted kinetic energy in Eq. �48� in the form

�T

�sub�� =
 d3k

�2��3

k2

2m
��
�k� −

C

k4� , �49�

where C is the contact given in Eq. �45�. We have expressed
the factor of � in Eq. �48� as an integral over momentum
space. Since the tail of the momentum distributions at large k
has the form in Eq. �8�, the subtraction in Eq. �49� makes the
integral over k convergent in the limit �→�.

The energy relation for the resonance model is obtained
by taking the expectation value of H=T+I+V and integrat-
ing over space. It can be expressed in the form

E = �V� + �T1
�sub�� + �T2

�sub�� + �Tmol�

+
 d3R��� −
g2

m�
���†�� +

1

m�
��†��� , �50�

where �V� is the energy associated with the external poten-
tial,

�V� =
 d3RV�R���1
†�1 + �2

†�2 + 2�†�� , �51�

and �Tmol� is the kinetic energy of the molecules.

�Tmol� =
1

4m

 d3R���† · ��� . �52�

VII. LOCAL PAIR DENSITY

The Tan relation in Eq. �10� expresses the contact density
C in terms of the local pair density Npair�R ,s�, which is the
number of pairs of atoms in a ball of volume 4

3�s3 centered
at R. To obtain the analogous relation in the resonance
model, we consider the OPE of the number density operators
�1

†�1�R− 1
2r� and �2

†�2�R+ 1
2r�. The matrix elements of the

product of these operators between two-atom scattering
states can be represented diagrammatically by the sum of the
four diagrams in Fig. 8. The three diagrams in Figs.

(a) (b)

(c) (d)

FIG. 7. Diagrams for matrix elements of the local operator �†�
between two-atom scattering states. The open dot represents the
operator. For each of the diagrams shown, there are three other
diagrams with no scattering of the atoms in the initial state or in the
final state or both.
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8�b�–8�d� involve integrals over the four-momenta of atoms.
The integrated momenta run through the lines that connect
the operator vertices to the blobs. Wilson coefficients that are
not analytic at r=0 must come from the large-momentum
regions of those integrals. The corresponding operators can
be deduced by shrinking the lines carrying the large momen-
tum to a point. Shrinking those lines in the diagram in Fig.
8�d� produces the operator vertices in Fig. 3 in the combina-
tion that corresponds to the operator �†��R�. The Wilson
coefficient of this operator is calculated in Sec. 2 d of the
Appendix. It is proportional to 1 /r2, so it is singular at r
=0. For the diagrams in Figs. 8�b� and 8�c�, shrinking the
lines carrying large momentum produces operator vertices
that correspond to the operators �1

†�2
†��R� and �†�2�1�R�,

respectively. The Wilson coefficient of these operators are
proportional to 1 /r. Thus the most singular term in the OPE
is

�1
†�1�R −

1

2
r��2

†�2�R +
1

2
r� →

1

16�2r2�†��R� .

�53�

We can use the OPE in Eq. �53� to obtain a simple inter-
pretation of the contact density C. It can be expressed in the
form

�1
†�1�R + r��2

†�2�R + r�� →
1

16�2�r� − r�2
�†��R� ,

�54�

where on the right-hand side we have kept only the most
singular term as r�→r. If we integrate the left side of Eq.
�54� over both r and r� inside the ball of volume 4

3�s3 cen-
tered at R, we obtain an operator that in the absence of
interactions would give the product of the number of atoms
with spin 1 and the number of atoms with spin 2 in that ball.
Thus the expectation value Npair�R ,s� of this operator can be
interpreted as the number of pairs of atoms with spins 1 and
2 inside that ball. Integrating the right-hand side of Eq. �54�
over r and r� inside that same ball and taking the expectation
value, we obtain the limiting behavior of Npair�R ,s� as s
→0.

Npair�R,s� →
s4

4
��†��R�� . �55�

Since ��†��R�� is the contact density C, the Tan relation in
Eq. �10� is satisfied without modification in the resonance
model.

VIII. ADIABATIC RELATIONS

Tan’s adiabatic relation in Eq. �11� gives the rate of
change in the energy E of a state due to a change in the
interaction parameter a. In the resonance model, there are
three interaction parameters: �, g, and �. According to the
expressions for these parameters in Eq. �36�, � can be
changed experimentally by varying the magnetic field while
g and � are essentially constants. Nevertheless, we will con-
sider the effects of changing all three parameters.

The Feynman-Hellman theorem for variations in the pa-
rameter � is

�E/�� =
 d3R��H/��� . �56�

There are analogous equations for the variations in the pa-
rameters g and �. Since the resonance model is renormaliz-
able, the Hamiltonian density operator H=T+I+V given by
Eqs. �37� has ultraviolet-finite matrix elements. More explic-
itly, if Eqs. �38� are used to eliminate the bare parameters �0,
g0, and �0 in favor of the renormalized parameters �, g, and
�, the matrix elements of H have finite limits as �→�,
where � is the ultraviolet cutoff. Since H has ultraviolet-
finite matrix elements for any values of �, g, and �, its de-
rivatives �� /���H, �� /�g�H, and �� /���H must also have
ultraviolet-finite matrix elements. The partial derivatives
with the ultraviolet cutoff � held fixed can be evaluated by
using Eqs. �38� for the bare parameters. The expressions for
the partial derivatives are simplest if they are expressed in
terms of the field � and the composite operator � defined in
Eq. �43�:

�
�

��
H = ��†� , �57a�

g
�

�g
H = −

2g2

m�
�†� +

g

m�
��†� + �†�� , �57b�

�
�

��
H =

g2

m�
�†� −

g

m�
��†� + �†�� +

1

m�
�†� .

�57c�

The right-hand sides have been expressed as linear combina-
tions of the operators �†�, �†�+�†�, and �†�, with coef-
ficients that are functions of renormalized parameters. Since
the three partial derivatives of H in Eqs. �57� must have
ultraviolet-finite matrix elements, these three operators must
also have ultraviolet-finite matrix elements.

The adiabatic relations for the resonance model can be
obtained by taking the expectation values of the partial de-
rivatives in Eqs. �57� and then integrating over all space:

(a) (b)

(c) (d)

FIG. 8. The diagrams for the matrix element of the bilocal op-
erator �1

†�1�R− 1
2r��2

†�2�R+ 1
2r� between two-atom scattering

states. The open dots represent the operators.
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�
�

��
E = �
 d3R��†�� , �58a�

g
�

�g
E =
 d3R�−

2g2

m�
��†�� +

g

m�
��†� + �†��� ,

�58b�

�
�

��
E =
 d3R� g2

m�
��†�� −

g

m�
��†� + �†�� +

1

m�
��†��� .

�58c�

IX. PRESSURE RELATION

For a homogeneous system, the external potential is a
constant: V�r�=−�, where � is the chemical potential. The
thermodynamic properties of the system are determined by
the free energy density �or thermodynamic potential density�
F. It can be expressed in terms of the trace of the partition
function as follows:

exp�− �FV� = Tr exp�− �
 d3RH� , �59�

where �=1 /T and V is the volume. The free energy density
F is a function of T, �, and the interaction parameters �, g,
and �. The parameter � has dimensions of energy. The mass
m, together with �=1, can be used as a conversion constant
to obtain energy scales 1 / �m�2� and g4 /m associated with
the two other interaction parameters. The free energy density
F has dimensions of energy per volume, which can be ex-
pressed as �energy�5/2 up to factors of m and �. Thus dimen-
sional analysis requires that the free energy density satisfy

�T
�

�T
+ �

�

��
+ �

�

��
+

1

4
g

�

�g
−

1

2
�

�

��
�F =

5

2
F . �60�

The logarithmic derivatives on the left-hand side of Eq.
�60� can be determined by applying them to the logarithms
of both sides of Eq. �59�. In the case of the interaction pa-
rameters �, g, and �, the logarithmic derivatives of F are
simply the expectation values of the logarithmic derivatives
of the Hamiltonian density given in Eqs. �57�. In the case of
the temperature and the chemical potential, the logarithmic
derivatives of F are

T
�

�T
F = F − E + �n , �61a�

�
�

��
F = − �n , �61b�

where n is the expectation value of the total number density.

n = ��1
†�1 + �2

†�2 + 2�†�� . �62�

Because the Hamiltonian density H includes the term V in
Eq. �37c�, it is actually the grand Hamiltonian density for the
grand canonical ensemble. Its expectation value is �H�=E

−�n, where E is the energy density. Because the system is
homogeneous, the pressure is simply P=−F. Combining to-
gether all the terms in Eq. �60�, we obtain

E =
3

2
P + �� −

g2

m�
���†��

+
3g

4m�
��†� + �†�� −

1

2m�
��†�� . �63�

This is the pressure relation for the resonance model.

X. VIRIAL THEOREM

If the trapping potential V�R� has simple behavior under
scaling the coordinates R= �X ,Y ,Z�, the virial theorem gives
simple relations between various contributions to the energy.
The most important case for cold atoms is a harmonic trap-
ping potential. For simplicity, we consider only the case of
an isotropic harmonic potential as follows:

V�R� =
1

2
m�2R2. �64�

The generalization to the case of an anisotropic harmonic
potential is straightforward.

The virial theorem can be derived simply from dimen-
sional analysis. Let us assume that the state of the system can
be specified by a set of integer quantum numbers. The energy
E=�d3r�H� for any such state must be a function of the
frequency � and the interaction parameters �, g, and �. Since
E has dimensions of energy, dimensional analysis requires
that it satisfy

��
�

��
+ �

�

��
+

1

4
g

�

�g
−

1

2
�

�

��
�E = E . �65�

If we consider the system at a nonzero temperature T, the
differential operator in Eq. �65� would also include a term
T�� /�T�.

The action of the differential operator in Eq. �65� on the
Hamiltonian density can be obtained by inserting the partial
derivatives in Eqs. �57� as follows:

��
�

��
+ �

�

��
+

1

4
g

�

�g
−

1

2
�

�

��
�H

= 2V�R���1
†�1 + �2

†�2 + 2�†�� + �� −
g2

m�
��†�

+
3g

4m�
��†� + �†�� −

1

2m�
�†� . �66�

The virial theorem for the resonance model is obtained by
taking the expectation value, integrating over space, and set-
ting this equal to E as follows:
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E = 2�V� +
 d3R��� −
g2

m�
���†��

+
3g

4m�
��†� + �†�� −

1

2m�
��†��� , �67�

where �V� is the energy from the external potential given by
Eq. �51�.

XI. INELASTIC TWO-BODY LOSS RATE

If the atoms have other spin states with lower energy than
the spin states 
=1,2 of interest, a pair of atoms with spins
1 and 2 may be able to scatter inelastically into the lower
spin states. The molecular state responsible for the Feshbach
resonance may also be able to decay into pairs of atoms in
lower spin states. If the lower spin states interact weakly
with the spin states 1 and 2, the primary effects of transitions
to the lower spin states is the disappearance of atoms from
the spin states 1 and 2 and the disappearance of the Feshbach
molecule. The inclusive effects of the lower spin states on
states near the threshold for the spin states 1 and 2 can be
taken into account through anti-Hermitian terms in the
Hamiltonian density. These terms must be anti-Hermitian to
account for the loss of probability from transitions to the
lower spin states, which are not taken into account as explicit
degrees of freedom.

If the energy gap between the lower spin states and the
spin states 1 and 2 is much larger than the energies of inter-
est, the anti-Hermitian terms in the Hamiltonian density can
be chosen to be local operators. The rate of disappearance of
molecules through their decays into pairs of atoms in lower
spin states is proportional to the number density of the mol-
ecules. The resulting effects can be taken into account
through the operator �†� with a negative imaginary coeffi-
cient. The rate of disappearance of pairs of atoms through
inelastic scattering is proportional to the local density of
pairs of atoms. The resulting effects can be taken into ac-
count through the operator �1

†�2
†�2�1 with a negative imagi-

nary coefficient. If the decay of the molecule and the inelas-
tic scattering of a pair of atoms can produce the same final
states, the resulting interference effects can be taken into
account through the operators �†�2�1 and �1

†�2
†�. The large

energy gap Egap is essential for allowing the effects of tran-
sitions into the lower spin states to be taken into account
through local operators. The atoms created by the decay of a
molecule or by the inelastic scattering of atoms with spins 1
and 2 will emerge with large momentum given approxi-
mately by �mEgap�1/2. By the uncertainty principle, a local-
ized wave packet corresponding to such an atom can be
traced back to a region of origin whose size is approximately
� / �mEgap�1/2. But the regions of origin of the two atoms must
also be separated by a distance at most of order � / �mEgap�1/2.
The reason for this is that the interactions that change the
spin state of the atom from 1 or 2 to a lower spin state must
also deliver a momentum kick of order �mEgap�1/2. This large
momentum can be transferred between the two final state
atoms only if they are close together. Even if it is transferred
though an intermediate atom with spin 1 or 2, that atom must

be far off its energy shell and therefore can propagate only
over a short distance. As long as � / �mEgap�1/2 is small com-
pared to the length scales that are described explicitly by the
field theory, the effects of the transitions to lower spin states
can be taken into account systematically through local opera-
tors.

The operators �1
†�2

†�2�1, �†�2�1+�1
†�2

†�, and �†� re-
quired to take into account the leading effects of the lower
spin states are ones that appear already in the interaction
term in the Hamiltonian density given in Eq. �37b�. To give
anti-Hermitian terms in the Hamiltonian density, these opera-
tors must be multiplied by imaginary coefficients. Thus the
leading effects of the lower spin states can be taken into
account by adding negative imaginary parts to the bare pa-
rameters �0, g0, and �0. We now consider the effect of the
non-Hermitian terms in the Hamiltonian. The expectation
value of those terms can be expressed as −i� /2, where

� � − 2
 d3R�Im �0��†�� +
Im g0

m
��†�2�1

��� + �1
†�2

†�����

+
Im �0

m
��1

†�2
†�2�1

����� . �68�

The leading effect of these terms on a state with definite
energy E is to change its time dependence from exp�−iEt /��
to exp�−i�E− i� /2�t /��. The probability in such a state de-
creases with time at the rate � /�. Thus � is the rate at which
atoms with spins 1 and 2 and Feshbach molecules are de-
pleted by transitions to pairs of atoms in lower spin states.

The loss rate in Eq. �68� can be expressed in terms of
expectation values of operators with ultraviolet-finite matrix
elements by eliminating �2�1 in favor of the operator �
defined in Eq. �43�. Since the coefficients of these expecta-
tion values must also be ultraviolet finite, they are express-
ible in terms of the renormalized parameters �, g, and �.
Using Eqs. �38� to eliminate the bare parameters and expand-
ing to first order in the imaginary parts of the renormalized
parameters, we obtain

� � − 2
 d3R��Im � −
2g

m�
Im g +

g2

m�2 Im ����†��

+ � 1

m�
Im g −

g

m�2 Im ����†� + �†��

+
1

m�2 Im ���†��� . �69�

This is the generalization in the resonance model of the Tan
relation for the inelastic two-body loss rate.

XII. CONSTRAINTS FOR LARGE SCATTERING LENGTH

The Tan relations in Eqs. �8�–�14� express various prop-
erties of an arbitrary state consisting of atoms with two spin
states and a large scattering length in terms of the contact C
or the contact density C. These relations hold exactly in the
zero-range model. The contact density operator in this model
was identified in Ref. �10� to be �0

2�1
†�2

†�2�1. In the reso-
nance model, the generalizations of the Tan relations derived
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in Secs. V–XI involve the expectation values of three distinct
local operators: �†�, �†�+�†�, and �†�, where � is the
composite operator defined in Eq. �43�. The contact density
operator is identified in Eq. �45� to be �†�. The same op-
erator appears in the energy relation in Eq. �50� and in the
local pair density in Eq. �55�. The three adiabatic relations in
Eqs. �58�, the virial theorem in Eq. �67�, the pressure relation
in Eq. �63�, and the two-body inelastic loss rate in Eq. �69�
involve various linear combinations of the expectation values
of the three local operators.

The scattering length is the only interaction parameter in
the zero-range model. The three parameters of the resonance
model provide three distinct length scales: �m��−1/2, g−2, and
���. There are two limits in which the scattering length given
by Eq. �35a� becomes arbitrarily large compared to the other
two length scales. In particular, it becomes large compared to
the effective range given by Eq. �35b�. One of these limits is
�→ �� with � and g fixed, in which case a→� / �4��. The
other limit is �→0 with g and � fixed, in which case a→
−g2 / �4�m��. In either of these two limits, the universality of
systems with large scattering length requires the resonance
model to reduce to the zero-range model. The generalized
Tan relations must therefore reduce to the original Tan rela-
tions. We will find that this imposes constraints on matrix
elements of �†� and �†�+�†�.

A. �\ ±� with � and g fixed

We first consider the case of a large scattering length a
obtained by increasing ��� with � and g fixed. The adiabatic
relation in Eq. �58c� can be expressed as an adiabatic relation
for variations in a as follows:

d

da
E =

4�

m�2 
 d3R�g2��†�� − g��†� + �†�� + ��†��� .

�70�

When � is sufficiently large, this must reduce to Tan’s adia-
batic relation in Eq. �11�, which can be expressed as

d

da
E =

4�

m�2 
 d3R��†�� + O�1/�3� . �71�

This implies a constraint on the matrix elements in Eq. �70�
as �→ ��.

g2��†�� − g��†� + �†�� = O�1/�� . �72�

We can obtain an independent constraint on the matrix ele-
ments by using the virial theorem, which for the resonance
model is given in Eq. �67�. When � is sufficiently large, this
must reduce to Tan’s virial theorem in Eq. �13�, which can be
expressed as

E = 2�V� −
1

2m�

 d3R��†�� + O�1/�2� . �73�

This implies a constraint on the matrix elements in Eq. �67�
as �→ ��:

�� −
g2

m�
���†�� +

3g

4m�
��†� + �†�� = O�1/�2� . �74�

If ��0, the constraints in Eqs. �72� and �74� imply

��†�� = O�1/�2� , �75a�

��†� + �†�� = O�1/�� . �75b�

These constraints are consistent with the decoupling of
the molecular field � in the limit �→ ��. Matrix elements
of operators involving the field � are suppressed by a factor
of 1 /� for every factor of � in the operator.

B. �\0 with g and � fixed

We next consider the case of a large scattering length a
obtained by decreasing ��� with g and � fixed. According to
Eq. �36a�, this can be achieved by tuning the magnetic field
to the position B0 of the Feshbach resonance. The adiabatic
relation in Eq. �58a� can be expressed as an adiabatic relation
for variations in a as follows:

d

da
E =

4�m�2

g2 
 d3R��†�� . �76�

When � is sufficiently small, this must reduce to Tan’s adia-
batic relation in Eq. �11�, which can be expressed as

d

da
E =

4�m�2

g4 
 d3R��†�� + O��3� . �77�

This implies that in the limit �→0, the expectation value of
�†� can be expressed in terms of the contact density as
follows:

g2��†�� = ��†�� + O��� . �78�

We can obtain an independent constraint on the matrix
elements by using the virial theorem, which for the reso-
nance model is given in Eq. �67�. When � is sufficiently
small, this must reduce to Tan’s virial theorem in Eq. �13�,
which can be expressed as

E = 2�V� +
�

2g2 
 d3R��†�� + O��2� . �79�

This implies a constraint on the matrix elements in Eq. �67�
as �→0:

�� −
g2

m�
���†�� +

3g

4m�
��†� + �†�� −

1

2m�
��†��

=
�

2g2 ��†�� + O��2� . �80�

Combined with the constraint in Eq. �78�, this implies that
the expectation value of �†�+�†� can also be expressed in
terms of the contact density as follows:

g��†� + �†�� = 2��†�� + O��� . �81�

It also implies a constraint on the terms of order � on the
right-hand sides of Eqs. �78� and �81�:

UNIVERSAL RELATIONS FOR A STRONGLY … PHYSICAL REVIEW A 78, 053606 �2008�

053606-13



�g2��†�� − ��†��� −
3

4
�g��†� + �†�� − 2��†���

=
�m�

2g2 ��†�� + O��2� . �82�

XIII. EFFECTIVE RANGE MODEL

If we set �=0 in the S-wave phase shift for the resonance
model, which is given by Eq. �6�, it reduces to

k cot �0�k� =
4�m�

g2 −
4�

g2 k2. �83�

This is the phase shift of the effective range model in Eq. �7�,
with the scattering length and the effective range given by

a = −
g2

4�m�
, �84a�

rs = −
8�

g2 . �84b�

Note that the effective range is negative.
In the simplest quantum field theory formulation of the

effective range model �20�, there are three quantum fields:
fermionic fields �1 and �2 that annihilate atoms and a
bosonic field � that annihilates a diatomic molecule. The
Hamiltonian density H=T+I+V for the effective range
model is the sum of the kinetic term in Eq. �37a�, the exter-
nal potential term in Eq. �37c�, and the interaction term

I = �0�†� +
g

m
��†�2�1

��� + �1
†�2

†����� . �85�

To avoid ultraviolet divergences, an ultraviolet cutoff � must
be imposed on the momenta of virtual particles. The only
renormalization required in this model is an additive renor-
malization of the parameter �0 as follows:

�0��� = � +
g2�

2�2m
. �86�

The effective range model can also be formulated as a local
quantum field theory with fermion fields �1 and �2 only and
with a momentum-dependent interaction �20�. In this formu-
lation of the model, a rather intricate renormalization of the
parameters is required to obtain the phase shift in Eq. �83� in
the limit �→�.

The generalized Tan relations for the effective range
model can be derived by using the same methods that we
used for the resonance model. However, they can be derived
more easily by starting from the generalized Tan relations for
the resonance model and taking the limit �→0. This limit is
not trivial, because some of the generalized Tan relations for
the resonance model involve factors of 1 /�. The limit �
→0 can be taken by expanding the composite operator �
defined in Eq. �43� through first order in �. Using the expres-
sions for the bare coupling constants in Eqs. �38a� and �38b�
to expand �0 and g0 in powers of �, we obtain

��R� = g��R� + ���2�1
����R� +

g�

2�2��R�� + O��2� .

�87�

We denote the composite operator defined by the coefficient
of � by ���R�:

���R� = �2�1
����R� +

g�

2�2��R� . �88�

The contact C in the resonance model is given in Eq. �45�.
From the expansion in Eq. �87�, we can see that the limit
�→0 can be taken simply by replacing � by g�. Thus the
contact in the effective range model is

C =
 d3Rg2�X��†��R��X� . �89�

We proceed to enumerate the generalized Tan relations for
the effective range model as follows:

�1� Tail of the momentum distribution. This is given by
Eq. �8�, where C is the contact in Eq. �89�.

�2� Energy relation. The decomposition of the energy into
terms that are ultraviolet finite can be obtained by taking the
limit �→0 in Eq. �50� as follows:

E = �V� + �T1
�sub�� + �T2

�sub�� + �Tmol�

+
 d3R����†�� +
g

m
��†�� + ��†��� , �90�

where �� is the composite operator defined by Eq. �88�. The
subtracted kinetic energy for a single spin state is obtained
from Eq. �49� by replacing � by g� as follows:

�T

�sub�� =

1

2m

 d3R����


† · ��

���� −

g2�

2�2 ��†��� .

�91�

�3� Local pair density. The contact density C=g2��†�� is
related to the local pair density Npair�R ,s� by Eq. �10�.

�4� Adiabatic relation. The adiabatic relation for varia-
tions in � is the same as in the resonance model, where it is
given by Eq. �58a�. The adiabatic relation for variations in g
can be obtained from Eq. �58b� by taking the limit �→0.
The adiabatic relations are therefore

�
�

��
E = �
 d3R��†�� , �92a�

g
�

�g
E =

g

m

 d3R��†�� + ��†�� . �92b�

�5� Pressure relation. The relation between the energy
density E and the pressure P in a homogeneous system can
be obtained from Eq. �63� by taking the limit �→0:

E =
3

2
P + ���†�� +

g

4m
��†�� + ��†�� . �93�

�6� Virial theorem. The virial theorem for a system with a
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harmonic trapping potential can be obtained from Eq. �67�
by taking the limit �→0:

E = 2�V� +
 d3R����†�� +
g

4m
��†�� + ��†��� . �94�

The virial theorem for the effective range model has been
derived previously by Werner �26�. His result can be ex-
pressed in the form

E = 2�V� −
a

2

�

�a
E −

rs

2

�

�rs
E . �95�

This is just the generalization of the dimensional analysis
condition for the energy in Eq. �25� for a model with two
interaction parameters a and rs with dimensions of length. If
we use Eqs. �84� to change variables from a and rs to � and
g and if we use the adiabatic relations in Eqs. �92� to express
the derivatives in terms of matrix elements, we obtain the
virial theorem in Eq. �94�.

�7� Inelastic two-body loss rate. The rate at which low-
energy atoms and molecules are depleted by transitions to
pairs of atoms in lower spin states can be obtained from Eq.
�69� by setting Im �=0 and then taking the limit �→0. It can
be obtained more simply by using the adiabatic relations in
Eqs. �92� to determine the change in the energy due to small
imaginary changes in the parameters � and g as follows:

� � − 2
 d3R�Im ���†�� +
Im g

m
��†�� + ��†��� .

�96�

The scattering length in Eq. �84a� can be made arbitrarily
large by taking the limit �→0 with g fixed. In this limit, the
universality of systems with large scattering length requires
the effective range model to reduce to the zero-range model.
This imposes a constraint on the expectation values of the
two operators that appear in the generalized Tan relations.
The constraint can be derived by demanding that the virial
theorem in Eq. �94� reduce to the Tan relation in Eq. �13� as
�→0. It can also be derived from the constraint for the reso-
nance model in Eq. �80� by taking the limit �→0. They both
give the same constraint as follows:

g��†�� + ��†�� = − 2m���†�� + O��2� . �97�

XIV. SUMMARY

The Tan relations enumerated in Sec. II are universal re-
lations between various properties of an arbitrary system
consisting of fermions with two spin states and a large scat-
tering length. These relations should be satisfied provided the
energy, temperature, and number density of the system are
low enough that the interactions between the atoms are ac-
curately described by the S-wave phase shift in Eq. �5�,
which depends only on the scattering length a. They are
satisfied exactly in the zero-range model, in which the phase
shift is given by Eq. �5� up to arbitrarily high energies.

In Ref. �10�, quantum field theory methods were used to
derive the Tan relations. The zero-range model can be for-

mulated as a local quantum field theory. Using this formula-
tion, the Tan relations were derived by using standard renor-
malization methods together with the OPE. The contact
density operator in this model was identified in Ref. �10� to
be �0

2�1
†�2

†�2�1. One advantage of using quantum field
theory methods is that it is straightforward to derive the gen-
eralizations of the Tan relations for any system that can be
formulated as a renormalizable local quantum field theory. In
this paper, we used quantum field theory methods to derive
the generalized Tan relations for the resonance model. We
also derived them for the effective range model by using the
fact that it can be obtained as a limit of the resonance model.

The resonance model is defined by the S-wave phase shift
in Eq. �6�, which depends on three interaction parameters �,
g, and �. In Secs. V–XI, we derived the generalized Tan
relations for the resonance model. We identified the contact
density operator to be �†�, where � is the composite op-
erator defined in Eq. �43�. The generalized Tan relations in-
volve expectation values of linear combinations of three lo-
cal operators: �†�, �†�+�†�, and �†�. The scattering
length in the resonance model can be made arbitrarily large
by tuning �→0. The condition that the generalized Tan re-
lations reduce in this limit to the original Tan relations im-
plies the constraints on the expectation values of �†�,
�†�+�†�, and �†� that are given in Eqs. �78�, �81�, and
�82�.

The effective range model is defined by the S-wave phase
shift in Eq. �7�, which depends on the two parameters a and
rs	0. It can be obtained from the resonance model by set-
ting �=0, in which case the S-wave phase shift is given by
Eq. �83� in terms of the parameters � and g. In Sec. XIII, we
enumerated the generalized Tan relations for the effective
range model. We identified the contact density operator to be
g2�†�. The generalized Tan relations involve expectation
values of linear combinations of two local operators: �†�
and �†��+��†�, where �� is the composite operator de-
fined in Eq. �88�. The scattering length in the effective Range
Model can be made arbitrarily large by tuning �→0, which
implies �a�� �rs�. The condition that the generalized Tan re-
lations reduce in this limit to the original Tan relations im-
plies the constraint on the expectation values of �†� and
�†��+��†� that is given in Eq. �97�.

The Tan relations can be tested experimentally by using
cold trapped atoms near a Feshbach resonance, as discussed
at the end of Sec. II. Measurements of the momentum distri-
butions can be used to determine the contact C and the sum
�T�+ �I� of the kinetic and interaction energies. Measure-
ments of the density profiles can be used to determine the
potential energy �V�. The virial theorem in Eq. �13� is a
nontrivial relation between �T�+ �I�, �V�, and C. The adia-
batic relation in Eq. �11� gives a constraint on the variations
in �T�+ �I�, �V�, and C from changing the scattering length.
Both of these relations can be tested experimentally. Since
the ability to change the scattering length is essential both for
determining C and �T�+ �I� and for testing the adiabatic re-
lation, the Feshbach resonance plays a crucial role. The reso-
nance model provides a more detailed microscopic model for
atoms near a Feschbach resonance than the zero-range
model. Our results on the generalized Tan relations in the
resonance model should be useful for quantifying the theo-
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retical errors in experimental tests of the Tan relations.

ACKNOWLEDGMENTS

This research was supported in part by the Department of
Energy under Grants No. DE-FG02-05ER15715 and No.
DE-FC02-07ER41457 and by the National Science Founda-
tion under Grant No. PHY-0653312.

APPENDIX: DIAGRAMMATIC CALCULATIONS

1. Feynman rules

The results for the matrix elements given in Secs. V and
VII can be calculated relatively easily by applying a set of
rules—known generally in quantum field theory as Feynman
rules. The calculation of matrix elements of operators re-
duces to drawing all relevant Feynman diagrams, using the
Feynman rules to write down mathematical expressions for
the matrix elements, and evaluating any integrals that appear
in those expressions.

a. Propagators and vertices

We first give the Feynman rules for the resonance model
that are required to calculate Green’s functions and T-matrix
elements. A Feynman diagram consists of atom lines �repre-
sented by single lines� and molecule lines �represented by
double lines� connected by vertices of two types. The math-
ematical expression for a diagram is obtained by applying
the following rules:

�1� Four-momenta. Assign a four momentum �p0 ,p�,
where p0 is the energy and p is the momentum, to every
external line. The initial and final four momenta are con-
strained by overall conservation of energy and momentum.
The four momentum of the internal lines are constrained
only by conservation of energy and momentum at each ver-
tex.

�2� Propagator factors. For each internal line with four
momentum �q0 ,q�, include the factor i / �q0−q2 / �2m�+ i�� for
an atom line and i / �q0−�−q2 / �4m�+ i�� for a molecule line.

�3� Vertex factors. For each two-atom–to–two-atom ver-
tex, include the factor −i�0 /m. For each two-atom-to-
molecule vertex, include the factor −ig0 /m.

�4� Loop momenta. If there are four momenta �k0 ,k� that
are not determined by the four momenta of the external lines,
integrate over them using the measure �d3kdk0 / �2��4. The
integrals over k0 can be evaluated using contour integration.

The connected Green’s function for N atoms to evolve
into N atoms can be expressed as the sum of all connected
diagrams with N incoming atom lines and N outgoing atom
lines. An example is the amplitude A�E� for N=2 in Eq.
�42�, which can be expressed as the infinite sum of diagrams
generated by iterating the integral equation in Fig. 1. If this
amplitude occurs as a subdiagram of a Feynman diagram, the
Feynman rule for the subdiagram is iA�E− P2 / �4m��, where
E and P are the total energy and momentum flowing through
the subdiagram.

The T-matrix element for N atoms to scatter into N atoms
is obtained by setting the energy for each external atom line

equal to the value required by the nonrelativistic energy-
momentum relation: p0= p2 / �2m�. The T-matrix elements in-
volving diatomic molecules are more complicated and will
not be discussed here.

b. Operator vertices

To calculate matrix elements of composite operators, we
also need Feynman rules for the operators. Energy and mo-
mentum can flow into and out of the vertices for the opera-
tors. For simplicity, we consider only operators at a fixed
time t=0. The operators listed below in Eqs. �A1� annihilate
an atom and create an atom, so the operator vertex has an
incoming atom line and an outgoing atom line. If the incom-
ing and outgoing momenta are k and k�, the Feynman rules
for the operator vertices are

�

†�R −

1

2
r��
�R +

1

2
r�:

exp�ik · �R +
1

2
r��exp�− ik� · �R −

1

2
r�� ,

�A1a�

�

†�
�R�: exp�i�k − k�� · R� , �A1b�

�

†� j�
�R� − � j�


†�
�R�: i�k + k�� j exp�i�k − k�� · R� .

�A1c�

The operators listed below in Eqs. �A2� annihilate a pair of
atoms or a molecule and create a pair of atoms or a molecule.
If the total momenta entering and leaving the vertex are K
and K�, respectively, the Feynman rules for the operator ver-
tices are

�1
†�2

†�2�1�R�: exp�i�K − K�� · R� , �A2a�

�1
†�2

†��R�: exp�i�K − K�� · R� , �A2b�

�†�2�1�R�: exp�i�K − K�� · R� , �A2c�

�†��R�: exp�i�K − K�� · R� . �A2d�

We will consider matrix elements of these operators only
between states for which the total momenta K and K� are
both zero, in which case the Feynman rules in Eqs. �A2� all
reduce to 1.

The matrix element of a composite operator between ini-
tial and final states consisting of atoms is the sum of all
diagrams in which each external atom line is connected ei-
ther to an operator vertex or to other external atom lines.

2. Matrix elements between two-atom scattering states

In this section, we calculate the matrix elements of com-
posite operators between two-atom scattering states. We de-
note the state consisting of a single atom with momentum p
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and spin 
 by �p ,
�. A two-atom scattering state is labeled
by the momenta and the spins of the two particles:
�p1 ,
1 ;p2 ,
2�. For simplicity, we will calculate matrix ele-
ments only between two-atom scattering states consisting of
two atoms with different spins, total momentum 0, and total
energy E. These states, which we denote by �p ,1 ;−p ,2�, are
labeled by a vector p whose magnitude is �p � = �mE�1/2.

a. Matrix element of ��
† (R− 1

2r)��(R+ 1
2r)

The matrix element of the bilocal operator �

†�R

− 1
2r��
�R+ 1

2r� is given by the sum of the four diagrams in
Fig. 4. The only one of these diagrams that involves an in-
tegral over the four momentum of an atom is Fig. 4�d�. Using
the Feynman rules, the expression for this diagram is

�p�,1;− p�,2��

†�R −

1

2
r��
�R +

1

2
r���p,1;− p,2��4�d� = iA2�E� 
 d3qdq0

�2��4

exp�iq · r�
�q0 − q2/�2m� + i��2�E − q0 − q2/�2m� + i��

,

�A3�

where A�E� is the amplitude in Eq. �42� and E= p2 /m. The integral over q0 can be evaluated using contours. The resulting
momentum integral is given in Eq. �A13b�. The final result is

�p�,1;− p�,2��

†�R −

1

2
r��
�R +

1

2
r���p,1;− p,2��4�d� =

im2

8�p
A2�E�exp�ipr� . �A4�

Unlike the first three diagrams in Fig. 4, this diagram is not an analytic function of r at r=0.

b. Matrix element of ��
† ��

The matrix element of the local operator �

†�
�R� is given by the sum of the four diagrams in Fig. 5. These diagrams are

equal to the r→0 limits of the corresponding diagrams for the bilocal operator in Fig. 4. For the first three diagrams, this can
be seen easily from the Feynman rules. This is not as obvious for the fourth diagram, because it involves an integral over the
four momentum of an atom. Using the Feynman rules, the expression for the diagram in Fig. 4�d� is

�p�,1;− p�,2��

†�
�R���p,1;− p,2��5�d� = iA2�E� 
 d3qdq0

�2��4

1

�q0 − q2/�2m� + i��2�E − q0 − q2/�2m� + i��
. �A5�

The integral over q0 can be evaluated using contours. The resulting momentum integral is given in Eq. �A14b�. The final result
is

�p�,1;− p�,2��

†�
�R���p,1;− p,2��5�d� =

im2

8�p
A2�E� . �A6�

This result matches the r0 term in the expansion of Eq. �A4� in powers of r. This is consistent with the Wilson coefficient of
�


†�
�R� in the OPE in Eq. �44� being simply 1.

c. Matrix element of �†�

The matrix element for �†��R� can be represented by the sum of the four diagrams in Fig. 7, together with 12 other
diagrams in which there is no scattering of the two incoming atoms or the two outgoing atoms or both. Using the Feynman
rules, the expression for the diagram in Fig. 7�a� is

�p�,1;− p�,2��0
2�1

†�2
†�2�1�R���p,1;− p,2��7�a� = �0

2�− iA�E� 
 d3qdq0

�2��4

1

�q0 − q2/�2m� + i���E − q0 − q2/�2m� + i���2

.

�A7�

The integral over q0 can be evaluated using contours. The resulting momentum integral is given in Eq. �A14a�. The result is

�p�,1;− p�,2��0
2�1

†�2
†�2�1�R���p,1;− p,2��7�a� = �0

2�mA�E�� �

2�2 +
ip

4�
��2

. �A8�

The expressions for the three diagrams obtained from Fig. 7�a� by omitting the scattering of the atoms in the initial state or
final state or both are obtained from Eq. �A8� by replacing one or both of the factors in square brackets by 1. The expressions
for the three diagrams in Figs. 7�b�–7�d� are obtained by replacing one or both of the factors of �0 by �g0

2 /m� / �E−�0�. The sum
of all 16 diagrams is
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�p�,1;− p�,2��†��R��p,1;− p,2� = ��0 +
g0

2/m
E − �0

�2�1 + mA�E�� �

2�2 +
ip

4�
��2

. �A9�

By using the integral equation in Eq. �41�, this can be simplified to

�p�,1;− p�,2��†��R��p,1;− p,2� = m2A2�E� , �A10�

where A�E� is the amplitude in Eq. �42� and E= p2 /m. This result matches the r1 term in the expansion of Eq. �A4� in powers
of r if the Wilson coefficient of �†��R� in the OPE in Eq. �30� is −r / �8��.

d. Matrix element of �1
†�1(R− 1

2r)�2
†�2(R+ 1

2r)

The matrix element of the bilocal operator �1
†�1�R− 1

2r��2
†�2�R+ 1

2r� is given by the sum of the four diagrams in Fig. 8. The
diagram in Fig. 8�a� is simply 1. The two diagrams in Figs. 8�b� and 8�c� involve an integral over the four momentum of an
atom. The diagram in Fig. 8�d� involves two such integrals. Using the Feynman rules, the expression for this diagram is

�p�,1;− p�,2��1
†�1�R −

1

2
r��2

†�2�R +
1

2
r���p,1;− p,2��8�d� = �− iA�E� 
 d3qdq0

�2��4

exp�iq · r�
�q0 − q2/�2m� + i���E − q0 − q2/�2m� + i���2

.

�A11�

The integral over q0 can be evaluated using contours. The resulting momentum integral is given in Eq. �A13a�. The final result
is

��p�,1;− p�,2��1
†�1�R −

1

2
r��2

†�2�R +
1

2
r��p,1;− p,2��

8�d�
= � m

4�r
A�E�exp�ipr��2

. �A12�

The term proportional to the r−2 term in the expansion of Eq.
�A12� in powers of r can be matched by the matrix element
of �†��R� in Eq. �A10� if the Wilson coefficient of this
operator is 1 / �16�2r2�, in accord with Eq. �53�.

e. Momentum integrals

We list here the momentum integrals that arise in the cal-
culation of matrix elements in the preceding sections. The
calculations of the matrix elements of bilocal operators in
Secs. 2 a and 2 d require the following Fourier transforms:


 d3q

�2��3

exp�iq · r�
q2 − p2 − i�

=
1

4�r
exp�ipr� , �A13a�


 d3q

�2��3

exp�iq · r�
�q2 − p2 − i��2 =

i

8�p
exp�ipr� . �A13b�

The calculations of the matrix elements of local operators in
Secs. 2 b and 2 c require the following integrals:


 d3q

�2��3

1

q2 − p2 − i�
=

�

2�2 +
ip

4�
, �A14a�


 d3q

�2��3

1

�q2 − p2 − i��2 =
i

8�p
. �A14b�

The integral in Eq. �A14a� is ultraviolet divergent. It has
been evaluated using an ultraviolet cutoff �q�	�.
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