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We have theoretically studied vortex waves of Bose-Einstein condensates in elongated harmonic traps. Our
focus is on the axisymmetric varicose waves and helical Kelvin waves of singly quantized vortex lines. Growth
and decay dynamics of both types of vortex waves are discussed. We propose a method to experimentally
create these vortex waves on demand.
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I. INTRODUCTION

Substance whirling around a line in space forms a vortex.
Eddies in flowing water and whirlwinds in the atmosphere
are perhaps the most common examples of vortices encoun-
tered in nature, although such structures exist in nearly every
imaginable medium including laser light and superconduct-
ors. Vortices are objects of fundamental importance in fluid
dynamics and they are inherent to turbulent flows featuring
normal mode excitations analogous to vibrating classical
strings �1�. Lord Kelvin �Sir W. Thomson� derived a disper-
sion relation for a class of normal modes of classical hydro-
dynamic vortices �2�. A particular type of vortex excitations
in which the vortex twists around its equilibrium position
forming a helical structure have since become known as
Kelvin waves �3�. Such chiral vortex vibrations are an el-
emental property of vortices ranging from tiny whirlpools in
creeks to tornadoes of atmospheric scales. Another type of
axially propagating excitation mode—coined a varicose
wave—may exist in fluids confined to cylindrical geometry.
These radially pulsating modes have the varicose shape, well
known in the context of blood flow through veins in the
cardiovascular system �4�.

Superfluids are distinguished from classical fluids by their
ability of frictionless flow �5�. Rotational motion of superflu-
ids is supported by quantized vortices �3�. Such quantum
vortices possess many properties akin to their classical
counterparts—including Kelvin waves �3,6–14�. Superfluid
Kelvin waves were first experimentally introduced in the
context of liquid helium �3,6,7,9�. Later the discovery of
Bose-Einstein condensates of dilute atomic gases �15–17�
facilitated the creation and direct imaging of quantized vor-
tices in highly controllable superfluid systems �18,19�. In
particular, Kelvin waves on an isolated quantized vortex line
were explicitly excited and imaged for the first time by Bre-
tin et al. �12�. Their excitation method was described in
terms of Beliaev decay of the quadrupole mode into a pair of
Kelvin waves �12,20�. Further insight into this process was
recently obtained by direct dynamical simulations �21�. Hy-
drodynamically, it may be understood in terms of a paramet-
ric resonance between the quadrupole mode and a pair of
Kelvin modes of opposite axial momenta, which induces an
elliptical instability to the initially straight vortex line
�21,22�. The dynamics of superfluid Kelvin waves is crucial
to understanding the details of quantum turbulence �23,24�.
It is also conceivable that the quantum gases would support

varicose waves in which an axisymmetric pulsating pertur-
bation propagates along the vortex line causing periodic
modulation of the vortex core diameter.

In this paper, we mainly focus on two types of vortex
waves in trapped Bose-Einstein condensed gases. In Sec. II
we describe our numerical methods and in Sec. III we first
extend our previous results �21� on Kelvin waves and follow
up with an introduction to varicose wave excitations. Finally,
Sec. IV is devoted to discussion.

II. METHODS

We consider a Bose-Einstein condensate composed of
87Rb particles trapped in a harmonic potential whose trans-
verse and axial frequencies are �x=�y =��=2��98.5 Hz
and �z=2��11.8 Hz, respectively, as in the experiment of
Bretin et al. �12�. The number of particles in the condensate
is 1.3�105 unless otherwise stated. The ground state and its
dynamics are accurately described by the time-dependent
Gross-Pitaevskii equation �25,26�

i��t��r,t� = �H0 + Vpert�r,t� + g���r,t��2���r,t� , �1�

where the single-particle quantum harmonic oscillator opera-
tor is given by

H0 = −
�2�2

2m
+

1

2
m��x

2x2 + �y
2y2 + �z

2z2� , �2�

and the last term in Eq. �1� accounts for the contact interac-
tion of strength g between particles. The time-dependent po-
tential Vpert�r , t� may be engineered to resonantly excite vari-
ous normal modes by perturbing the ground state. Such
collective excitation modes are also obtained within the lin-
ear response theory by solving the coupled Bogoliubov–de
Gennes eigenvalue equations �25,26�

Luq�r� + g��r�2vq�r� = Equq�r� ,

Lvq�r� + g��r�*2uq�r� = − Eqvq�r� , �3�

where uq and vq are the usual quasiparticle wave functions
corresponding to the excitations with eigenenergies Eq, and
the single-particle operator

L = H0 + 2g���r,t��2 − � �4�

contains the condensate chemical potential �.
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We solve the time-dependent Gross-Pitaevskii equation
by utilizing a parallel message passing interface �MPI�
implementation of a finite-element discrete variable repre-
sentation method in a fully three-dimensional Cartesian co-
ordinate system �27,28�. For finding solutions to the
Bogoliubov–de Gennes equations, we deploy the cylindrical
symmetry of the axisymmetric single-vortex stationary state.
As a result we have a good azimuthal quantum number �,
thus reducing the effective computational effort by one spa-
tial dimension. To diagonalize the matrix form of Eq. �3�, we
use a hybrid basis consisting of radial Laguerre polynomials
and finite-difference discretization in the axial direction. This
yields a matrix that has a computationally beneficial band
shape.

III. RESULTS

By solving the eigenvalue problem for the axisymmetric
single-vortex initial state we obtain full information about
the small-amplitude normal modes of our superfluid vortex
state. Using dynamical simulations we can study the excita-
tion and subsequent decay dynamics of vortex waves beyond
linear stability analysis. Combining these two resources, we
are able to analyze excitation mechanisms, dispersion rela-
tions, and decay processes of the collective vortex excita-
tions. In the following we separately focus on helical �
=−1 Kelvin waves and axisymmetric �=0 varicose waves.

A. Helical �=−1 Kelvin waves

1. Physical characterization

Kelvin waves or their quanta—kelvons—are helical vor-
tex waves propagating along the vortex line with an axial
wave vector kz. The path s0�� , t� traced by the core of a
vortex executing an idealized classical Kelvin wave motion
of an amplitude R may be curve parametrized as

s0��,t� = R cos�kz� + �t�êx − R sin�kz� + �t�êy + �êz, �5�

where t denotes time and � is the rotation frequency of the
line element about the z axis. A particle following such a
trajectory has a negative helicity. One may use the Biot-
Savart law to obtain the velocity field �3�

v�r� =
�

2m
� �s0 − r� � ds0

�s0 − r�3
. �6�

The divergence in the integral may be removed by introduc-
ing a cutoff a0= �r−s0�, which causes the internal structure of
the vortex core to be neglected. Within the local induction
approximation the self-induced fluid velocity in the vicinity
of the vortex core is given by �3,29�

vloc�r� = Cs� � s�, �7�

where C is a system-dependent constant and a prime denotes
a derivative with respect to the curve parameter, so that s� is
the local curvature vector of the vortex and s� is tangent to
the vortex line, pointing to the direction of the local vorticity
vector. The Kelvin-Helmholz theorem guarantees the conser-
vation of circulation which implies that a vortex tends to

move with the fluid it is immersed in. Hence according to
Eq. �7� the local motion of the vortex line element is in the
direction determined by the binormal of the vorticity and the
curvature vectors. In a uniform system this then implies that
the Kelvin wave vortex helix must rotate in the direction
opposite to the fluid flow around the unperturbed vortex.

However, in the presence of external fields such as a har-
monic trapping field, the local curvature s� may become sig-
nificantly modified. A particularly elusive example is a singly
quantized vortex precessing about the trap axis in a harmoni-
cally trapped Bose-Einstein condensate �30�. In such a sys-
tem the vortex is bent even in the pancake-shape limit and
the effective curvature vector points away from the trap cen-
ter, and therefore the local self-induced velocity, which de-
termines the direction of vortex precession, is in the same
direction as the unperturbed condensate flow. The Kelvin
modes correspond to a small-amplitude motion of the vortex
core and the corresponding mode densities are highly local-
ized within the core volume of the vortex.

2. Dispersion relation

The driving force of Kelvin wave motion involves veloc-
ity instead of acceleration and the resulting semiclassical
long-wavelength, �a0kz��1, dispersion relation ��kz�
=�kz

2 ln�1 / �a0kz�� /2m depends logarithmically on the wave
vector kz. In the case of an axisymmetric vortex line in a
harmonically trapped Bose-Einstein condensate, the kelvon
dispersion relation is better described by �21�

��k0 + kz� = �0 +
�kz

2

2m
ln� 1

�rckz�
�, �rckz� � 1, �8�

where rc is a core parameter which is of the order of the
vortex core size. The “continuum” branch described by the
above formula is cut off at low frequency �0	0 and long
wavelength k0	2� /Dz, where Dz is the Thomas-Fermi
length of the condensate. In addition, the spectrum contains
low-energy bending modes which lie below the continuum
branch. From a qualitative point of view, modes with �	0
rotate in the same direction as the unperturbed condensate
flow, whereas modes with �
0 rotate in the opposite direc-
tion. Modes with zero frequency remain stationary in the
laboratory frame. Figure 1 shows the computed kelvon dis-
persion relations for three different system sizes N=1�104

�squares�, 5�104 �bullets�, and 5�105 �triangles�. The solid
curves are plotted using the dispersion relation Eq. �8�,
where �0 and k0 are determined from the numerical results
and the core parameter rc=0.13 �m for all cases. In contrast,
the value of the healing length varies between 0.2 and
0.4 �m. The dashed curve is plotted for N=1�104 using
rc=�=0.4 �m, highlighting the failure of approximation of
the core parameter rc by the healing length �. However, all
cases shown in Fig. 1 are still in the Thomas-Fermi regime
and for very small systems the dispersion relation shows
much stronger finite-size effects. The modes below the con-
tinuum dispersion are the bending modes �21�. As the num-
ber of particles in the condensate is increased it becomes
correspondingly longer and hence k0 approaches zero.
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3. Excitation method

An elegant way to excite Kelvin waves was realized in the
experiment of Bretin et al. �12�. In this method, an elliptical
rotating perturbation first populates the quadrupole �=−2
collective surface oscillation mode of the condensate, thus
reducing the orbital angular momentum of the system. Sub-
sequently, the quadrupole mode population spontaneously
decays pairwise into �=−1 Kelvin modes via the energy-
momentum conserving Beliaev process in which a quadru-
pole quasiparticle interacts with the condensate, scattering to
a pair of oppositely traveling Kelvin modes �12,20,21�. Hy-
drodynamically one may explain such a process in terms of a
parametric �subharmonic� resonance between a quadrupole
mode and a pair of Kelvin modes, leading to an elliptical
instability of the initially straight vortex line �21,22�.

The shortcoming of this resonant excitation method is that
it is constrained to a specific kelvon. However, it is possible
to circumvent this constraint by deploying the core localized
nature of the Kelvin modes �21�. By applying an external
pinning potential, such as produced by a suitably detuned
laser beam, at the vortex core thereby changing the local
effective potential it is possible to control the energies of the
kelvons with respect to the condensate ground state energy.
Since this may be performed in a fashion which does not
dramatically affect the resonant quadrupole mode frequency,
it is possible to modify and choose the kelvon wave vector
which resonates with the quadrupole mode. Quantitatively,
such a controlled kelvon excitation process may be achieved
by using the time-dependent perturbation

Vpert�r,t� = V0
�0

2

��z�2 exp�− 2r2/��z�2�

+ m��
2 �cos�2�t��x2 − y2� + 2 sin�2�t�xy�/2,

�9�

where the first line models a Gaussian laser field and pro-
vides the frequency shift to the kelvon dispersion. It is also
worth noting that at finite temperatures the kelvon frequen-
cies may experience an additional frequency shift �31,32�.
The weak potential =0.025 in the second line of Eq. �9�
may be realized by rotating an elliptically deformed trap and
is responsible for the resonant excitation of the quadrupole
mode. In Eq. �9�, �=−0.6�� is the rotation frequency of the
elliptical perturbation, ��z�=�0


1+ �z /ZR�2, and we have
chosen �0=2 �m with a Rayleigh range of ZR=20 �m. It
may be experimentally challenging to achieve focusing to
such a narrow beam waist; however, the method also works
for wider beams although the accuracy in determining the
dispersion relation may then suffer. Furthermore, it would
probably be wiser to switch on the pinning beam already
before creating the condensate in order to avoid superfluous
excitations.

Figures 2�a�–2�c� show a gallery of kelvons with different
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FIG. 1. �Color online� Kelvon dispersion relation for different
system sizes N=1�104 �squares�, 5�104 �bullets�, and 5�105

�triangles�. The solid curves are plotted using the dispersion relation
Eq. �8�, with core parameter rc=0.13 �m for all cases. The dashed
line illustrates the sensitivity of the dispersion relation to the change
of the core parameter as specified in the text.

(b)(a) (c)

FIG. 2. �Color online� Kelvin waves of different wave numbers excited using V0 /���=6.0 �a� 4.0 �b�, and −4.0 �c�. The duration of the
quadrupole perturbation is 35 ms for all cases. The frames �a�–�c� are for times 75, 86, and 112 ms, respectively.
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wave vectors which have been generated by applying the
above prescription with V0= �6.0,4.0,−4.0����, respec-
tively. The duration of the perturbation was set to 35 ms
and the plots are for times 75, 86, and 112 ms after the
beginning of the perturbation. The initial in-plane sinu-
soidal shape of the vortex, s��� , t�=2R cos�kz��cos��t�êx
−2R cos�kz��sin��t�êy +�êz, seen in each frame of Fig. 2,
forms as a superposition of two helical waves traveling in
opposite axial directions. It might also be possible to directly
excite kelvons by using suitably tuned Laguerre-Gaussian
beams or by applying an axially propagating velocity field
such as a frequency-matched traveling optical lattice with an
appropriately chosen lattice period, which could provide a
resonant coupling to Kelvin modes.

4. Decay dynamics

The decay of Kelvin waves may be studied by measuring
the length of the vortex line,

S�t� = �
−Z

Z


1 + �dX�z,t�/dz�2 + �dY�z,t�/dz�2dz , �10�

as a function of time t, where X�z , t� and Y�z , t� are the pa-
rametrized x and y positions of the vortex core, respectively.
We define a reduced line length density L�t�= �S�t� /S�0�
−1�m�� /�, where S�0� is the reference length of a straight
vortex. The quantity L�t� /L�t�� is shown in Fig. 3, where
S�t�� /S�0�=1.06 and the data are obtained for V0 /���=0.
At t0.1 s the vortex line shape rapidly changes from being
straight to oscillating sinusoidally in plane. The increase in
the line length may be estimated by an exponential function
A exp����t�, plotted in Fig. 3 using A=0.001 and �=0.3.
Between t0.1 and 0.3 s the line length diminishes as the
kelvons decay to kelvons of smaller wave numbers. The final
state is a bent vortex, which causes the data in Fig. 3 to
saturate at a finite value. For our system, energy is conserved
during both the growth and the decay of the line length. In
the context of superfluid turbulence and Kelvin wave cas-
cade, the decay of the vortex line length density is frequently
modeled using a rate equation of the form �24,33–37�

dL�t�
dt

= − �L�t��, �11�

where, for �=2, � has the units of an effective kinematic
viscosity. This may be integrated to yield

L�t�
L�t��

=
1

1 + �L�t���t − t��
. �12�

The decaying curve in Fig. 3 is plotted using � /�=0.2,
where �=2�� /m is the quantum of circulation. It is interest-
ing to compare this result to, e.g., those in Refs. �34,36,37�.
However, more detailed investigation is required if one de-
sires to draw a direct connection between the decay of
Kelvin waves on a single vortex in a harmonically trapped
Bose-Einstein condensate and the decay of a vortex tangle in
turbulent superfluid helium systems.

Further insight into the excitation and decay of Kelvin
waves may be obtained in terms of the multipole moments of
the system. Initially, the condensate wave function attains a
strong quadrupole �=−2 moment since the elliptical rotating

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

t(s)

L
(t

)/
L

(t
� )

FIG. 3. �Color online� Reduced length of the vortex as a func-
tion of time. Initially the vortex line remains straight until at 0.1 s
its length rapidly increases due to the exponentially growing insta-
bility. The line length decay is modeled using Eq. �12�.
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FIG. 4. �Color online� Fourier-transformed dipole moment kz
1 �a� and monopole moment kz

0 �b� of the system as a function of time.
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drive builds up population in the appropriate quadrupole
mode. When the quadrupole mode population decays to �
=−1 kelvons, the wave function gains a corresponding dipole
moment and finally, as the kelvons further decay to phonons
and kelvons of longer wavelength, they reveal themselves in
the monopole moment of the wave function. Thus, by ana-
lyzing the z dependence of the real monopole �=0 and di-
pole �=1 moments

Q��z,t� = �
0

� �
0

�

y����x,y,z��2dx dy , �13�

we may gain further information on the collective excitations
present in the system. Figures 4�a� and 4�b� display the re-
spective spatially Fourier-transformed dipole �=1 and
monopole �=0 signals

kz
��t� = F�Q��z,t� − Q��z,0�� , �14�

where F denotes a spatial Fourier transform, obtained for
V0 /���=0. At t0.1 s a clear dipole moment signal
emerges at kz

1=0.8 and 0.9 �m−1, signifying the onset of the
kelvon excitation �see Fig. 4�a��. Soon afterward, a strong
monopole signal emerges at kz

0=0.2 and 0.4 �m−1 due to the
phonon emission from the decaying kelvons �see Fig. 4�b��.
Since the cylindrical symmetry is broken when the kelvons
are excited, their presence in the system is manifest in both
the monopole and dipole signals.

B. Axisymmetric �=0 varicose waves

1. Physical characterization

We assign the term varicose wave—or varicon to denote
their quanta—to describe a class of axisymmetric, �=0, col-
lective modes of the condensate. Here we focus on varicons
of lowest frequencies which involve transverse motion, and
hence our varicose wave, having zero axial momentum, cor-
responds to the usual radial breathing �or monopole� mode
�38�. The modes with finite axial wave number exhibit simi-
lar sinusoidal breathing oscillation with z-dependent phase.
In these systems the collective modes are density waves and
therefore also the axial phonons produce similar density
modulation along the vortex core due to the local density
variations caused by the axially propagating sound waves
�39�. In contrast to the kelvons, which exist only in the pres-
ence of a vortex and are localized in the vortex core, varicons
correspond to the transverse swell-squeeze motion of the
condensate and exist also in the absence of the vortex.

2. Dispersion relation

Figure 5 shows the computed varicose mode frequencies
�boxes� as a function of their wave vectors. For comparison,
we have also included both the phonon �circles� and kelvon
�triangles� modes. The uppermost solid curve follows the
frequency-shifted free particle dispersion relation
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FIG. 5. �Color online� Dispersion relation for varicose waves
�boxes�, sound waves �circles�, and Kelvin waves �triangles�. Solid
�open� markers are plotted for even �odd� z parity modes. The solid
curves are the respective analytical varicon, phonon, and kelvon
dispersion relations discussed in the text.
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FIG. 6. �Color online� Varicose waves of different wave vectors kz=0.2 �a� 0.4 �b�, and 0.6 �m−1 �c�.
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��kz� = �0 +
�kz

2

2m
�15�

describing a varicose mode in the presence of a vortex line.
Here �0 corresponds to the fundamental monopole frequency
of the condensate �38�. The lowest curve is the kelvon dis-
persion relation, Eq. �8�, and the straight line is the linear
phonon dispersion �p=c�kz�, where c is the density-averaged
speed of sound.

3. Excitation method

Varicose waves may be resonantly excited using a per-
turbing potential of the form

Vpert�r,t� = m��
2 �x2 + y2�cos��t�cos�kzz� , �16�

where � estimates the varicon frequency and kz is the corre-
sponding wave vector. In the limit kz→0 the perturbation
corresponds to a simple modulation of the strength of the
radial trapping potential resulting in the excitation of the
fundamental monopole breathing mode. Figure 6 shows a
collection of varicose waves of different wave numbers ex-
cited using the potential given by Eq. �16�, where the fre-
quency and wave vector are chosen according to Fig. 5. The
duration of the perturbation is 24 ms and Figs. 6�a�–6�c� are
plotted for times 48, 26, and 27 ms, respectively.

4. Decay dynamics

Figure 7 displays the wave vectors of the varicose waves
as measured from the monopole moment Q0 according to Eq.
�14�, as a function of time. The resonant external perturba-
tion first excites the varicon with kz=0.4 �m−1, which then
couples to phonons, and in particular to the one with kz
=1.1 �m−1 �see also Fig. 7�. The varicose wave perturba-
tions propagate in both directions along the vortex axis. On

arriving at the low-density ends of the condensate, the vari-
cose waves produce ring currents which become pinched off
from the mother condensate as seen in the inset of Fig. 7.

IV. DISCUSSION

In conclusion, we have studied axially propagating collec-
tive excitations of quantized vortex lines in harmonically
trapped elongated Bose-Einstein condensates. In particular,
we have focused on two types of axial vortex wave: helical
Kelvin waves and axisymmetric varicose waves. We have
studied the excitation mechanisms, dispersion relations, and
decay processes of both types of collective excitation modes.
We have employed efficient computational methods to solve
�i� the time-dependent Gross-Pitaevskii equation for the full
three-dimensional quantum dynamics of the vortex motion
and �ii� the Bogoliubov–de Gennes equations for the station-
ary axisymmetric single vortex eigenstates. The combination
of these two tools provides us with a comprehensive descrip-
tion for this zero-temperature system.

The Kelvin wave dispersion relation at the long-
wavelength limit has both positive and negative energy
eigenmodes with respect to the condensate energy, and these
have distinct physical manifestations: positive modes
counter-rotate with respect to the unperturbed superflow
while the negative modes are corotating. The kelvon fre-
quencies may be engineered using external pinning poten-
tials. In particular, it is possible to choose the sense of rota-
tion of a particular kelvon and to excite kelvons of specific
wave numbers. Experimentally, Kelvin waves may be cre-
ated indirectly by exciting the quadrupole mode of the sys-
tem and allowing it to resonate with a pair of kelvons.

The only dissipative mechanism operational in the zero-
temperature limit which may return a turbulent superfluid
system to a laminar flow state is a reduction of the total
length of the vortex lines. It is believed that in an isolated
vortex the Kelvin wave cascade process is responsible for
this transfer of the excess energy from small to large wave
numbers and eventually phonon radiation is expected to ab-
sorb the surplus energy of the turbulence �23,24,40–43�. In
contrast to this scenario—if applicable to our freely decaying
single-vortex case—here the cascade proceeds predomi-
nantly toward smaller wave numbers, i.e., toward longer
wavelengths and smaller kelvon frequencies.

In addition, we have studied axisymmetric excitations
which exhibit a varicose shape. The long-wavelength disper-
sion relation of the varicose waves studied here is quadratic
in the wave vector. The varicose waves are readily visualized
as periodic modulations of the vortex core diameter along the
vortex axis, although the modes themselves exist indepen-
dent of the presence of a vortex. The varicons are found to
decay via coupling to phonon modes of higher wave vector.
Detailed understanding of quantized vortex waves and their
dynamics may shed light on open questions regarding vari-
ous vortical systems including turbulent superfluids.
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FIG. 7. �Color online� Wave vector as measured from the mono-
pole moment according to Eq. �14� as a function of time. The vari-
con with kz=0.4 �m−1 is first resonantly excited by the external
perturbation. For later times, these varicons couple to the phonon
branch, in particular to the one with kz=1.1 �m−1. The inset shows
the condensate at t=48 ms.
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