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The four-wave mixing �4WM� signal is calculated for a three-level quantum system in a � configuration
�upper level 2, lower levels 1 and 3� that is driven by three fields. Pump fields E and E� drive the 1-2 and 3-2
transitions, respectively. The probe field is detuned from field E by an amount �. If the detuning of field E from
the 1-2 transition frequency is equal to that of field E� from the 3-2 transition frequency �dark state pumping�,
there is a dark state in the absence of the probe field. Rather surprisingly, even though the probe field destroys
the dark state for ��0, the 4WM mixing vanishes for all � in the limit of dark-state pumping. The 4WM
spectra are explained within the context of a semiclassical, dressed-state picture that involves the sequential
emission of a probe and signal photon.
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I. INTRODUCTION

Pump-probe spectroscopy has been a mainstay of laser
spectroscopy. In the cw domain one can drive an atomic
transition with a strong pump field and probe the same or a
coupled transition with a weaker probe field to obtain values
for transition frequencies and relaxation rates that character-
ize the transitions. When the same transition is probed, inter-
esting features arise resulting from interference effects be-
tween the pump and probe fields �1�. An extension of pump-
probe techniques to a � system was carried out by
Harshawardhan and Agarwal �2� and by Berman and Du-
betsky �3�. In these schemes, two pump fields drive Raman
transitions between the two lower states of a three-level �
scheme. In the Berman-Dubetsky scheme, each of the fields
is assumed to be far off resonance from the optical transi-
tions, enabling one to use an effective two-level approxima-
tion. A probe field is applied having frequency close to that
of one of the pump fields, and the probe absorption spectrum
is monitored. Harshawardhan and Agarwal allowed for four
fields �an additional probe field on the 2-3 transition� and
obtained an expression for the off-diagonal density matrix
element associated with probe field absorption or gain on one
of the optical transitions. The resulting spectrum in both
cases differs qualitatively from that of the pump-probe spec-
trum of a two-level atom �1�, owing to the juxtaposition of
both one-photon and two-photon transitions involving the
probe field. � systems have received a great deal of attention
owing to their applications for quantum information storage
and slow light generation �4�.

The atom-field system of interest is represented schemati-
cally in Fig. 1. A pump field E drives transitions between
levels 1 and 2, while a second pump field E� drives transi-
tions between levels 3 and 2. A probe field Ep is also applied,
whose frequency is close to that of pump field E, also drives
the 1-2 transition. This pump-probe geometry can be viewed
as a type of double-� system, with fields E and E� providing
one of the �’s and fields Ep and E� providing the other.
Double-� schemes �5� have been studied extensively since
they can lead to index enhancement �6�, slow light �7�, in-
formation storage �8�, and improved spin squeezing �9�. In

this paper, we calculate the four-wave mixing �4WM� signal
having frequency 2�−�p as a function of the frequency dif-
ference � between the probe and pump field E frequencies.
As will be seen, this signal reflects interesting and somewhat
surprising dynamics of this � system. Motivation for this
work arose in conjunction with experiments being carried
out by Steel and co-workers at the University of Michigan
�10�.

If the detuning of the pump field E from the 1-2 transition
frequency is equal to that of pump field E� from the 3-2
transition frequency, then the system evolves into a dark state
in the absence of the probe field. For �=0, the probe field
does not modify this dark state and there is no probe absorp-
tion; however, for ��0, the dark state is modified and there
can be an absorption doublet, but no gain, for the probe. If
the conditions for a dark state �in the absence of the probe
field� are not met, the probe absorption spectrum consists of
three absorption and three gain components. These results
can be understood easily within the context of a dressed-
atom approach. In contrast, the 4WM signal vanishes for all
probe frequencies when the dark-state conditions are met by
the pump fields, even though the probe field destroys the
dark state. This somewhat nonintuitive result can be under-
stood in terms of a dressed-state interpretation of the signal
that involves the sequential emission of a probe and signal
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FIG. 1. �Color online� Pump field E and probe field Ep drive
transitions between levels 1 and 2, while pump field E� drives tran-
sitions between levels 3 and 2. Levels 1 and 3 have infinite life-
times, while level 2 decays to level 1 with rate �2,1 and to level 3
with rate �2,3.
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photon. If the conditions for a dark state �in the absence of
the probe field� are not met, we show that the 4WM signal
consists of six components.

The paper is organized as follows: in Sec. II, the exact
density matrix solution is obtained and a solution using semi-
classical dressed states �11� is given in Sec. III. A discussion
of the line shapes is given in Sec. IV in both the weak and
strong pump field limits.

II. DENSITY MATRIX SOLUTION

Three fields are incident on an ensemble of stationary,
three-level atoms, having the level scheme shown in Fig. 1.
The electric field vectors of the two pump fields are given by

E�R,t� = E� cos�k · R − �t� , �1�

E��R,t� = E��� cos�k� · R − ��t� , �2�

while that of the probe field is given by

Ep�R,t� = Ep�p cos�kp · R − �pt� , �3�

where �E ,E� ,Ep� are the amplitudes, �k ,k� ,kp� are the
propagation vectors, �� ,�� ,�p� are the polarizations, and
�� ,�� ,�p� are the frequencies of the applied fields. Owing
to the difference in level spacings or polarization selection
rules, one can neglect any effects arising from fields E and
Ep driving the 3-2 transition and field E� driving the 1-2
transition.

The Hamiltonian for the atom-field system is

H = H0 − � · �E�R,t� + E��R,t� + Ep�R,t�� , �4�

where H0 is the free-atom Hamiltonian and � is the atomic
dipole moment operator. The density matrix in the
Schrödinger picture, �S�t�, characterizing this atom-field sys-
tem evolves as

i��̇S = �H,�S� + �relaxation terms� , �5�

where the relaxation terms result from spontaneous emission.
It is convenient to introduce a field interaction represen-

tation in which

�12
S = �12e

−i�k·R−�t�,

�32
S = �32e

−i�k�·R−��t�,

�13
S = �13e

−i��k−k��·R−��−���t�,

�ij
S = �

ji

S*. �6�

In this representation and in the rotating-wave approxima-
tion, one can write the time evolution equations for the den-
sity matrix elements in matrix form as

�̇ = − A� + B+�e−i�kp−k�·Rei�t + B−�ei�kp−k�·Re−i�t + � ,

�7�

with

� =�
�11

�13

�31

�12

�21

�32

�23

�22

� , � =�
0

0

0

0

0

i��

− i��

0

� , �8�

A =�
0 0 0 − i� i� 0 0 − �2,1

0 − i�� − ��� 0 − i�� 0 0 i� 0

0 0 i�� − ��� 0 i�� − i� 0 0

− i� − i�� 0 � − i� 0 0 0 i�

i� 0 i�� 0 � + i� 0 0 − i�

i�� 0 − i� 0 0 � − i�� 0 2i��

− i�� i� 0 0 0 0 � + i�� − 2i��

0 0 0 i� − i� i�� − i�� �2

� , �9�
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B+ = i�p�
0 0 0 0 1 0 0 0

0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 − 1

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

� , �10�

B− = i�p�
0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

− 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 − 1 0 0 0 0 0 0

0 0 0 − 1 0 0 0 0

� , �11�

where

� = − �21 · �E/2�, �� = − �31 · ��E�/2� ,

�p = − �21 · �pEp/2� �12�

are �one-half of the� Rabi frequencies �all assumed real� as-
sociated with the various transitions,

� = �21 − �, �� = �23 − �� �13�

are atom-field detunings,

� = �p − � �14�

is the detuning of the probe field from the first pump field, �2
is the excited-state decay rate resulting from spontaneous
emission, �=�2 /2 is the decay rate of the optical coherences
�12 and �32, and �2,1 /�2 is the branching ratio for emission
into state 1. The fact that �11+�22+�33=1 has been used to
eliminate �33 from the equations.

We wish to obtain a solution of Eq. �7� to first order in �p.
After all transients have died away, such a solution to these
equations can be written in the form

� = ��0� + ��+�e−i�kp−k�·Rei�t + ��−�ei�kp−k�·Re−i�t. �15�

Substituting Eq. �15� into Eq. �7� and equating coefficients of
e0, e	i�kp−k�·Re
i�t, we obtain

��0� = A−1� , �16�

which is the solution in the absence of the probe field, and

��+� = �A + i�1�−1B+��0�, �17�

��−� = �A − i�1�−1B−��0�, �18�

where 1 is an 8�8 unit matrix, which are contributions to �
of order �p.

It is simple enough to obtain expressions for ��0�, ��+�, and
��−� using programs such as MATHEMATICA, but they are un-

wieldy and are not reproduced here. We are interested in the
4WM signal propagating in the direction ks=2k−kp with
frequency �s=2�−�p �it is assumed that k and kp are nearly
parallel such that phase matching can be approximately sat-
isfied�. Using the Maxwell-Bloch equations, one can show
that the 4WM signal is proportional to

Sf = ���12
�−�/�p�2. �19�

�The probe absorption coefficient, not calculated in this
work, is proportional to �p=−Im���12

�+� /�p�.�
In general, the 4WM signal consists of six components,

consisting of three equal-intensity doublets centered about
�=0, as shown in Fig. 2. If �=��, which is the condition for
a dark state to exist in the absence of the probe field, then the
4WM signal vanishes identically for all probe detunings.
That is, the 4WM signal vanishes for ��0, even though the
dark state no longer exists. In contrast, the corresponding
equation for probe absorption is nonvanishing for ��0 un-
der conditions of dark-state pumping. The physical origin of
the 4WM signals is discussed in Sec. IV. Note that, for �
���, there is also a small, “nonsecular” contribution to the
line shapes centered at �=0.

III. DRESSED-STATE SOLUTION

The dressed-state approach is formulated in terms of
semiclassical dressed states �11�. To introduce this dressed-
state representation, we arbitrarily set the energy of state 2
equal to zero and write the state vector as

��t�� = c̃1e−i�k·R−�t��1� + �2� + c̃3e−i�k�·R−��t��3� �20�

such that, in the absence of relaxation, the probability ampli-
tudes c̃= �c̃1 , c̃2 , c̃3�, written as a column vector, evolve ac-
cording to

i�
dc̃

dt
= �H1 + V�c̃ , �21�

where

4WM Signal

-50 500 ∆/γ

1

2

3sf
10
-3

FIG. 2. �Color online� Four-wave mixing signal as a function of
� /� for � /�=�� /�=10, � /�=−25, �� /�=−15, and �2,1 /�2=0.5.
For these parameters the corresponding dressed-state frequencies
and populations are �A /�=29.4, �B /�=18.1, �C /�=−7.5 and
�AA=0.300, �BB=0.684, �CC=0.016.
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H1 = ��− � � 0

� 0 ��

0 �� − ��
� , �22a�

V = ��p� 0 a�R,t� 0

b�R,t� 0 0

0 0 0
� , �22b�

and

a�R,t� = e−i�kp−k�·Rei�t = b*�R,t� . �23�

The semiclassical dressed states are obtained by diagonal-
izing H1. In other words, we set

cD = �cA

cB

cC
� = Tc̃ , �24�

where

T = �TA1 TA2 TA3

TB1 TB2 TB3

TC1 TC2 TC3
� �25�

is an orthogonal matrix defined such that

TH1T† = � = ���A 0 0

0 �B 0

0 0 �C
� �26�

and ��� ��=A ,B ,C� are the energies of the semiclassical
dressed states obtained by diagonalizing H1 �the eigenvalues
are chosen such that �A��B��C�.

It follows from Eqs. �21�–�25� that, in the absence of re-
laxation, the dressed-state amplitudes evolve according to

i�ċD = �cD + VDcD, �27�

where VD=TVT† is given by

VD = ��pa�R,t��TA1TA2 TA1TB2 TA1TC2

TB1TA2 TB1TB2 TB1TC2

TC1TA2 TC1TB2 TC1TC2
�

+ ��pb�R,t��TA1TA2 TB1TA2 TC1TA2

TA1TB2 TB1TB2 TC1TB2

TA1TC2 TB1TC2 TC1TC2
� . �28�

It is possible to get analytic expressions for the �� and the
T�j, but they are very complicated unless �=��.

To obtain the 4WM intensity using the dressed-state rep-
resentation, one must �a� express Sf in terms of the dressed-
state density matrix elements ���, �b� obtain the evolution
equations for the dressed-state density matrix elements in-
cluding decay, and �c� solve these equations in “steady state”
to first order in �p. This method is particularly useful only in
the so-called secular approximation, where all the frequency
spacings �����= ���−��� are much greater than the decay
rate �2 �12�. For dark-state pumping ��=���, it is not neces-
sary to make the secular approximation �2�.

In analogy with Eq. �15�, we write

�D = �D
�0� + a�R,t��D

�+� + b�R,t��D
�−�. �29�

Using the adjoint of Eq. �24�, Eq. �23�, and the fact that
���=c�c

�
*, one finds that

�12
�
� = TA2�TB1�BA

�
� + TC1�CA
�
�� + TB2�TA1�AB

�
� + TC1�CB
�
��

+ TC2�TA1�AC
�
� + TB1�BC

�
�� + TA1TA2�AA
�
�

+ TB1TB2�BB
�
� + TC1TC2�CC

�
�, �30�

giving the density matrix elements needed to evaluate Sf �see
Eq. �19��. The dressed-state density matrix in the absence of
the probe field is given by

�D
�0� = T��0�T†, �31�

where elements of ��0� are given by Eq. �16�.
The next step is to obtain the equations for ���

�
�. The
evolution equation for the dressed state density matrix is

i��̇D = ��� + VD�,�D� + ��D, �32�

where the relaxation terms �� are expressed conveniently as

��D = − ����0�D�D + �D��0�D�

+ �2,1��−
12�D�D��+

12�D + �2,3��−
32�D�D��+

32�D,

�33�

with

���D = T�T† �34�

and

�0 = �0 0 0

0 1 0

0 0 0
� , �35�

�−
12 = �0 1 0

0 0 0

0 0 0
�, �+

12 = �0 0 0

1 0 0

0 0 0
� , �36�

�−
32 = �0 0 0

0 0 0

0 1 0
�, �+

32 = �0 0 0

0 0 1

0 0 0
� . �37�

Equation �29� substituted into Eqs. �32� and �23� is used,
and the coefficients of e0 and e
i�kp−k�·R	i�t are equated. In
this manner, one obtains equations for �D

�0�, �D
�+�, and �D

�−�.
Admittedly, these equations are horrendously complicated;
however, in the secular approximation where terms of order
� /	�2+��2+�2 are neglected, one has

���
�0� 
 0, � � � , �38a�

���
�
� 
 0, � = A,B,C , �38b�

and

�AB
�+� =

− i�pTA1TB2��BB
�0� − �AA

�0��
�AB + i�� + �AB�

,
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�BA
�+� =

− i�pTB1TA2��AA
�0� − �BB

�0��
�AB + i�� − �AB�

,

�AC
�+� =

− i�pTA1TC2��CC
�0� − �AA

�0��
�AC + i�� + �AC�

,

�CA
�+� =

− i�pTC1TA2��AA
�0� − �CC

�0� �
�AC + i�� − �AC�

,

�BC
�+� =

− i�pTB1TC2��CC
�0� − �BB

�0��
�BC + i�� + �BC�

,

�CB
�+� =

− i�pTC1TB2��BB
�0� − �CC

�0� �
�BC + i�� − �BC�

,

���
�−� = − ���

�+�, �39�

where

��� = ��T�2
2 + T�2

2 � + �2,1T�2T�2T�1T�1 + �2,3T�2T�2T�3T�3

�40�

and �2,3 /�2 is the branching ratio for emission into state 3. It
then follows that

Sf = ��TA2TB1TB2TA1���AA
�0� − �BB

�0���2

� � �2

�� − �AB�2 + �AB
2 +

�2

�� + �AB�2 + �AB
2 �

+ ��TC2TA1TA2TC1���CC
�0� − �AA

�0���2

� � �2

�� − �AC�2 + �AC
2 +

�2

�� + �AC�2 + �AC
2 �

+ ��TB2TC1TC2TB1���BB
�0� − �CC

�0� ��2

� � �2

�� − �BC�2 + �BC
2 +

�2

�� + �BC�2 + �BC
2 � . �41�

The quantities T�� and ��� are obtained by diagonalizing the
matrix H1, while ���

�0� are obtained from Eqs. �16� and �31�.
As in the case of pump-probe absorption on a two-level

atom �11�, the widths ��� are equal to one-half the sum of
the decay rates of the � and � levels �first term in Eq. �40��
plus a contribution �which can be positive or negative� from
the repopulation of the ground states resulting from sponta-
neous emission �second two terms in Eq. �40��.

IV. DISCUSSION

A. Weak fields

If the Rabi frequencies of the pump fields are much less
than the relaxation rates, then the probe absorption and 4WM
signals can be obtained by calculating �12

�
� to lowest order in
the probe Rabi frequency, assuming that the density matrix in
the absence of the probe field is equal to ��0�. However, since
we are looking for a new signal generated in the ks=2k
−kp direction, we must include pump field contributions in

addition to those provided by ��0�. There are three terms that
contribute to �12

�−�, which can be obtained as a perturbative
solution of Eqs. �7�–�18�. The first results from a chain in
which we start from ��11

�0�−�22
�0��, the probe field acts to pro-

duce �21
�−�, pump field E acts to produce �11

�−� and �22
�−� �repopu-

lation of state 1 by spontaneous emission also enters�, and
pump field E acts once again to produce �12

�−�. The second
results from a perturbative chain in which we start from �13

�0�,
the probe field acts to produce �23

�−�, pump field E acts to
produce �13

�−�, and pump field E� acts to produce �12
�−�. The

third results from a perturbative chain in which we start from
�13

�0�, the probe field acts to produce �23
�−�, pump field E� acts to

produce �22
�−� and �11

�−� �via spontaneous emission�, and pump
field E acts to produce �12

�−�. Explicitly, one finds

�12
�−� =

i�

� − i�� + ��
�

�
�1 −

�2,1 + i�

�2 − i�
� − i�p

� − i�� − ��
��11

�0� − �22
�0��

+
i��

� − i�� + ���
� �

�� − �� + ��
−  �

�
��2,1 + i�

�2 − i�
�

�
− i�p

� − i�� − ���
�13

�0�. �42�

If �=�� �dark-state pumping�, Eq. �42� reduces to

�12
�−� =

i�

� − i�� + ��
�

�
�1 −

�2,1 + i�

�2 − i�
� − i�p

� − i�� − ��
��2

�2 + ��2

+
i��

� − i�� + ��
�

�
�1 −

�2,1 + i�

�2 − i�
� − i�p

� − i�� − ��
− ���

�2 + ��2

= 0, �43�

in agreement with the exact solution. Thus the vanishing of
the 4WM signal in the weak field limit can be viewed as an
cancellation between three terms, one originating from the
ground-state population �11

�0� ��22
�0�=0 for dark-state pumping�

and the other two from the ground-state coherence �13
�0�.

B. Strong fields

In the limit that 	��2+��2���, it is possible to use the
dressed-state picture to obtain approximate solutions for the
4WM signals. Even for weak fields, such an approach can be
used provided ����� �12�. We have seen already that this
signal has six components, in general. In contrast to the
quantized dressed-state picture, there is no infinite “ladder”
of dressed states in the semiclassical dressed-state picture.
Nevertheless, one can use a three-step ladder as a device for
obtaining the 4WM signal �each “step” itself consists of a
triplet of steps �see below��. The corresponding ladder
“rungs” are separated by the pump field E frequency �.
There is a corresponding ladder of states separated by the
pump field E� frequency ��; however, this ladder of states is
not needed when one considers 4WM associated with the 1-2
transition.

The “three-step” ladder is shown in Fig. 3. The 4WM
signal can be viewed as arising from a sequential emission
process in which the first step involves a coupling from the
state �2� component of a given dressed state in the upper
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manifold of levels to the state �1� component of a given level
in the middle manifold, followed by an emission of the sig-
nal photon from the state �2� component of the same level in
the middle manifold of levels to the state �1� component in
the lower manifold of levels. The final level of this sequen-
tial emission must be the same as the initial level from which
we started. In other words, transitions of the type A→B
→A, or A→C→A constitute two of the six possible chains.
The restriction to begin and end on the same dressed state
guarantees that the sum of the probe field plus the signal field
frequencies is centered at twice the frequency of pump field
E, as is required in the 4WM process. The emission of the
probe photon must be weighted with the population differ-
ence of the upper-level and middle-level populations. In this
manner, one obtains contributions to the 4WM signal:

�Sf�ABA =
�2��TA2TB1TB2TA1���AA

�0� − �BB
�0���2

�� − �AB�2 + �AB
2 , �44a�

�Sf�ACA =
�2��TA2TC1TC2TA1���AA

�0� − �CC
�0� ��2

�� − �AC�2 + �AC
2 , �44b�

�Sf�BAB =
�2��TB2TA1TA2TB1���BB

�0� − �AA
�0���2

�� + �AB�2 + �AB
2 , �44c�

�Sf�BCB =
�2��TB2TC1TC2TB1���BB

�0� − �CC
�0� ��2

�� − �BC�2 + �BC
2 , �44d�

�Sf�CAC =
�2��TC2TA1TA2TC1���CC

�0� − �AA
�0���2

�� + �AC�2 + �AC
2 , �44e�

�Sf�CBC =
�2��TC2TB1TB2TC1���CC

�0� − �BB
�0���2

�� + �BC�2 + �BC
2 , �44f�

One sees immediately that �Sf����= �Sf���� such that the sig-
nal consists of three pairs of signals; the amplitudes of each
component of the pair are equal and are symmetrically cen-
tered about �=0. If �=�� �dark-state pumping�, then TB2
=0, �CC

�0� =�AA
�0� =0, �BB

�0� =1, and �Sf����=0—consistent with
the exact result given above—there is no 4WM for dark-state
pumping.

We could equally well have examined the 4WM signal on
the 2-3 transition. In that case one finds a 4WM signal in the
k�+kp−k direction that is the analog of the probe absorp-
tion; that is, it vanishes under dark-state pumping for �=0,
but not for ��0. There is also a 4WM signal in the k�+k
−kp that is the analog of the 4WM signal on the 1-2 transi-
tion; that is, it vanishes for all � under dark-state pumping.

In summary, we have presented what we believe to be an
interesting pump-probe scheme involving three incident
fields interacting with atoms whose level structure can be
approximated as a three-level � configuration. Interference
phenomena have been described for the 4WM signal. A
semiclassical dressed-state picture has been introduced that
allows one to obtain a semiquantitative description of the
atom-field dynamics.
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FIG. 3. �Color online� Semiclassical dressed states: four-wave
mixing occurs by the sequential emission of a probe and signal
photon in this dressed-state picture. The probe field connects a com-
ponent T�2 in the upper manifold of levels to a component T�1

while the signal photon connects the T�2 component of the same
level in the middle manifold of levels to the T�1 component in the
lower manifold of levels. The final level of this sequential emission
must be the same as the initial level from which we started to
satisfy the energy conservation condition 2��=���p+�s�. Two of
the six possible chains are shown in the figure.

P. R. BERMAN AND XIAODONG XU PHYSICAL REVIEW A 78, 053407 �2008�

053407-6



�1� See, for example, B. R. Mollow, Phys. Rev. A 5, 2217 �1972�;
F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, Phys. Rev.
Lett. 38, 1077 �1977�; M. T. Gruneisen, R. W. Boyd, and K. R.
MacDonald, J. Opt. Soc. Am. B 5, 123 �1988�; G. Grynberg
and C. Cohen-Tannoudji, Opt. Commun. 96, 150 �1993�; P. R.
Berman and G. Khitrova, ibid. 179, 19 �2007�.

�2� W. Harshawardhan and G. S. Agarwal, Phys. Rev. A 58, 598
�1998�.

�3� P. R. Berman and B. Dubetsky, Phys. Rev. A 62, 053412
�2000�.

�4� See, for example, M. O. Scully and M. S. Zubairy, Qunatum
Optics �Cambridge University Press, Cambridge, UK, 1997�,
Chap. 7; M. D. Lukin, Rev. Mod. Phys. 75, 457 �2003�, and
references therein.

�5� See, for example, J. H. Eberly, Philos. Trans. R. Soc. London,
Ser. A 355, 2387 �1997�, and references therein; H. Shpais-
man, A. D. Wilson-Gordon, and H. Friedman, Phys. Rev. A
70, 063814 �2004�, and references therein; T. Zanon, S. Guer-
andel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon,
Phys. Rev. Lett. 94, 193002 �2005�, and references therein; C.
H. Raynold Ooi, Phys. Rev. A 75, 043817 �2007�, and refer-
ences therein; H.-J. Kim, A. H. Khosa, H.-W. Lee, and M. S.
Zubairy, ibid. 77, 023817 �2008�, and refernces therein.

�6� R. Fleischhaker and J. Evers, Phys. Rev. A 77, 043805 �2008�,
and references therein.

�7� A. Raczyński and J. Zaremba, Opt. Commun. 209, 149 �2002�,
and references therein; Y. Wu and X. Yang, Phys. Rev. A 70,
053818 �2004�, and references therein; L. Deng, M. G. Payne,
G. Huang, and E. W. Hagley, Phys. Rev. E 72, 055601 �2005�,
and references therein.

�8� M. Johnsson and M. Fleischhauer, Phys. Rev. A 67,
061802�R� �2003�, and references therein; R. S. Bennink, A.
M. Marino, V. Wong, R. W. Boyd, and Cr. R. Stroud, Jr., ibid.
72, 023827 �2005�, and references therein.

�9� A. Dantan, M. Pinard, and P. R. Berman, Eur. Phys. J. D 27,
193 �2003�; C. Genes and P. R. Berman, Phys. Rev. A 73,
063828 �2006�.

�10� See, for example, X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R.
Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J.
Sham, Nat. Phys. 4, 692 �2008�.

�11� See, for example, E. Courtens and A. Szoke, Phys. Rev. A 15,
1588 �1977�; S. Reynaud and C. Cohen-Tannoudji, J. Phys.
�Paris� 43, 1021 �1982� ; P. R. Berman and R. Salomaa, Phys.
Rev. A 25, 2667 �1982�; P. R. Berman, ibid. 53, 2627 �1996�.

�12� If 	��2+��2��� and ��−�����, two of the dressed states are
nearly degenerate; however, the secular approximation still
works for �����, presumably because the separation of the
states, of order ��2+��2� / ���, is greater than the optical pump-
ing rates, of order ��2+��2�� /�2, which couple these dressed
states.

FOUR-WAVE MIXING IN A � SYSTEM PHYSICAL REVIEW A 78, 053407 �2008�

053407-7


