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Time-dependent R-matrix calculations for multiphoton ionization of argon atoms in strong laser
pulses
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A recently developed [Guan et al., Phys. Rev. A 76, 053411 (2007)] general ab initio and nonperturbative
method to solve the time-dependent Schrodinger equation (TDSE) for the interaction of a strong attosecond
laser pulse with a general atom is applied to multiphoton ionization of argon atoms. The field-free Hamiltonian
and the dipole matrices are generated using a flexible B-spline R-matrix method, which allows for the use of
nonorthogonal sets of one-electron orbitals. The solution of the TDSE is propagated in time using the Arnoldi-
Lanczos method. The effects of the pulse length and the laser intensity on the ionization rate for different
photon energies are analyzed. In the long-pulse regime, good agreement with predictions from R-matrix

Floquet calculations is achieved.
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I. INTRODUCTION

In a recent paper [1], we described a general ab initio and
nonperturbative method to solve the time-dependent
Schrodinger equation (TDSE) for the interaction of a strong
attosecond laser pulse with a general atom, i.e., beyond the
models of quasi-one-electron or quasi-two-electron targets.
The critical ingredients of our time-dependent B-spline
R-matrix (TDBSR) approach are field-free Hamiltonian and
dipole matrices, which are generated using a flexible
B-spline R-matrix method [2], followed by the propagation
of the TDSE using the Arnoldi-Lanczos method [3,4]. The
latter propagation scheme avoids the diagonalization of any
large matrices. The method was illustrated by an application
to the multiphoton excitation and ionization of Ne atoms,
and good agreement with R-matrix Floquet results for the
generalized cross sections for two-photon ionization was
achieved.

As pointed out earlier (see [1], and references therein), the
rapid progress in the development of ultrashort and ultrain-
tense light sources is providing a window to study the details
of electron interactions in atoms, molecules, plasmas, and
solids on an attosecond time scale. These capabilities prom-
ise a revolution in our microscopic knowledge and under-
standing of matter [5,6]. There is no doubt that highly chal-
lenging experiments such as those reported in [7,8] will
benefit tremendously from theoretical support in order to
reap the maximum profits from the enormous resources be-
ing invested in the experimental facilities.

The ingredients of an appropriate theoretical and compu-
tational formulation require an accurate and efficient genera-
tion of the Hamiltonian and the electron-field interaction ma-
trix elements, as well as an optimal approach to propagate
the TDSE in real time. There have been numerous calcula-
tions for two-electron systems such as He and H,. (A partial
list of references can be found in Guan et al. [9].) While
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these investigations emphasize the important role of two-
electron systems in studying electron-electron correlation in
the presence of a strong laser field, in its presumably purest
form, experiments with He atoms are difficult and other
noble gases, such as Ne and Ar, are often favored by the
experimental community.

Fully ab initio theoretical approaches, which are appli-
cable to complex targets beyond (quasi) two-electron sys-
tems, are still rare. For (infinitely) long interaction times, the
R-matrix Floquet ansatz [11] has been highly successful. A
critical ingredient of this method is the general atomic
R-matrix method developed over many years by Burke and
collaborators in Belfast. A modification of the method, al-
lowing for relatively long though finite-length pulses was
described by Plummer and Noble [12]. Recently, a time-
dependent formulation [13] of this method was applied to
short-pulse laser interactions with Ar [14].

In this paper, we apply our TDBSR method to the laser-Ar
problem as well. Since the publication of our previous paper
[1], we have gained additional insight into the numerical
intricacies of the problem and will describe some important
algorithmic improvements in Sec. II. Our approach now en-
ables us to perform calculations at significantly longer wave-
lengths and, consequently, to treat more photons while, at the
same time, increasing the number of coupled channels. We
can also use a significantly larger box size, thereby eliminat-
ing the need for absorption potentials, which can be prob-
lematic in the extraction of physically meaningful results.
Specifically, we will present in Sec. III results for two-
photon, three-photon, and five-photon ionization of Ar atoms
by laser pulses of durations between 10 and 60 optical cycles
(0.c.) and wavelengths between 88 and 390 nm. Finally,
Sec. IV gives our conclusions and an outlook to the future.

Unless specified otherwise, atomic units (a.u.) are used
throughout this manuscript.

II. NUMERICAL METHOD

A detailed description of the TDBSR method has been
given by Guan et al. [1] and hence will not be repeated here.
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Instead, we briefly summarize the basic equations and then
concentrate on essential improvements achieved during the
past year.

A. TDBSR approach

The TDSE for the N-electron wave function
W(ry,...,ry;1) of the present problem is given by
J
i—W(r, ...,ryt
l&t ( 1 N )
= [HO(rla 7rN) + V(rl’ ’rN;t):l’\P(rh ’rN;t),

(1)

where Hy(ry, ...,ry) is the field-free Hamiltonian containing
the sum of the kinetic energy of the N electrons, their poten-
tial energy in the field of the nucleus (we assume an infinite
nuclear mass), and their mutual Coulomb repulsion, while
V(r,,...,ry;1) represents the interaction of the electrons
with the electromagnetic field. For simplicity of notation, we
omit the spin coordinates of the electrons.
We expand the wave function as

W(ry,...,rn0) = > C,()D,(ry, ....ry). (2)
q

Here ®,(r;,...,ry) are a known set of N-electron states
formed from appropriately symmetrized products of atomic
orbitals.

The interaction of the atomic electrons with the time-
dependent electric potential, in the length form of the electric
dipole approximation, is given by

N
V(r, ....eyi0) = 2 E(0) -1y, (3)
i=1

where E(r) is the electric field. This form has been used for
the calculations in this paper.

When the expansion in Eq. (2) is inserted into the
Schrodinger equation, we obtain

iS%C(r) =[Hy+ E(1)D]C(7), 4)

where S is the overlap matrix of the basis functions, H, and
D are matrix representations of the field-free Hamiltonian
and the dipole coupling matrices, and C(z) is the time-
dependent vector of coefficients in Eq. (2). Since we are
initially interested in excitation and single ionization of the
target atom by the laser pulse, the field-free Hamiltonian
must also contain a sufficient number of singly excited
bound states as well as the continuum states representing
electron scattering from the residual ion. As a method devel-
oped to treat exactly such problems, the time-independent
B-spline R-matrix (BSR) approach [2] is particularly suitable
to represent these states.

A significant advantage of the BSR method in the calcu-
lation of both bound and continuum states is the possibility
of employing nonorthogonal sets of atomic orbitals for dif-
ferent target states, thereby omitting the need for pseudo-
orbitals to account for the strong configuration or even term
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dependence that exists in many complex targets, with the
noble gases being a prime example. This flexibility allows
for optimization procedures that are tailored to the individual
neutral, ionic, and continuum orbitals. As a result, accurate
structure and collision calculations are possible with rela-
tively small multiconfiguration expansions. The price to pay,
at least initially, is the representation of the field-free Hamil-
tonian and the dipole matrices in a nonorthogonal basis. In
standard applications of the BSR method, this leads to a
generalized eigenvalue problem, for which effective com-
puter packages are commonly available.

In our previous work [1], we described two methods of
combining the BSR method with a highly efficient Arnoldi-
Lanczos propagation scheme. In the first one, we diagonal-
ized the overlap matrix S and transformed the problem back
to an orthogonal basis before applying the standard propaga-
tion scheme [3,4]. Alternatively, the propagation can be done
more directly in the nonorthogonal basis. This only requires
a Cholesky decomposition of S, but some additional opera-
tions at every time step. A third approach, which involves a
transformation into the eigenbasis of the problem, was used
in the present work and will be described in the next subsec-
tion. Depending on the size of the matrices to be handled,
even more sophisticated methods may be required that do not
require the diagonalization or decomposition of large matri-
ces [15].

B. Transformation to the eigenbasis

As will be seen below, an important aspect of the calcu-
lation is the energy spectrum of the field-free Hamiltonian.
We require a time propagation scheme, which contains all
the important physics associated with the laser-driven system
while at the same time being highly efficient and stable. Us-
ing B splines in configuration space, we found that the high-
est eigenvalue (E,,,,) of the field-free Hamiltonian in a given
L symmetry could become as large as 10° a.u. for the present
problem, as a consequence of the closely spaced mesh of
knots required near the origin. If such eigenvalues and the
corresponding underlying basis functions were kept in the
time propagation scheme, very small time steps (A,
<27/ E,,) would generally be required to keep the propa-
gation scheme stable. Typically laser frequencies are of the
order of 1 a.u. (=27 eV), i.e., the laser-induced physics var-
ies on a much coarser time scale. As a consequence, we are
propagating target pseudostates in the expansion with ener-
gies of several hundred atomic units or more, which are very
unlikely to be populated during the interaction, assuming we
are in the target ground state, i.e., in the lowest eigenstate of
the field-free Hamiltonian, at r=0.

A straightforward way to address this problem is to solve
the field-free generalized eigenvalue problem

H,v" = ESv" (5)

for each symmetry with total orbital angular momentum L.
(Recall that, due to the dipole selection rules and a 'S initial
state, we only need to include the symmetries 1S, lPo, 1D,
'F°,....) This gives us the eigenbasis of column vectors V,LL,
n=1,2,... ,nf, with eigenvalues Eﬁ, where nf is the rank of
the matrix for this particular symmetry.
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Having obtained this eigenbasis, we now define the trans-
formation matrix

AL = (vhvE . vh), (6)

i.e., we drop the eigenvectors corresponding to eigenvalues
E->E,. We then transform the field-free Hamiltonian and
the dipole matrices coupling L and L’ according to

H{ = (AH) H{A", (7)

DL = (AL)TDLL’AL'. (8)

Here the superscript “7” indicates the transposed matrix. As
a result, the field-free Hamiltonian is now diagonal with the
energy eigenvalues Eﬁ<EL. as the diagonal elements, while
the dipole matrices are represented in the truncated eigenba-
sis. The initial state in this representation is the column vec-
tor (1,0,0,...,0), and the extraction of survival, excitation,
and ionization probabilities is straightforward. After the time
propagation, the first element of the vector squared yields the
survival probability of the ground state, the sum of the
squares of all other coefficients corresponding to eigenstates
below the ionization threshold represents excitation, and the
sum of the squares of the remaining coefficients corresponds
to ionization. Also, one can easily extract the information for
particular partial-wave symmetries. Finally, after the trans-
formation the problem is orthogonal in the truncated eigen-
basis, and hence we can use the standard Arnoldi-Lanczos
time-propagation scheme. The essential result of this analysis
is a noticeably reduced number of required time steps per
optical cycle, without any loss of physical information or
precision.

In the present work, the “cut” (c) energy was chosen as
E.=10 a.u., i.e., 537 a.u. above the ground state of neutral
argon, and tests were performed to ensure that the final re-
sults did not depend (beyond the thickness of the lines in the
figures below) on this value. Note, however, that the present
calculations were performed in the length gauge of the dipole
operator. Further checks would be required if the velocity
gauge were to be used. This gauge is advantageous for very
intense fields, but it emphasizes the spatial region near the
nucleus, which may be sensitive to the omission of high-
energy excitations [14].

C. Extraction of multiphoton generalized cross section

Once we have obtained the time-dependent wave function
of the laser-driven system, we need to extract the physical
quantities, such as the multiphoton generalized cross section
or ionization rate. A meaningful N-photon generalized cross
section (N being the number of photons absorbed) may be
defined and extracted from the solution to the TDSE, as long
as proper care is taken regarding the intensity, duration, and
shape of the laser pulse. If perturbation theory is valid, this
cross section can also be calculated using time-independent
methods (infinitely long “pulses”). In practical calculations, a
small dependence of the extracted cross section on these pa-
rameters can occur, but this can be controlled by suitably
choosing the intensity and duration of the laser pulse. As
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long as the peak intensity (I,) of the applied laser pulse is
relatively weak, it is possible to extract the N-photon gener-
alized cross section as

N

w\"P;

o = ( ) 1:;)1 )
Iy) Ty

where P;,, denotes the ionization yield at the end of the pulse
and the effective interaction time Tg\? is defined through

T4 = f 0. (10)

0

Here f(¢) is the pulse shape function of the temporal laser
field. According to Eq. (9), the generalized cross section for
an N-photon process is defined in units of cm?V sV, As
shown recently by Guan et al. [9] and by Feist et al. [10],
this proper definition of the effective interaction time re-
solves many of the discrepancies seen in otherwise very
similar calculations for two-photon double ionization of he-
lium. If necessary, even the depletion of the initial state can
be properly accounted for (see Egs. (23) and (25) of Guan et
al. [9]). This depletion is unavoidable, particularly for long
pulses. Note, however, that its occurrence alone does not
imply that perturbation theory becomes an invalid tool for
treating the problem. We emphasize that the above procedure
for extracting multiphoton cross sections is general and valid
for both resonant and nonresonant multiphoton processes.
For nonresonant ionization, the survival probability de-
creases exponentially for long times. This provides a way to
extract the ionization rate through the exponent. If reso-
nances are present, however, the ionization decay of the sys-
tem is not purely exponential, and thus any ionization rate or
cross section estimated in this way may be subject to some
uncertainty [16].

D. Application to argon

In this work, we employ a three-state close-coupling ex-
pansion to describe the scattering of the ejected electron
from the residual Ar* ion. Specifically, we include the
(3523p)2P°, (353p°)2S, and (3s%3p*3d)’S states of Ar*.

As pointed out by Burke and Taylor [17] more than three
decades ago, an accurate description of these states is by no
means trivial. There is a strong configuration dependence in
the 3s and 3p orbitals for the ionic states, as well as for the
initial (35s*3p°®)'S bound state. If only a single set of orthogo-
nal one-electron orbitals are employed in the calculation, the
inclusion of a large set of additional configurations built us-
ing a suitable set of pseudo-orbitals [14,17] is necessary to
obtain numerically accurate results.

In the present BSR method, we employ a different, fully
relaxed and optimized 3s and 3p orbital for each of the prin-
cipal configurations mentioned above. The Ar* ionic states
were calculated using the MCHF approach [18], considering
all single and double excitations of the 3s and 3p electrons

into the 4/ (I=0-3) correlated orbitals. In the final expan-
sions, however, we only kept configurations with coefficients
greater than 0.02. We observed extremely strong configura-
tion mixing between the (3s3p®)%S and (3s*3p*3d)>S ionic
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states and consequently retained both channels in the final
close-coupling expansion.

The radial wave functions of the outer electron were ex-
panded in terms of a set of 561 B-splines of order eight,
using a semiexponential distribution of knots that allowed
for a numerically accurate description close to and far away
from the nucleus (up to 7, =500 a.u.).

Even with the flexibility available in the BSR approach,
an accurate description of the (3523p°)'S initial state of neu-
tral Ar remains a challenge. Consequently, we added 17
bound configurations to the close-coupling expansion for the
'S symmetry. These configurations were obtained in separate
MCHEF calculations, using the same general approach as for
the ionic states described above.

We obtained the absolute energies of the Ar(3s23p°)'s
initial state and the Ar*(3s%3p°)?P° ionic ground state as
—527.015 55 and —-526.437 50 a.u., respectively. These val-
ues correspond to an ionization energy of 15.73 eV while the
experimental value is 15.76 eV [19]. The thresholds for ion-
ization plus excitation to the other two ionic states in our
model were obtained as 29.19 and 38.72 eV, respectively.
The positions of these excited ionic states, as well as the
low-lying excited states of neutral Ar, are crucial in deter-
mining the resonance phenomena predicted in the multipho-
ton ionization process (see below). Given the complexity of
the target and the fact that we need to describe the interaction
of the ejected electron with the residual ion in a collision
setting rather than performing a structure-only calculation,
we believe that the present structure description is excellent
and more than sufficient for the problem of interest.

Before presenting the results of the generalized cross sec-
tions and ionization rates in the next section, a few remarks
about the basis and the laser parameters are in order. In our
previous work treating the neon atom in a strong laser pulse,
we confined the system to a box of 100 a.u. With this size of
the computational grid it was necessary to introduce an ab-
sorbing potential to avoid artificial reflection from the box
boundary. In the present work, we were able to extend the
box size to 500 a.u. For the pulses used in the calculation, we
were able to avoid the introduction of an absorbing potential
and to thus eliminate any lingering numerical issues associ-
ated with its presence. Reflection from the boundary is sim-
ply not an issue for this size box and these pulse durations.
Finally, the calculations were done at laser wavelengths
ranging from 88 to 390 nm. This allows us to treat multi
photon ionization of argon ranging from one- to five-photon
ionization. Laser pulses with durations of 30 optical cycles
or less were used in most cases, except for one 60-cycle
example to better resolve a predicted resonance structure for
a photon energy around 12.75 eV. Although the current
problem in Ar is significantly larger than the Ne case treated
earlier, by employing our new algorithm, it is still manage-
able using OpenMP on single-node multiple-core machines.
A single laser pulse typically requires a few hours of CPU
time on our local cluster. For example, after truncating the
energy spectrum at 10 a.u., the matrix sizes were 1618 and
2133 for the 'S and 'P° blocks, respectively. Expanding the
time-dependent wave function in terms of six L blocks (i.e.,
Lyax=3), as for the cases of two-photon ionization shown
below, the rank of the entire matrix (with many zero blocks
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FIG. 1. Generalized cross section for two-photon ionization of
Ar(3p%)'S as a function of photon energy. A 30-cycle laser pulse
with a peak intensity of 10'> W/cm? was used in the calculations.
The filled circles represent the results obtained by using the total
ionization yield, while the open circles show those generated by
summing up the partial ionization yields from the individual chan-
nels (see the text). The Floquet results are from McKenna and van
der Hart [20].

due to the dipole selection rules), was only 12 263. Even for
Lx=9 (used for five-photon ionization), the rank just ex-
ceeded 20 000.

One of the appealing features of the time-dependent algo-
rithm employed in this work is its effectiveness. We only had
to use a few hundred (typically about 200) steps per optical
cycle, independent of the wavelength. Note that almost 2000
steps per cycle were used in Ref. [14].

III. RESULTS AND DISCUSSION
A. Two-photon ionization

For a sufficiently weak intensity of the laser pulse, for
example, I,=10'> W/cm? used in much of this work, the
ac-Stark shifts of the energy levels are negligible. Given the
first ionization potential of 15.7 eV, single ionization of ar-
gon is characteristic of the two-photon ionization process for
photon energies between 7.85 and 15.7 eV.

Figure 1 shows our results for the generalized two-photon
cross section of the argon atom, focused on the photon en-
ergy in the region from 8 to 14 eV. The present results were
obtained by using a laser pulse with a peak intensity of
1,=10"> W/cm? and a duration of 30 cycles, including a lin-
ear ramp on and ramp off over five cycles. Note that the
two-photon cross sections obtained by the present fully time-
dependent approach is predicted to exhibit three resonance
peaks around photon energies of 12.0, 12.75, and 13.9 eV,
respectively. These peaks were also seen by McKenna and
van der Hart [20], who employed the R-matrix Floquet ap-
proach. As mentioned above, this method effectively corre-
sponds to an infinitely long pulse and thus a sharply defined
photon energy. Although not shown on the graph, we note
that similarly good agreement with the Floquet results for
this and other cases was achieved with the independently
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developed time-dependent R-matrix approach of the Belfast
group [14].

In the present TDBSR method, the essential ingredients
for extracting the multiphoton ionization cross sections are
the ionization yield at the end of the laser pulse and the
effective interaction time (7). While the role of T,y was
highlighted above, a few remarks regarding the ionization
yield seem appropriate. At this point, we have two sets of
ionization yields at the end of the pulse, namely, (i) the total
yield and (ii) the partial ionization yields populated in the
relevant ionization channels. For the dominant two-photon
process described here, the latter correspond to the 'S and 'D
final continuum states. At first sight, one might think that
both the total and the partial ionization yields can be used to
obtain the generalized cross sections. This produces the two
sets of results in Fig. 1. Indeed, there are no significant dif-
ferences for photon energies below =13 eV. When the pho-
ton energy approaches the threshold for one-photon ioniza-
tion, however, we observe that the cross section extracted
from the total ionization yield is noticeably larger than that
obtained from the 'S and 'D partial ionization yields. In this
case the total ionization yield contains contributions from the
'P? symmetry, i.e., from the single-photon ionization prob-
ability. Note that the generalized cross sections shown below
were obtained using the probabilities derived from the domi-
nant symmetries, while the ionization yields include the con-
tributions from all partial waves.

No structure is seen when the photon energy is varied
between 8 and 11 eV. However, when the photon energy
increases from 11 to 14 eV, several resonance peaks appear.
These can be understood by analyzing the eigenvalues of the
Hamiltonian. The resonance at 12.0 eV can be attributed to
the photon energy coming into resonance, through a single-
photon excitation process, with the intermediate excited state
Ar*(3p>4s)' P°. This is the lowest state in the 'P° symmetry,
with an absolute energy of —526.574 a.u. in our calculation.
This corresponds to an excitation energy of 12.01 eV from
the neutral initial state, in good agreement with the NIST
value of 11.83 eV [19]. The next resonance occurring at a
photon energy of 12.75 eV is due to an intermediate-state
resonance between an autoionizing state and the ground state
through a two-photon absorption process. For the argon
atom, autoionizing states converging to the second ionization
threshold corresponding to the Ar*(3s3p°®) ionic state are the
(3s3p°n€)'L series, which are embedded in the continuum of
the (35?3p°k€)'L states. Among them, the channels corre-
sponding to (3s3p°ns)'S and (3s3p°nd)'D are reachable by
the absorption of two photons from the ground state
(3523p%)'S. This is the reason for the resonance at 12.75 eV,
when the photon hits the intermediate (353p%4s) IS state after
two-photon absorption. In some earlier calculations (see, for
example, Pan et al. [21]), the resonance at 12.75 eV was not
seen, since coupling to the Ar*(3s3p®) state was not in-
cluded.

Returning to the resonance at 12.0 eV, we should also
point out a competing process to the two-photon ionization.
This can be explained by a simplified two-level model. As
mentioned above, the photon energy matches the energy gap
between the (3p°®)'S and (3p>4s)' P states very well in this
case. Consequently, the excitation probability of the
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FIG. 2. Excitation probability of argon for a 30-cycle laser pulse
with a peak intensity of 2 X 10'> W/cm? and photon energies of 10,
11, 12, and 13 eV. Note the different scales for the individual pho-
ton energies.

(3p°45)' P state through absorption of the first photon will
be large. The electron may now be efficiently ionized by the
absorption of a second photon from the (3p°4s)' P state. On
the other hand, quantum mechanics tells us that there is in-
terference between the ionization and stimulated de-
excitation back to the ground state, and thus the entire pro-
cess is not simply overwhelmed by ionization at the
resonance energy.

The above mechanism becomes evident by looking at
Fig. 2, which depicts the excitation probability at different
photon energies. These so-called Rabi oscillations occur
when the photon energy matches the energy gap between the
two states, leading to oscillations in the excitation probability
with a large amplitude and a long oscillation period. When
the photon energy is tuned away from the energy gap, there
are still oscillations, but with much smaller amplitudes and
shorter Rabi periods. Note that the period of the Rabi oscil-
lation can be estimated as R(w)z\r(AE)2+W%i, where AE

10748 . . . . i ; . . . . :
' R-matrix Floquet
7=230o0.c °
7 =60 o.c.

1079 F

Generalized cross section (cms)

10—503-000000

Iy = 10" W/cm? E

11 12 13
Photon energy (eV)

FIG. 3. Effect of the pulse duration on the generalized cross

section for two-photon ionization of argon. Laser pulses with dura-

tions of 30 or 60 optical cycles and a peak intensity of 10> W/cm?

were used. The Floquet results are from McKenna and van der Hart
[20].
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FIG. 4. Effect of the laser peak intensity on the generalized
two-photon cross section for a 30-cycle laser pulse. The Floquet
results are from McKenna and van der Hart [20].

denotes the energy detuning (AE=w— wg) and Wy; is the cou-
pling strength between the two energy levels induced by the
external laser field. The amplitude of the Rabi oscillation is
approximately given by AR(w)=W%i/ [W%i+(w—wﬁ)2]. If the
photon energy exactly hits the energy gap, i.e., w=wy;, the
system can be completely pumped to the excited state. This
is in good agreement with Fig. 2. Since the present ab initio
calculations also include effects from other states, however,
the maximum population is not exactly unity.

Similarly, for a higher photon energy, the photon can also
hit the (3s3p®3d)' D state, thereby resulting in the third reso-
nance peak in Fig. 1 just below a photon energy of 14 eV.
The analysis in Ref. [20] suggests that this resonance is ac-
tually a mixture of the (3s3p°3d)'D and (353p°5s)'S states.
Hence, these two resonances again correspond to an inner-
shell (3s) excitation process.

Turning to the question of the effect of the pulse duration
on the calculated generalized cross sections, Fig. 1 clearly
shows that the present results at the resonance photon ener-
gies are lower than the predictions of the R-matrix Floquet
calculations. As mentioned before, this is simply due to the
fact that the Floquet method corresponds to an infinitely long
pulse. This is equivalent to using a single, precise photon
energy and therefore no broadening of the resonances occurs.
In a fully time-dependent approach, such as the one used in
the present work, the system is subjected to a temporal laser
field with a limited pulse duration and the cross sections
must be extracted from the propagated wave function using
indirect techniques subject to a finite energy resolution.

As an example, Fig. 3 shows the effect of the pulse dura-
tion on the two-photon ionization cross section around the
photon energy of 12.75 eV. As expected, increasing the pulse
length to 60 optical cycles (again including a 5-cycle ramp
on and ramp off), i.e., making the laser frequency sharper,
results in a higher resonance peak with a narrower energy, in
closer agreement with the R-matrix Floquet results of
McKenna and van der Hart [20]. In addition to the pulse
duration, we note that there are other differences between the
two sets of calculations. Of particular importance are the
different descriptions of both the initial bound state and the
final ionic states, as well as the number of coupled states.

PHYSICAL REVIEW A 78, 053402 (2008)

WY
2: R-matrix Floquet —
g qosof lo= 108 W/em? o i
ks ?
g 107%E :
© E
S 10782 -
z 3
S i .
& -83L 4
& 107 :
3 i
—84 P S S S S RS
10775 6 7 8

Photon energy (eV)

FIG. 5. Generalized cross section for three-photon ionization of
argon atoms as a function of photon energy for a 30-cycle laser
pulse of peak intensity 10'> W/cm?. The Floquet results are from
McKenna and van der Hart [20].

These differences are responsible for the small shift in the
energy position of the resonance in the vicinity of 12.75 eV.

Finally, Fig. 4 shows the effect of the laser intensity on
the generalized two-photon cross section. While both peak
intensities, 10'> and 10'3> W/cm?, still lie in the perturbative
regime, the height of the first resonance peak is significantly
diminished for the more intense laser field.

B. Generalized cross sections for three-photon and five-photon
ionization

We now turn to processes needing more than two photons
to ionize the argon atom. Specifically, Fig. 5 shows the gen-
eralized cross section for three-photon ionization while Fig.
6 depicts our results for the five-photon process. In the latter
case, the wavelength ranges between 330 and 390 nm. Once
again, our predictions agree in a satisfactory way with the
Floquet results of McKenna and van der Hart [20] (three
photons) and van der Hart [22] (five photons), bearing in
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FIG. 6. Generalized cross section for five-photon ionization of
argon atoms as a function of photon energy for a 30-cycle laser
pulse of peak intensity 10'> W/cm?. The Floquet results are from
van der Hart [22].
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FIG. 7. lonization yield as a function of photon energy in
10-cyle and 30-cycle laser pulses of peak intensity 10> W/cm?.

mind the expected broadening of our features due to the fi-
nite duration of the laser pulse and the changes in the reso-
nance positions related to differences in the atomic structure
models.

C. Ionization yield for two-photon and three-photon ionization

We finish this section by showing two examples of the
ionization yield for photon energies in the regime dominated
by two-photon and three-photon processes. Note that, due to
the different photon numbers involved, it does not make
sense to define a generalized cross section in this case. Fig-
ure 7 shows the yield for a fixed peak intensity of
10" W/cm? but pulses of different length. In addition to the
expected smaller ionization rate for the 10-cycle pulse (for
this pulse the ramp on and ramp off were chosen as three
cycles each), some of the structures resolved in the 30-cycle
pulse completely disappear. This is another example of fea-
ture broadening with decreasing pulse length.

Finally, Fig. 8 shows the effect of increasing the laser
peak intensity by another order of magnitude, this time for
the short 10-cycle pulse. In addition to the larger ionization
yield for the more intense pulse, we notice qualitative differ-
ences in the energy dependence of the ionization yield, with
a significant shift in the low-energy regime. This is a conse-
quence of the large ac-Stark shift for a peak intensity as high
as 10'* W/cm?.

IV. CONCLUSIONS AND OUTLOOK

We applied the TDBSR method to multiphoton ionization
of argon atoms by a strong short laser pulse. The present
calculations became possible via a significant improvement
in the numerical implementation of the method. Where ap-
plicable, excellent agreement with predictions from R-matrix

Photon energy (eV)

FIG. 8. Ionization yield as a function of photon energy in
10-cycle laser pulses with peak intensities of 10'3 and 10'* W/cm?.

Floquet calculations, as well as those from an independently
developed time-dependent R-matrix approach has been ob-
tained.

In light of the improvements in the efficiency and stability
of our method, we are confident that we are now able to
perform accurate multiphoton, single-ionization, and excita-
tion calculations for essentially all atomic targets of current
experimental interest. As the next step, we plan to extend the
method to allow for two electrons in the continuum and
check the results against the wealth of theoretical predictions
available for double ionization of helium. Thereafter, we will
turn our attention to the double ionization of complex targets,
starting again with Ne and Ar, for which experiments are
currently under way or in preparation. In these cases, cou-
pling to a singly or doubly ionized core with nonzero angular
momentum will significantly increase the size of the matrices
we will need to handle. However, we are confident that the
TDBSR method, coupled with access to large scale compu-
tational resources available at National Science Foundation
and U.S. Department of Energy computational facilities, will
enable us to tackle these experimentally interesting and
highly challenging problems in short-pulse, strong-field
atomic physics.
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