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We propose a model of a nonlinear double-well potential �NDWP�, alias a double-well pseudopotential, with
the objective to study an alternative implementation of the spontaneous symmetry breaking �SSB� in Bose-
Einstein condensates �BECs� and optical media, under the action of a potential with two symmetric minima. In
the limit case when the NDWP structure is induced by the local nonlinearity coefficient represented by a set of
two delta functions, a fully analytical solution is obtained for symmetric, antisymmetric, and asymmetric states.
In this solvable model, the SSB bifurcation has a fully subcritical character. Numerical analysis, based on both
direct simulations and computation of stability eigenvalues, demonstrates that, while the symmetric states are
stable up to the SSB bifurcation point, both symmetric and emerging asymmetric states, as well as all anti-
symmetric ones, are unstable in the model with the delta functions. In the general model with a finite width of
the nonlinear-potential wells, the asymmetric states quickly become stable, simultaneously with the switch of
the SSB bifurcation from the subcritical to supercritical type. Antisymmetric solutions may also get stabilized
in the NDWP structure of the general type, which gives rise to a bistability between them and asymmetric
states. The symmetric states require a finite norm for their existence, an explanation to which is given. A full
diagram for the existence and stability of the trapped states in the model is produced. Experimental observation
of the predicted effects should be possible in BEC formed by several hundred atoms.
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I. INTRODUCTION

The one-dimensional �1D� Schrödinger equation includ-
ing a symmetric potential structure produces single-particle
wave functions of a definite parity, even or odd, with the
ground state always corresponding to an even function with-
out zeros. However, a spatially symmetric Hamiltonian of an
interacting many-particle system can give rise to asymmetric
states, which may be considered as a spontaneous-symmetry-
breaking �SSB� effect. At the classical level, the SSB occurs
in optics, as a result of the interplay between the nonlinearity
and waveguiding structures, when the strong nonlinearity
partly suppresses the linear coupling between parallel guid-
ing cores. In particular, it was shown that a stable trapped
mode may be asymmetric in a channel waveguide embedded
in the self-focusing Kerr medium �1�. The onset of a sharp
symmetry-breaking instability in a double-hump two-
component spatial optical soliton was demonstrated experi-
mentally in a planar nonlinear waveguide �2�.

A natural setting in which SSB phenomena may arise in
the context of nonlinear optics and Bose-Einstein condensa-
tion �BEC� is provided by double-well potentials �DWPs�. In
the experiment, an effective optical DWP was created by a
specially designed illumination pattern applied, in the ordi-
nary polarization, to a photorefractive crystal �the SSB was
observed in a beam with extraordinary polarization, shone
through this structure� �3�. It was also proposed to realize
similar effective potentials in coupled nonlinear microcavi-
ties �4�, and in a structured core of an optical fiber �5�. A
specific variety of the optical SSB was studied in a model of
two parallel-coupled antiwaveguides with the self-focusing
nonlinearity, which corresponds to an effective double-
barrier potential, rather than DWP �6�.

Well-known dual-core optical fibers �7�, which may serve
as a basis for the power-controlled all-optical switching, if
the Kerr nonlinearity is taken into regard �8�, may also be
considered as DWP structures, with the difference that the
tunneling between two potential wells is replaced by the lin-
ear coupling between the cores. In addition to the SSB of
continuous-wave states �9�, the formation of asymmetric
solitons in dual-core fibers was studied in detail theoretically
�10�. Similar analysis of the SSB for soliton modes was per-
formed in models of dual-core fiber Bragg gratings with the
Kerr nonlinearity �11�, and coupled waveguides with the
quadratic �12� and cubic-quintic �13� nonlinear terms, in-
cluding a system of linearly coupled complex Ginzburg-
Landau equations of the cubic-quintic type �14�. In Refs.
�15–17�, the analysis of the SSB was extended to three-core
linearly coupled triangular configurations—for optical fibers,
Bragg gratings, and complex Ginzburg-Landau equations, re-
spectively.

The concept of SSB also plays an important role in un-
derstanding experimental phenomena in BEC, because, if in-
teractions between atoms are strong enough, the ground state
of the condensate may not follow the symmetry of the trap-
ping potential �18�. In particular, manifestations of SSB were
observed in a quenched ferromagnetic state of a spinor
�three-component� condensate �19�. In the single-component
BEC, a natural setting for the realization of SSB may again
be provided by DWP configurations. An effectively one-
dimensional DWP structure was realized experimentally in
Ref. �20�. Loading a condensate of 87Rb atoms with the re-
pulsive interaction between them into this structure made it
possible to observe Josephson oscillations for a small num-
ber of atoms, and the macroscopic quantum self-trapping
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featuring an imbalance between populations of the two wells,
for a larger number. Parallel to the experimental work, nu-
merous theoretical studies of matter-wave DWP settings
have been performed for the cases of both repulsion and
attraction between atoms. These studies addressed problems
such as finite-mode reductions �21� �including two-
component mixtures �22��, obtaining analytical results for
specific shapes of the potential �23�, quantum effects �24�,
and some others. Recently investigated tunneling between
vortex and antivortex states in BEC trapped in a two-
dimensional �2D� anisotropic potential �25� belongs to this
category too.

Theoretical analysis was also performed for 2D and 3D
extensions of the DWP settings in BEC, which add one or
two extra dimensions to the model, either without an addi-
tional potential, or with a periodic optical-lattice �OL� poten-
tial acting in these directions. These settings may be approxi-
mated, similar to the above-mentioned standard model of
dual-core optical fibers, by a system of linearly coupled 1D
�26� or 2D �27� equations. In a more accurate form, nearly
1D solitons can be found as solutions to the full 2D equation
that includes the DWP �the potential depends on the trans-
verse coordinate x, allowing solitons to self-trap in the free
longitudinal direction y� �28�. The latter model is relevant to
the case of the self-attractive nonlinearity. In the case of
self-repulsion, dual-core gap solitons have been predicted in
the setting with the OL potential applied along direction y
�29�. Note that, in any setting, gap solitons cannot realize the
ground state of the respective system, but, nevertheless, they
represent stable configurations that have been created in the
experiment using the condensate of 87Rb atoms with the re-
pulsion between them �30�.

A general principle, upheld by the analysis in various set-
tings �in nonlinear optics and BEC alike�, is that the SSB
occurs through bifurcations of symmetric or antisymmetric
states, in the models with the self-attraction and self-
repulsion, respectively. As mentioned above, models of the
DWP or double-core type, combining cubic attractive and
quintic repulsive nonlinearities, were studied too
�13,14,31,32�. In the latter case, the competition between the
self-focusing and self-defocusing against the backdrop of the
DWP structure gives rise to specific SSB bifurcation dia-
grams, in the form of nonconvex closed loops �13,32�, as
well as to specific dynamical switching regimes �31�. Also
predicted were manifestations of the SSB in a two-
component BEC mixture trapped in the DWP structure �22�,
for both cases of the self-attraction and self-repulsion.

All the extensive work on the SSB outlined above was
performed in settings based on usual linear potentials of the
double-well type. The objective of the present work is to
propose another physical framework, in which the SSB can
be predicted in an effective nonlinear double-well potential
�NDWP�, induced through a spatial modulation of the local
nonlinearity coefficient. Following the terminology com-
monly adopted in the solid-state theory �33�, this nonlinear
ingredient of the physical model may also be a called a
pseudopotential.

In BEC settings, a pseudopotential structure may be
readily induced through spatial modulation of the local value
of the s-wave scattering length, as�x�, which determines the

effective BEC nonlinearity. The modulation can be imple-
mented, through the Feshbach resonance, by means of a spa-
tially inhomogeneous dc magnetic field �34�, or by a reso-
nant optical field, as predicted in Ref. �35� and demonstrated
experimentally in Ref. �36�. It was also proposed to control
the Feshbach resonance by dint of dc electric field �37�,
which can be easily made inhomogeneous too. The attractive
and repulsive interactions between atoms correspond to as
�0 and as�0, respectively; both signs, as well as sign-
changing patterns, can be used to engineer effective nonlin-
ear potentials.

So designed pseudopotential lattices have attracted much
interest in studies of BEC. In the 1D geometry, solitons,
extended wave patterns, and various dynamical states sup-
ported by such structures were studied theoretically �38,39�
�a random nonlinear lattice �40� and pseudopotentials gener-
ated by a spatially monotonous ramp of the local scattering
length �41� were explored too�. Recently, similar states were
also considered in nonlinear optics, assuming a periodic
modulation of the local Kerr coefficient �42�. Some �but
much fewer� results were obtained too for 2D settings �43�.

However, to the best of our knowledge, SSB phenomena
in nonlinear pseudopotentials have not been studied yet. In
this work, we focus on such effects in NDWP settings, which
can be engineered by means of techniques mentioned above,
using attractive interactions between atoms in BEC, or the
self-focusing nonlinearity in optics, as briefly described be-
low. In Sec. II, we formulate the model and give estimates of
characteristic values of related physical parameters. Section
III reports full analytical solutions corresponding to symmet-
ric, antisymmetric, and asymmetric states trapped by the
NDWP, in the limit case when the modulation of the local
nonlinearity coefficient is represented by a set of two Dirac
delta functions. The relevance of the latter model is stressed,
in particular, by the recently introduced �39� BEC model
with a periodic nonlinear potential of the Kronig-Penney
type, whose simplest version reduces to a periodic array of
delta functions �SSB effects were not studied in Ref. �39��.

In Sec. IV, we present numerical results for the general
model, in which the delta functions are replaced by a pair of
Gaussians of a finite width. In that case, the trapped states
are found in a numerical form, and their stability is studied
by means of direct simulations of slightly perturbed station-
ary states and also, independently, through the computation
of respective stability eigenvalues for small perturbations.
The result is that asymmetric states, which are unstable in the
delta-function limit, can be readily stabilized in the general
model. In addition, antisymmetric states may be stabilized
also, in two disjoint regions of the parameter state, giving
rise to a bistability involving antisymmetric and asymmetric
states. A condition for the existence of symmetric states is
that their norm must exceed a certain threshold value, in
terms of their norm, an explanation to which is given. The
existence and stability of all states, including a line of the
SSB bifurcation, are summarized in a single diagram, which
is presented in Sec. IV also. Results reported in this paper
and perspectives for further work are summarized in Sec. V.

II. MODEL

The underlying 3D Gross-Pitaevskii equation for the
mean-field wave function, ��X ,Y ,Z ,T�, is taken in the ordi-
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nary form corresponding to the nearly 1D trap �44�.

i��T = −
�2

2m
�2� +

m��
2

2
R2� +

4��2as�X�
m

���2� , �1�

with m the atomic mass and �� the frequency providing for
the tight confinement of the condensate in the direction of
R��Y2+Z2. As said above, we assume an axial modulation
�and negative sign� of the scattering length, in the form of a
pair of Gaussians, each of width l and amplitude A0, with
centers set at points X= ��.

as�X� = − A0�exp	−
�X + ��2

l2 
 + exp	−
�X − ��2

l2 
� .

�2�

In what follows below, we measure the axial coordinate in
units of �, and, accordingly, time in units of m�2 /�, i.e., we
define

x � X/l, a � l/�, t � �T/�m�2� . �3�

Further, following the usual approach to the derivation of the
effective 1D equation, we take the 3D field as a product of a
slowly varying axial function, 	�X ,T�, and the ground-state
wave function in the transverse plane,

� =
1

�2�5/2aA0�2
exp	i��T −

R2

2a�
2 
	�x,t� , �4�

with a�
2 �� / �m��� �the scaling factor here is chosen so as to

maintain normalization condition �7� �see below��.
The substitution of expression �4� in Eq. �1� and averag-

ing in the transverse plane lead to the following 1D equation:

i	t = −
1

2
	xx + g�x��	�2	 , �5�

g�x� = −
1

a��
�exp	−

�x + 1�2

a2 
 + exp	−
�x − 1�2

a2 
� , �6�

where the modulated nonlinearity coefficient is subject to the
following normalization condition:

�
−


+


g�x�dx � 2. �7�

Profiles of modulation function �6�, which keeps the double-
well structure for a��2, are shown, for different values of a,
in Fig. 1.

Equation �5� conserves two dynamical invariants, viz., the
norm and energy �Hamiltonian�,

N � �
−


+


�	�x��2dx, H =
1

2
�

−





��	x�2 + g�x��	�4�dx . �8�

As follows from Eqs. �4� and �3�, the total number of atoms
in the condensate, N, is related to 1D norm N as follows:

N �� � � ���X,Y,Z��2dXdYdZ =
a�

2

2�3/2aA0�
N . �9�

For physical parameters relevant to experiments with the
condensate of 7Li atoms �45�, i.e., a�2 �m, A00.5 nm,
and �20 �m, characteristic values of the number of atoms
in various patterns reported below �see, in particular, Figs.
3�d� and 9� fall into the range of N between 200 and 1000,
which is quite sufficient for experimental manipulations and
observation of the patterns. In the same range of physical
parameters, t=1 in Eq. �5� is estimated as being tantamount
to 10 ms, hence typical time scales for the instability de-
velopment or intrinsic oscillations of breathers induced by
the instabilities, which are reported below, are expected to be
in the range of 0.1–1 s, which is realistic to the currently
available experimental techniques �45�.

In terms of optical settings, a set of two narrow �of width
l1 �m� parallel stripes with strong local nonlinearity can
be built, in a planar waveguide, by means of known nano-
technological methods. In that case, the power of the laser
beam necessary for the self-trapping of transverse nonlinear
patterns in the waveguide made of silica may be 500 kW
�46�, while using AlGaAs, one may reduce the necessary
power to the level of 1 kW �47�. In these settings, the char-
acteristic evolution length of the spatial beam can be made
shorter than 1 mm. Obviously, transitions between states of
different types reported in this paper may be relevant to the
design of power-controlled optical-switching schemes. On
the other hand, the description of the planar waveguide with
the pair of embedded stripes may require a model more gen-
eral than the one studied here, as it will plausibly combine
the transverse modulation of the local nonlinearity with a
similar linear potential �which is briefly described at the end
of the next section�, as the material difference between the
stripes and host medium ought to affect the linear index of
refraction also.

Stationary localized solutions to Eq. �5� are sought for as
	=e−i�t��x�, where the chemical potential is negative,
��0, and the real function ��x� satisfies equation

−6 −4 −2 0 2 4 6
−1
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−0.6
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0

x

g(
x)

/|g
(x

)| m
ax
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1

FIG. 1. �Color online� Shapes of double-well function �6�, nor-
malized to its maximum value, are shown for different values of
scaled width a of the individual well.
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�� +
1

2
�� +

1

a��
�exp	−

�x + 1�2

a2 
 + exp	−
�x − 1�2

a2 
��3

= 0. �10�

An analytically solvable version of the model corresponds
to the limit of a→0, with Eq. �5� going over into

i	t = − �1/2�	xx − ��x + 1� + �x − 1���	�2	 , �11�

where �x� is the Dirac’s delta function. Note that rescaled
equation �11� contains no free parameters; however, the
norm of the solution will play the role of an intrinsic param-
eter �see below�. In the same limit, stationary equation �10�
takes the form of

�� + �1/2��� + ��x + 1� + �x − 1���3 = 0. �12�

III. MODEL WITH THE DELTA FUNCTIONS:
ANALYTICAL SOLUTIONS

A. Symmetric, antisymmetric, and asymmetric states

Off points x= �1, Eq. �12� is linear. A general solution to
this equation, decaying at �x�→
, can be written as

��x� = � B1e�2����x+1� at x � − 1

A0e−�2����x−1� + B0e�2����x+1� at − 1 � x � + 1

A1e−�2����x−1� at x � + 1,
�
�13�

with constant amplitudes A0 ,A1 and B0 ,B1. The continuity of
the wave function at x= �1 imposes two relations on them,
B1=B0+A0e2�2���, A1=A0+B0e2�2���, which allows one to
eliminate A0 and B0 in favor of A1 and B1,

A0 =
e2�2���B1 − A1

e4�2��� − 1
, B0 =

e2�2���A1 − B1

e4�2��� − 1
. �14�

Further, the integration of Eq. �12� in infinitesimal vicinities
of points x= �1 yields expressions for jumps ��� of the first
derivative at these points, �������x=�1=−2����x=�1�3. The
substitution of solution �13� in these relations leads to a sys-
tem of cubic equations for the amplitudes,

����/2�B1 − B0 + A0e2�2���� = B1
3, �15�

����/2�A1 − A0 + B0e2�2���� = A1
3. �16�

After the substitution of expressions �14� into Eqs. �16� and
�15�, we end up with two coupled cubic equations for A1 and
B1 as follows:

�2���e2�2����e2�2���B1 − A1� = �e4�2��� − 1�B1
3, �17�

�2���e2�2����e2�2���A1 − B1� = �e4�2��� − 1�A1
3. �18�

Solving Eqs. �17� and �18�, we first find symmetric and
antisymmetric solutions,

A1 = B1 � Asym = �� �2���

1 + e−2�2���
. �19�

A1 = − B1 � Aantisym = �� �2���

1 − e−2�2���
. �20�

The norm of these solutions, defined as per Eq. �8�, is

Nsym,antisym =
1

1 � e−2�2���
+

1 − e−4�2��� � 4�2���e−2�2���

�1 � e−2�2����3
,

�21�

with � and � corresponding to the symmetric and
antisymmetric states, respectively. In the limit of
�→−
, both expressions �19� and �20� yield
Asym

2 ��=−
�=Aantisym
2 ��=−
�=�2���. In this limit, norm

�21� of both solutions takes a common value, Nsym,antisym
��=−
�=2. On the other hand, in the limit of �→−0,
the amplitude of the symmetric state vanishes,
Asym��→−0������ /2�1/4, and its norm takes a finite limit
value, Nsym��=0�=1 /2, while the amplitude of the antisym-
metric state remains finite, Aantisym��→−0�=1 /�2, and its
norm diverges, Nantisym��→−0��1 / �2�2����. It can be eas-
ily checked that the decrease of Nsym and the increase of
Nantisym with the variation of � from −
 to 0 are not monoto-
nous: Nsym attains a maximum, �Nsym�max�2.08, at
��−1.40, and Nantisym has a minimum, �Nantisym�min�1.84,
at ��−0.58.

Actually, the finite minimum norm �threshold�, necessary
for the existence of the symmetric states, which is
Nsym��=0���Nsym�min=1 /2 in the present case, is a generic
property, shared by the model with finite width a of the
nonlinear-potential wells, as shown in detail below in Fig. 9.
On the other hand, the existence of the above-mentioned
maximum value of the norm for the symmetric states,
�Nsym�max�2.08, is a specific feature of the model with
a=0 �the one based on the delta functions�: it is easy to see
that, in the model with finite a, the norm of any state grows
a���� at �→−
. However, this specific feature, which, as
a matter of fact, indicates degeneracy of the model with
a=0, is less significant for the physical applications, as all
symmetric states, for a=0 and finite a alike, are unstable
when the norm exceeds its value at the SSB bifurcation point
�further details can be seen in Eq. �23� and Fig. 9 below�.

A point of the SSB bifurcation, which gives rise to a pair
of asymmetric solutions splitting off from the symmetric
one, can be easily found. Indeed, the symmetry breaking
means that symmetric solution �19� acquires an infinitesimal
antisymmetric addition, A1=−B1�A. Thus, infinitely
close to the bifurcation point, the relevant solution is sought
for as A1=Asym+A, B1=Asym−A. The substitution
of this in Eqs. �17� and �18� and linearization in infinitesimal
A lead to a simple equation that predicts the value
of the chemical potential at the bifurcation point:
exp��2��bif��=�2, or

�bif = − �ln 2�2/8 � − 0.06. �22�

At this point, the amplitude of symmetric solution �19� is
Abif=��ln 2� /3�0.481, and the value of norm �8�, with the
upper sign, is
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Nbif = 2/3 + �8/27��3/4 + ln 2� � 1.09. �23�

Actually, value �22� of the chemical potential at the bifurca-
tion point is approximately the same in the model with finite-
width nonlinear-potential wells, up to a�1, as seen from
Fig. 3�d� presented below.

The same analysis shows that antisymmetric solution �20�
never gives rise to an antisymmetry-breaking bifurcation. In-
deed, for this solution the antisymmetry would be broken by
an infinitesimal symmetric variation, A1=B1�A, i.e., in-
finitely close to the bifurcation point, the solution would be
A1=Aantisym+A, B1=−Aantisym+A. Subsequent substitution
in Eqs. �17� and �18� and the linearization in A yield an
equation for � that has no real solutions.

Equations �17� and �18� can be solved analytically for
asymmetric states also:

�A1,B1�asym =
���1/4��1 + 2e−2�2��� � �1 − 2e−2�2����

23/4�1 − e−4�2���
.

�24�

Note that full solution �24� predicts exactly the same bifur-
cation point as Eq. �22�, i.e., exp��2��bif��=�2 �at this point,
the second radical in Eq. �24� vanishes�. These solutions are
characterized by the asymmetry ratio, which is defined as

� =

�
0

+


�2�x�dx − �
−


0

�2�x�dx

�
−


+


�2�x�dx

�
N+ − N−

N
. �25�

Typical examples of symmetric, asymmetric, and antisym-
metric states produced by the above analytical solutions are
displayed in Fig. 2.

B. Bifurcation diagrams and stability

The analytical solution given by Eqs. �13�, �14�, and �24�
make it possible to plot the bifurcation diagrams in the
planes of �� ,�� and �N ,��, which are represented by curves
pertaining to a=0 in Figs. 3�a�–3�c�. To generate the dia-
grams, partial norms N� in expression �25� for the asymmet-
ric solutions were computed numerically �analytical expres-
sions for them are available, but they are very messy, cf. Eq.
�21� for the symmetric and antisymmetric states�.

A salient peculiarity of the SSB bifurcation for a=0, evi-
dent in Fig. 3�c�, is its subcritical character, which means
that the branches of asymmetric solutions emerge at the bi-
furcation point as unstable ones, and go in the backward
direction. A subcritical bifurcation also occurs in the above-
mentioned model of the dual-core nonlinear fibers �10�, but
in that case the asymmetric branches quickly turn in the for-
ward direction, getting stabilized at the turning point. A re-
markable feature of the present model with a=0 is that this
does not happen, i.e., the bifurcation in this model may be
called a “fully backward” one: the branches of the asymmet-
ric solutions keep going backward up to the limit of �=1,
which corresponds to the asymmetric solutions with �=−

�and N=1, as shown in the following subsection�. Indeed,
���=−
�=1 follows from the fact that the amplitude apper-
taining to the lower sign between the radicals in Eq. �24�
vanishes in the limit of �→−
.

In accordance with general properties of the subcritical
SSB bifurcation �10�, the symmetric solution is expected to
be stable below the bifurcation point �at N�Nbif, see Eq.
�23��, and unstable above it. The asymmetric branches
emerging at N=Nbif are unstable as long as they go back-
ward. In the present case �a=0�, this means they are always
unstable, as the respective branches in Figs. 3�b� and 3�c�
never turn forward. All these expectations are completely
borne out by the stability analysis performed by means of
both direct simulations and computation of stability eigen-
values, at finite but small values of a �technical details of the
procedure are described in the next section�. In particular, at
N�Nbif the unstable symmetric state spontaneously trans-
forms into a strongly asymmetric breather which features
irregular oscillations, but remains robust as a whole �quite
similar to an example displayed below in Fig. 6 for a=0.7�.
On the other hand, unstable asymmetric states transform
themselves into breathers which maintain the original asym-
metry of the unstable state, as shown in Fig. 4.

Lastly, all antisymmetric states in the model with delta
functions are unstable too. Their instability is similar to that
shown below in Fig. 7�b� for a=1, transforming them into
strongly asymmetric breathers. As shown in the next section,
both asymmetric and antisymmetric states may be stabilized
in the general model, with finite a.

C. Concluding remarks concerning the delta-function model

The existence of the asymmetric states, i.e., the presence
of the SSB effect in the present model, can be easily ex-
plained by the consideration of the above-mentioned limit of
�→−
. Indeed, in this limit, the spatial scale of the solution,
which is ���−1/2 according to Eq. �13�, is much smaller than

−30 −20 −10 0 10 20 30
−1

−0.5

0

0.5

1

x

φ

Symmetric
Asymmetric
Asymmetric
Anti−symmetric

FIG. 2. �Color online� Profiles of symmetric, asymmetric, and
antisymmetric stationary states in the analytically solvable model
with the delta functions, all pertaining to �=−0.1. The respective
values of the norm are Nsymm�1.27, Nasymm�1.07, and
Nantisymm�2.18. The mutually symmetric lines �blue and red ones,
in the color version of the figure� represent two asymmetric states
that are mirror images of each other.
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the separation between the two delta functions, 2��2.
Therefore, the full solution effectively splits into a superpo-
sition of those independently supported by each delta func-
tion in isolation. Further, it is obvious that, for given large
���, Eq. �12� with an individual delta function gives rise to
two solutions: a trivial one, ��0, and

���x� = � �2����1/4 exp�− �2������� , �26�

where �=x+1 or �=x−1; note that the norm of solution �26�
is N=1, for any �. The corresponding symmetric and anti-
symmetric states are built, respectively, as superpositions of
solutions �+ �or, equivalently, �−� centered at x=−1 and
x= +1, or �− centered at x=−1 and �+ centered at x= +1.
Asymmetric solutions are represented, in the same limit, by a
superposition of solution �� centered at x=−1 and zero so-
lution around x= +1, or vice versa. Of course, finding the
bifurcation point requires one to perform the analysis of the
model at finite �, as done in the analytical form above for the
case of the delta functions, and will be done in a numerical
form below for the general case of finite a in Eq. �6�.

It is relevant to compare the above exact results with
those which can be easily obtained in the linear counterpart
of the model, i.e., the one with the DWP based on the set of
two delta functions; as mentioned above, such a linear po-
tential may be a plausible ingredient of a more general
model, relevant to the description of NDWP settings in op-
tics. The stationary version of the linear equation reduces to

�� + �1/2��� + ���x + 1� + �x − 1��� = 0, �27�
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FIG. 3. �Color online� Families of asymmetric states in the plane of �� ,�� �a� and �� ,N� �b� for different fixed values of nonlinear-
potential parameter a �recall that asymmetry ratio � is defined by Eq. �25�, solution families with ��0 being symmetric ones; panel �b�
takes into regard the fact that symmetric states do not exist at N�1 /2�. Plots labeled “a=0” were generated by analytical solutions �13�,
�14�, and �24�. Panel �c� additionally displays solution branches from �b� near the bifurcation point, and �d� shows the coordinates of the
bifurcation point, Nbif and �bif, as functions of a. Here and in Fig. 10 below, solid and dashed lines depict stable and unstable solutions,
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FIG. 4. �Color online� The evolution of an unstable asymmetric
state for a=1 /60 and �=−0.1.
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with constant ��0. Symmetric solutions, which must be
continuous at �x�=1, are sought for as

��x� = � exp�− �2�����x� − 1�� at �x� � 1

sech��2����cosh��2���x� at �x� � 1,
� �28�

cf. Eq. �13�. The jump condition, �������x=�1
=−2���x= �1�, yields equation �2����1+tanh��2�����=2�,
which has a single solution for ��� at any positive �, i.e., the
linear model always supports exactly one symmetric state.

Antisymmetric solutions are sought for as

��x� = �sgn�x�exp�− �2�����x� − 1�� at �x� � 1

cosech��2����sinh��2���x� at �x� � 1,
�

and the respective jump condition takes the form of
�2����1+coth��2�����=2�. The latter equation has no solu-
tions for ��1 /2, and exactly one solution for ��1 /2. Thus,
symmetric solution �28� is the single state in the linear DWP
model at ��1 /2, while at ��1 /2 the linear model supports
precisely two states: symmetric and antisymmetric ones.

Lastly, the combined model, which includes both the lin-
ear potential and its nonlinear counterpart �that may be self-
attractive, as above, or self-repulsive too, in this case�, is also
solvable in the case when these features are based on the pair
of delta functions. The combined model is described by the
following stationary equation, cf. Eqs. �12� and �27�:

�� + �1/2��� + ��x + 1� + �x − 1����� + ��3� = 0,

�29�

where �= +1 and −1 corresponds to the nonlinear attraction
and repulsion, respectively. In particular, the bifurcation oc-
curs only on the branch of the symmetric solutions in the
case of �= +1, and only on the antisymmetric branch—in
the opposite case �self-repulsion�. In either case, the value of
the chemical potential ���0� at the symmetry- or
antisymmetry-breaking bifurcation is determined by the fol-
lowing transcendental equation:

�2���
1 − 2�e−2�2���

1 − e−4�2���
= � �30�

�for �=0 and �= +1, it reduces to Eq. �22��. With �= +1, Eq.
�30� has exactly one solution for any ��−1 /4 and no solu-
tions for ��−1 /4 �negative � corresponds to competition

between the repulsive linear potential and attractive nonlin-
ear pseudopotential�. With �=−1, Eq. �30� has exactly one
solution for any ��3 /4, and no solutions for ��3 /4. Analy-
sis of the stability of states found in the combined model is
beyond the scope of this work, and in the rest of the paper we
consider the model without the linear potential.

IV. NUMERICAL RESULTS FOR THE GENERAL MODEL

A. Numerical methods

To construct localized solutions to stationary equation
�10� of the symmetric, asymmetric, and antisymmetric types,
the Newton iterative method was used, starting with the fol-
lowing inputs:

„�0�x�…sym,asym = B sech„2�x + 1�… + A sech„2�x − 1�… ,

„�0�x�…antisym = A sech�x�sin�x� ,

with B=A for symmetric solutions. Then, as mentioned
above, numerical analysis of the stability of the stationary
solutions was performed in two different ways: first, by
means of direct simulations of the evolution of slightly per-
turbed solutions, and then through computation of �in�stabil-
ity eigenvalues for modes of small perturbations. In the
former case, the stability was tested by adding arbitrary per-
turbations to the initial state, at the level of 1% of the
amplitude �in particular, care was taken to test effects of
perturbations whose symmetry is different from that of the
stationary state, such as antisymmetric perturbations added
to symmetric states, and vice versa�.

For the computation of eigenvalues, perturbed solutions
were looked for as

	�x,t� = e−i�t���x� + ��u�x�ei�t + v*�x�ei�*t�� , �31�

where ��x� is a stationary solution to Eq. �10� with chemical
potential �, while u and v are components of a perturbation
mode with an infinitesimal amplitude �, pertaining to insta-
bility growth rate ���r+ i�i. The substitution of expression
�31� into Eq. �5� and linearization lead to the eigenvalue
problem based on the following equations:

�−
1

2

d2

dx2 − � + 2g�x��2�x� g�x��2�x�

− g�x��2�x� +
1

2

d2

dx2 + � − 2g�x��2�x� �	u

v

 = �	u

v

 . �32�

The underlying solution ��x� is stable if all eigenvalues as-
sociated with it have �i=0. Equations �32� were solved nu-
merically with the help of a finite-difference method. Con-

clusions concerning the stability of the patterns, drawn from
direct simulations, always complied with results produced by
the computation of the eigenvalue.
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B. Results

The first significant change against the results reported
above for the model with the delta functions �a=0�, which
happens with the increase of a, is quick stabilization of
asymmetric states with larger values of the norm, while ones
with smaller N remain unstable, originally. At a�0.2, the
symmetric states are stable for all values of N at which they
exist. Another notable feature of the bifurcation diagrams at
finite a, demonstrated by Figs. 3�b� and 3�d�, is that the norm
at which the SSB bifurcation takes place, Nbif, first decreases
with the growth of a from small values up to a�0.8, and
then increases with the further growth of a.

Close to their stabilization threshold �in particular, at
a=0.2�, asymmetric states with a smaller norm, which are
still unstable, demonstrate a scenario of the instability devel-
opment different from what was shown by their counterpart
in Fig. 4 in the case of very small a. Namely, slow regular
oscillations, observed in Fig. 5 in this case, imply a dynami-
cal resymmetrization of the unstable asymmetric state. In-
deed, densities �	�x��2, taken at points x= �1, perform iden-
tical periodic oscillations, with a phase shift of � between
them, as shown in Fig. 5�b�.

The stabilization of the asymmetric states at small finite
values of a is explained by the change in the character of the
SSB bifurcation: at a�0, there appear turning points on
branches of asymmetric solutions in the bifurcation diagram,
cf. Fig. 3�c�. Past the turning point, the branch goes forward
as a stable one. In fact, Fig. 3�c� demonstrates a quick trans-
formation, with the increase of a, of the subcritical bifurca-
tion into a supercritical one. When the bifurcation is super-
critical, branches of the asymmetric solutions emerge as
stable ones at the bifurcation point, and immediately go for-
ward.

We do not display the quick transition from the sub-to
supercritical bifurcation in full detail, as it actually happens
at very small a, in the range of a�0.1. The physical esti-
mates given in Sec. II suggest that so small values of the
scaled width of the nonlinear-potential wells correspond to
physical widths �1 �m. It seems doubtful that the
Feshbach-resonance technique would allow one to create a
strong local inhomogeneity of the scattering length on such a

small scale �nevertheless, the exact analytical solutions ob-
tained for a=0, which provide clear clues for the understand-
ing of the general model, are definitely relevant�. An addi-
tional problem impeding the full analysis of the case of very
small a is that, in this case, the accumulation of systematic
numerical results requires very heavy simulations, as the step
size of the spatial grid must be made much smaller than a.

Above the bifurcation point, symmetric states found at
finite a demonstrate the familiar SSB instability, spontane-
ously transforming themselves into slightly nonstationary ro-
bust modes �breathers�, quite close in their shape to respec-
tive stable asymmetric solitons. A typical example of this
transformation is displayed in Fig. 6.

As concerns antisymmetric solutions, both stable and un-
stable ones have been found at finite a, as illustrated by Figs.
7 and 8. Figure 7�b� shows that the density profile of un-
stable antisymmetric states evolves from the double-peak
pattern into an asymmetric single-peak one, which features
persistent intrinsic oscillations. This outcome of the instabil-
ity development complies with the fact that the instability of
the antisymmetric states is oscillatory, being accounted for
by a quartet of eigenvalues, as seen in Fig. 8�b�. In other
words, the transition from stable to unstable antisymmetric
states may be considered as the Hamiltonian Hopf bifurca-
tion �48�.

Figure 9 displays a combined diagram in the plane of the
norm of the solution and width of the nonlinear potential
wells, N and a, which summarizes the existence and stability
results for the states of all three types—symmetric, asymmet-
ric, and antisymmetric ones. The dashed-dotted line in the
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figure designates the symmetry-breaking bifurcation. Solely
symmetric states exist below this line �they are stable in that
region�, and stable asymmetric states exist above the line,
where the symmetric ones are unstable. Solid curves in Fig.
9 depict stability borders of antisymmetric solutions.

For the reasons explained above, the region of very small
values of a, where the “quick” stabilization of asymmetric
states takes place, is not included. However, the region of the
existence of the analytical symmetric and antisymmetric so-
lutions in the model with delta functions �a=0�, and the re-
spective bifurcation point, as given by Eq. �23�, are shown
by the bold vertical segment and square-marked dot on the
axis of a=0 �recall that the exact asymmetric solutions are
unstable above the bifurcation point in the model with a=0�.

Because the modulation profile �6� does not feature the
double-well structure for a��2 �see Fig. 1�, the SSB bifur-
cation tends to disappear as a approaches �2. Actual results
are included in Fig. 9 for a�1.35, as the convergence of the
numerical scheme becomes poor for values of a still closer to
�2.

The chain of circles in Fig. 9 designates the threshold
�minimum norm� Nmin, necessary for the existence of sym-
metric states in the model. As mentioned above, in the case
of a=0 the exact threshold is Nmin�a=0�=1 /2, and it is ob-
served in Fig. 9 that the threshold remains in the ballpark of
this value at finite a, which can be easily explained. Indeed,
the minimum of N is attained at �→−0, in which limit the
spatial scale of the wave function, 1 /�2���, is much larger
than the size of the NDWP structure, 2��2. Thus, from the
viewpoint of this weakly localized wave function, modula-
tion pattern �6� looks like 2�x�. In the corresponding ap-
proximation, the wave function takes the form of expression
�26� divided by �2, and the respective norm is, indeed, 1 /2.

For N�Nmin, the condensate confined to the trap of large
length L �i.e., in the thermodynamic limit� will tend to form
a quasiuniform nearly linear state, with ��x�=�N /L. As fol-
lows from Eqs. �8� and �6�, the energy of the small-amplitude
uniform state is

H0 � − N2/L4. �33�

In fact, this state realizes a minimum of the energy �cf. Fig.
10�, i.e., the system’s ground state. Nevertheless, a well-
known fact is that dynamically stable localized states differ-
ent from the ground state, such as the above-mentioned gap
solitons in the repulsive condensate �30�, or their broader
counterparts in the form of the so-called gap waves �49�, can
be created in the experiment.

Another notable feature observed in Fig. 9 is the bistabil-
ity, i.e., the coexistence of stable asymmetric and antisym-
metric states above the stability border of the latter state. In
fact, the bistability always takes place when antisymmetric
states are stable. It is interesting too that the stability area for
the antisymmetric states consists of two separate regions.
Finally, it is relevant to mention that, as well as in the ana-
lytically solvable model with the delta functions �a→0�, the
antisymmetric states never undergo a bifurcation at finite a.

We stress that the stability borders displayed in Fig. 9
were identified by means of direct simulations and the com-
putation of stability eigenvalues, both methods yielding iden-
tical results. In particular, the sets of eigenvalues displayed in
Fig. 8 clearly confirm the presence of two disjoint stability
areas for antisymmetric states.

In the case of the bistability involving the asymmetric and
antisymmetric states, it is interesting to compare their ener-
gies �values of the Hamiltonian�. To this end, Fig. 10 dis-
plays a typical example of the dependence of H on norm N.
The situation observed in this figure is also true in the gen-
eral case: stable antisymmetric states realize smaller values
of H than the asymmetric counterparts coexisting with them.
However, as argued above, dynamically stable states can be
created in the experiment even if their energy is higher than
in some competing states. In particular, Fig. 6 demonstrates
that an unstable symmetric state definitely self-traps into an
asymmetric robust breather �which is close to a stable sta-
tionary solution�, despite the fact that a stable antisymmetric
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FIG. 7. �Color online� �a� An example of a stable antisymmetric state with a=1, for �=−1.3 and N=6.7137. �b� The evolution of an
unstable antisymmetric state, also with a=1, but for �=−1.5 and N=7.1273.
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state exists at the same values of N=10 and a=0.7, as seen
from Fig. 9.

Note that all curves in Fig. 10 start from finite threshold
values of N corresponding, as said above, to the minimum
norm �Nmin� necessary for the existence of the respective
states. In particular, for the branch of symmetric solutions,
Nmin is close to 1 /2, as argued above �cf. the existence bor-
der in the bottom of Fig. 9�, while the asymmetric branch
originates at the bifurcation point �in agreement with the
location of the respective dashed-dotted line in Fig. 9�, at
which the symmetric solution loses its stability. The branch
of antisymmetric solutions features a fold in Fig. 10 �in the
region where these solutions are unstable�, which is similar
to the above-mentioned fact that dependence N��� in Eq.
�21� for the unstable exact antisymmetric states has a mini-
mum, �Nantisym�min�1.84 at ��−0.58. If replotted in terms
of H and N, Eq. �21� features a similar fold, at N
= �Nantisym�min.

V. CONCLUSION

In this work, we have introduced a model of the NDWP,
alias a double-well pseudopotential, which can be created in
BEC, by means of the spatially inhomogeneous Feshbach
resonance, and also in nonlinear optics. The model provides
for a previoulsy unexplored setting in which effects of the
SSB can be studied.

In the limit when each potential well is induced by the
delta function, full analytical solutions were obtained for
symmetric, antisymmetric, and asymmetric states. The sym-
metric states are stable in that case up to the symmetry-

breaking bifurcation point, but beyond the bifurcation both
symmetric and emergent asymmetric states are unstable. In
particular, the asymmetric configurations transform them-
selves into breathers. The instability of all the stationary
asymmetric states in the model with the delta functions is
explained by the fact that the respective SSB bifurcation is of
a “fully backward” type, with branches of the asymmetric
solutions never turning forward. All antisymmetric states are
unstable too, in this limit form of the model.

The increase of the width of the potential wells readily
stabilizes the asymmetric states, which concurs with the
change of the character of the SSB bifurcation from sub- to
supercritical. Close to the stabilization border, unstable
asymmetric states develop slow intrinsic oscillations, featur-
ing effective dynamical resymmetrization. Antisymmetric
states may also be stable in the NDWP structure with a finite
width of the wells, which implies the bistability between
asymmetric and antisymmetric states. The symmetric states
exist above a finite threshold, in terms of the norm �number
of atoms in the condensate�, and they develop the usual SSB
instability above the bifurcation point. A simple explanation
to the existence threshold was given, and an integrated dia-
gram for the existence and stability of the trapped states of
all three types has been produced.

The analysis presented in this work suggests new experi-
ments in the matter-wave and nonlinear-optical settings. The
analysis can also be developed in other directions. In particu-
lar, it may be interesting to study a two-dimensional
nonlinear-DWP configuration. In the 2D space, a triangular
configuration with three nonlinear �pseudo-�potential wells
may be considered too.
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