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We study the near-threshold behavior of scattering phase shifts, quantum reflection amplitudes, and quanti-
zation functions for systems described by a circularly symmetric potential in two spatial dimensions. In
contrast to the three-dimensional case, the centrifugal potential �m2− 1

4 ��2 / �2Mr2� is nonvanishing and even
attractive for s waves, m=0, and the leading near-threshold energy dependence of phase shifts and amplitudes
for scattering and quantum reflection is logarithmic in this case. The near-threshold behavior of the s-wave
phase shifts and amplitudes can nevertheless be characterized by a well-defined scattering length �for potentials
falling off faster than 1 /r2� and an effective range �for potentials falling off faster than 1 /r4�. For a potential
with a bound state at energy En=−�2�n

2 / �2M� very near threshold, the scattering length obeys

a �
�n→0

2e−�E /�n+O��n�, with no term of order �n
0—in contrast to the three-dimensional case. Analytical results

are derived for homogeneous potentials, and the necessary modification of the effective-range expansion is
given for potentials proportional to 1 /r4. For m�0 we give analytical expressions for the near-threshold
behavior of phase shifts as well as scattering and quantum reflection amplitudes, which are generally valid,
even when m is neither integer nor half-integer.
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I. INTRODUCTION

Interest in two-dimensional scattering theory has been
motivated by experiments involving atoms adsorbed to sur-
faces �1,2�. A two-dimensional theory is, however, not only
relevant for planar problems, but also for three-dimensional
systems with translational invariance in one of the three di-
rections, as is, e.g., the case for scattering of an atom or
molecule by a wire or nanotube. Considerable attention has
recently been given to the case of a neutral atom or molecule
interacting with an electrically charged wire or nanotube
�3,4�, where the potential has a strong attractive tail propor-
tional to −1 /r2 at large distances. For a neutral wire or nano-
tube, the interaction potential falls off more rapidly at large
distances, but the strength of the centrifugal potential in two
dimensions is given by m2−1 /4, m=0, �1, �2. . ., so it is
always nonvanishing, even for s waves �m=0�, where it has
the counterintuitive feature of being attractive �5,6�. This at-
tractive centrifugal term in the s-wave radial equation is, on
its own, just too weak to support a dipole series of bound
states �7�, but it does significantly affect the near-threshold
behavior of the s-wave scattering phase shift and of the scat-
tering cross section �8–10�. Verhaar et al. �11� showed that
the concepts of scattering length and effective range can be
sensibly used to describe the leading and next-to-leading
terms in the near-threshold expansion of the cotangent of the
s-wave scattering phase shift for circularly symmetric poten-
tials of finite range, even though the expansion contains a
logarithmic divergence in contrast to the well-behaved nature
of the corresponding expansion in three dimensions. In this
paper we extend the concepts of effective-range theory for
scattering in two spatial dimensions to the case of quantum
reflection, where the Schrödinger equation is solved with in-
coming boundary conditions at small distances �12–14�. This
provides a realistic description of, e.g., cold-atom scattering,
when the atoms are lost from the elastic channel due to

inelastic reactions or adsorption at the surface of the scat-
terer. We also apply a subthreshold version of effective-range
theory to derive the leading behavior of the quantization
function governing near-threshold quantization and we for-
mulate a relation connecting the s-wave scattering length and
the energy of a near-threshold bound state, as recently done
for s waves in three dimensions in �15,16�.

After a review of the essential features of near-threshold
scattering theory in two dimensions �Sec. II�, Sec. III de-
scribes the adaptation of this theory to the case of quantum
reflection by an attractive potential tail and shows how a few
characteristic parameters of the potential tail determine the
near-threshold behavior of the quantum reflection amplitude,
namely, the complex scattering length a and the complex
effective range reff, which describe the leading and next-to-
leading behavior of the complex phase shift d. In Sec. IV we
study quantization in a potential well with an attractive tail
and derive the leading behavior of the quantization function
that defines the quantization rule near threshold. This leads to
a relation which contains the modulus and phase of the com-
plex scattering length a and directly connects the real s-wave
scattering length a with the energy of a near-threshold bound
state as shown in Sec. V.

Section VI is devoted to potentials with homogeneous
tails, proportional to 1 /r�, and gives analytical expressions
as well as numerical values for the parameters a and reff

2 . The
special case �=4, where the effective-range expansion has to
be modified, is treated in Sec. VII.

Nonvanishing values of m are treated in Sec. VIII. We
give analytical expressions for the leading and next-to-
leading contributions to the near-threshold behavior of the
real and complex phase shifts determining the amplitudes for
scattering and quantum reflection by homogeneous poten-
tials. The formulas in Sec. VIII are quite general and also
applicable when m is not integer or half integer.
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II. SCATTERING THEORY AND EFFECTIVE-RANGE
EXPANSION IN TWO DIMENSIONS

Relatively detailed descriptions of two-dimensional scat-
tering theory can be found, e.g., in �8–10�. In this section we
briefly review some of the main aspects, including the defi-
nition of a well-defined scattering length for all potentials
falling off faster than 1 /r2 asymptotically, and of an
effective-range term which is well defined for all potentials
falling off faster than 1 /r4.

For a particle of mass M moving in a plane under the
influence of the circularly symmetric potential U�r�, the sta-
tionary Schrödinger equation at energy E=�2k2 / �2M� is
solved by the wave function

��r�� = �
m=−�

+�
um�r�
�r

eim	, �1�

when the radial wave functions um obey the respective radial
Schrödinger equation

d2um

dr2 + �k2 −
m2 − 1/4

r2 −
2M

�2 U�r�	um�r� = 0, �2�

which does not depend on the sign of the angular momentum
quantum number m. Equation �2� corresponds to the familiar
radial Schrödinger equation in three dimensions if we write
l�l+1� for m2− 1

4 , i.e., if we interpret 
m
 as l+ 1
2 . The regular

solution cm and the irregular solution sm of the free equation
�U�0� are given via cylindrical Bessel functions �17�,

cm�kr� =�


2
krJ
m
�kr�, sm�kr� =�


2
krY 
m
�kr� , �3�

and their asymptotic behavior is

cm�kr� �
kr→�

cos�kr − 
m




2
−



4
 ,

sm�kr� �
kr→�

sin�kr − 
m




2
−



4
 . �4�

Their behavior at small distances is

cm�kr� �
kr→0 �


��
m
 + 1�� kr

2
�1/2�+
m


,

sm�0�kr� �
kr→0

−
��
m
�
�
 � kr

2
�1/2�−
m


,

sm=0�kr� �
kr→0� 2



kr�ln� kr

2
 + �E	 , �5�

where �E=0.577 215 664 9. . . is Euler’s constant. The regu-
lar solution ureg,m

�k� of Eq. �2� obeys ureg,m
�k� �0�=0 and is a su-

perposition of cm and sm at large distances,

ureg,m
�k� �

r→�

cm cos m − sm sin m

→
r→�

cos�kr − 
m




2
−



4
+ m

� e−ikr − �− 1�
m
ie2ime+ikr. �6�

If the potential is not too long ranged �as clarified below�,
then at a given large distance r, the near-threshold behavior
of ureg,m

�k� follows from Eq. �5� as

ureg,m
�k� �

kr→0 �

��
m
 + 1�� kr

2
�1/2�+
m


cos m

+
��
m
�
�
 � kr

2
�1/2�−
m


sin m �7�

for 
m
�0, while for m=0 we have

ureg,0
�k� �

kr→0�

kr

2
cos 0 −�


kr

2
�ln� kr

2
 + �E	sin 0.

�8�

At threshold k=0, two linearly independent solutions of the
free equation �U�0� are r�1/2�+
m
 and r�1/2�−
m
 for 
m
�0,
and �r and �r ln r for m=0. In the limit k→0, the expres-
sions �7� and �8� become proportional to a k-independent
superposition of these linearly independent threshold solu-
tions, only if the k dependence of cos m and sin m compen-
sates the difference in the k dependence entering via the ar-
gument �kr /2�. For 
m
�0 this is achieved, for potentials
falling off faster than 1 /r2
m
+2, if

tan m �
k→0 �


��
m
���
m
 + 1�� kam

2
2
m


. �9�

For m=0 we need

cot 0 �
k→0 2



�ln� ka

2
 + �E	 . �10�

The appropriately normalized zero-energy solution ureg,m
�0� of

Eq. �2� thus behaves for large r as

ureg,m�0
�0� �r� �

r→�

�r�� r

am

m


� � r

am
−
m
	 ,

ureg,m=0
�0� �r� �

r→�

− �r ln� r

a
 . �11�

To understand the restriction to potentials falling off faster
than 1 /r2
m
+2, consider a potential behaving asymptotically
as

U�r� �
r→�

�
�2

2M

�����−2

r�
, � � 2. �12�

The threshold solution of Eq. �2� is, at large r, essentially a
superposition of Bessel functions of order �=2
m
 / ��−2�
and argument z=2��� /r���−2�/2 / ��−2� �18�. For an attractive
potential tail, two linearly independent solutions at large r
are �rJ��z� together with �rJ−��z� �if � is not an integer� or
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with �rY��z� �if � is an integer�. For large r �small z�, the
leading contribution to a superposition of �rJ��z� and
�rJ−��z� �or �rY��z�� comes from J−� �or Y�� and is propor-
tional to r�1/2�+
m
. The next-to-leading term contains a further
factor �z /2�2� ��� /r��−2 and is thus proportional to
r�1/2�+
m
+2−�; this contribution should have a weaker r depen-
dence than the leading contribution from �rJ��z�, which is
proportional to r�1/2�−
m
, cf. Eq. �11�, so the reasoning above
and the expressions �9� and �10� are only applicable for
�−2�2
m
. The same arguments hold for a repulsive poten-
tial tail; the Bessel functions J� and Y� are merely replaced
by I� and K�.

The constants am in Eq. �9� and a in Eq. �10� define a
characteristic scale for the leading near-threshold behavior of
the partial-wave scattering phase shift m and deserve to be
called the respective partial-wave scattering length. This is,
in particular, true for the s-wave scattering length a, even
though the leading near-threshold behavior of 0 is logarith-
mic and very different from the behavior of the s-wave phase
shift in three dimensions �19–21�. The definition of the
s-wave scattering length via Eqs. �10� and �11� is as already
formulated by Verhaar et al. �11�. It has the advantage that
the right-hand side of Eq. �10� gathers all contributions of
order k0, and that further contributions are of genuinely
higher order �meaning not only through logarithmic factors�
in k. For scattering by a hard circle of radius Rc, we have
cot 0=Y0�kRc� /J0�kRc� and a=Rc �8�. Alternative defini-
tions of the s-wave scattering length have been proposed
�22�, but these generally lead to an additional and unneces-
sary term of order k0, which is not helpful in practical calcu-
lations. The scattering length defined above resembles the
s-wave scattering length in three dimensions in that it is the
uniquely defined nontrivial zero of the threshold solution v�0�

of the free equation with the same asymptotic behavior �11�
as the threshold solution of Eq. �2�. In three dimensions
v�0��r��1−r /a, while in two dimensions v�0��r�=
−�r ln�r /a�. Note that, in two dimensions, a is well defined
for any potential falling off faster than 1 /r2 asymptotically,
and a is always positive.

The logarithmic dependence on the wave number of the
right-hand side of Eq. �10� is characteristic of s waves in two
dimensions, so characteristic that it is worth introducing the
logarithmic function

L�x� =
def

ln� x

2
 + �E �13�

as a special notation. The near-threshold behavior of quanti-
ties such as the s-wave phase shift are dominated by the
logarithmic term, because the logarithm diverges for vanish-

ing argument, L�x� →
x→0

−�. Positive powers xp of x are of
higher order than L�x� for x→0. For a given positive argu-
ment x0, however, L�x0� is zero, so xp is no longer small
compared to L�x�. The dimensionless number x0 represents a
natural upper limit for the dominance of the leading logarith-
mic term�s�. Explicitly,

x0 = 2e−�E � 1.122 919 0, L�x0� = 0. �14�

The amplitude f�	� for scattering in two dimensions has
the physical dimension of the square root of a length, and its
partial-wave decomposition is

f�	� = �
m=−�

+�

fmeim	, fm =
1

�2i
k
�Sm − 1� , �15�

where Sm=e2im is the S matrix in the partial wave m. The
differential scattering cross section d� /d	 and the total
�elastic� scattering cross section � are lengths given by

d�

d	
= 
f�	�
2 = �

m,m�

f
m
* fm�e

i�m�−m�	,

� = �
0

2
 d�

d	
d	 = 2
 �

m=−�

+�


fm
2 =
4

k
�

m=−�

+�

sin2 m. �16�

Near threshold, both differential and total cross section are
dominated by the s wave and diverge almost as 1 /k, “al-
most” meaning except for a logarithmic factor.

d�

d	
�

k→0


f0
2, � �
k→0

2

f0
2 =
4

k
sin2 0 =

4/k
1 + cot20

.

�17�

The next-to-leading contributions to the differential cross
section are of order k1; they come from the 
m
=1 contribu-
tion to the scattering amplitude and from the next-to-leading
contribution to the s-wave scattering phase shift, which we
obtain via an effective-range expansion. Following the pro-
cedure familiar from three-dimensional scattering theory
�19–21�, we start with appropriately normalized regular so-
lutions ureg,m=0

�k� of Eq. �2�, which behave asymptotically as

ureg
�k� �r� �

r→�


2
�r�J0�kr�cot �k� − Y0�kr�� , �18�

and the corresponding solutions v�k� of the free equation,
which have the same asymptotic behavior,

v�k��r� =



2
�r�J0�kr�cot �k� − Y0�kr�� . �19�

We drop the subscript 0 on the wave functions u ,v and on
the phase shift  as long as we are obviously referring to s
waves. From the Schrödinger equation �2� for m=0, taken at
threshold and at finite wave number k, with and without the
potential U we obtain

�ureg
�0�ureg

�k�� − ureg
�0��ureg

�k� − �v�0�v�k�� − v�0��v�k���0
� = k2I�k� ,

�20�

with

I�k� = �
0

�

�v�0��r�v�k��r� − ureg
�0��r�ureg

�k� �r��dr . �21�

On the left-hand side of Eq. �20�, the contributions from
r→� vanish, because the solutions u with and v without
potential obey the same boundary conditions. For r→0 the
contribution from the u’s, the regular solutions of Eq. �2�,
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vanish because of their boundary conditions, while the con-
tribution from the v’s �19� is

v�0�v�k�� − v�0��v�k� �
r→0


2
cot  − L�ka� , �22�

with the logarithmic function L as defined in Eq. �13� above.
The leading behavior of cot  up to and including terms of
order O�k2� thus is

cot  �
k→0 2



�L�ka� +

�kreff�2

2
	 , �23�

with an “effective-range term” defined by

reff
2 = 2lim

k→0
I�k� = 2�

0

�

�„v�0��r�…2 − „ureg
�0��r�…2�dr , �24�

as already formulated by Verhaar et al. �11�. Note that reff
2

can be negative.
In order to appreciate the range of applicability of the

effective-range expansion �23�, consider again a potential be-
having asymptotically as Eq. �12�. The zero-energy solutions
ureg

�0� of Eq. �2� for m=0 then behave asymptotically as a
superposition of Bessel functions of order zero and argument
z=2��� /r���−2�/2 / ��−2�. The leading contribution for large r
�small z� is a term identical to v�0�=−�r ln�r /a�, and the
next-to-leading contribution contains a further factor propor-
tional to z2, i.e., to r−��−2�. The leading contribution to
�v�0��2− �ureg

�0��2 is thus proportional to r�3−�� ln�r /a�2, so the
integral on the right-hand side of Eq. �24� converges to a
well-defined limit for ��4.

III. QUANTUM REFLECTION

For deep potentials with attractive tails falling off more
rapidly than −1 /r2, as typically occur in the interaction of
atoms or molecules with a conducting or dielectric surface,
the motion of the projectile becomes classical not only at
large distances, but also for “small” distances. Here “small”
refers to a comparison with typical length scales of the po-
tential tail, which may be many hundreds or thousands of
atomic units �23�. In the close region of a few atomic units or
so, the interaction depends more significantly on the internal
microscopic structure of target and projectile and is usually
quite complicated. When the short-ranged part of the inter-
action leads to inelastic reactions so efficiently that we can
assume total absorption from the elastic channel in the close
region, then the yield of elastically scattered particles is en-
tirely due to quantum reflection, i.e., to classically forbidden
reflection in the absence of a classical turning point. Quan-
tum reflection occurs in the distant, nonclassical region of
the attractive potential tail in the scattering of atoms from
conducting or dielectric flat surfaces �12,13,24–29�, and in
s-wave scattering of atoms from a sphere �14�. For scattering
in two dimensions, the s-wave centrifugal potential is purely
attractive. When it is supplemented by an attractive potential
tail more singular than −1 /r2, motion becomes classical and
the WKB approximation becomes increasingly accurate at
small distances just as in the one-dimensional �flat surface�

and three-dimensional cases, so the quantum reflection am-
plitude can be defined uniquely via incoming boundary con-
ditions for small r—this is an unambiguous representation of
complete absorption in the close regime.

In order to determine the amplitude for s-wave quantum
reflection in two dimensions, we study complex solutions
u�k��r� of the radial Schrödinger equation �with the real po-
tential Utail�, which obey incoming boundary conditions at
small r and behave asymptotically �large r� as

u�k��r� �



2
�r�J0�kr�cot d − Y0�kr�� �

r→�

e−ikr + R�k�e+ikr.

�25�

This has the same form as already given in Eqs. �6� and �18�,
except that the phase shift d is now complex and the S ma-
trix Sm=0= iR=exp�2id� is no longer necessarily unitary,

S0
= 
R
�1. The complex phase shift d is related to the
quantum reflection amplitude R by

i cot d =
1 + iR

1 − iR
, R = − i exp�2id� = − i

cot d + i

cot d − i
. �26�

At threshold, the complex wave function �25� assumes a

k-independent form, u�0��r� �
r→�

−�r ln�r /a� characterized by
a �complex� scattering length a. As in Sec. II, an effective-
range theory based on the wave functions �25� and the cor-
responding solutions of the free equation,

v�k��r� =



2
�r�J0�kr�cot d − Y0�kr�� ,

v�0��r� = − �r ln� r

a
 = − �r ln� r


a
 + i arg�a��r , �27�

yields an effective-range expansion of the cotangent of the
complex phase shift d,

cot d �
k→0 2



�ln� ka

2
 + �E +

1

2
�kreff�2	 , �28�

with the complex effective range defined by

reff
2 = 2�

0

�

�„v„0��r�…2 − „u�0��r�…2�dr . �29�

Here u�0��r� is the threshold solution of the Schrödinger
equation �including the singular attractive potential�, which
behaves asymptotically as v�0��r� given in Eq. �27�.

The complex scattering length a can be related to the
amplitudes and phases of two linearly independent real
threshold solutions,

u�0��r� �
r→�

�r, w�
�0��r� �

r→�

− �r ln� r

�
 , �30�

where � is a length, yet to be determined, which ensures that
the argument of the logarithm is dimensionless. At small
distances, where the WKB approximation is accurate, both
u�0� and w�

�0� can be written as WKB waves with real ampli-
tudes D0 ,B0,
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u�0��r� =
D0

�p0�r�
cos�Itail

�0��r��, w�
�0��r� =

B0

�p0�r�
cos�Jtail

�0��r�� .

�31�

Here Itail
�0��r� is essentially the action integral involving the

local classical momentum at threshold,
p0=��2 / �4r2�−2MUtail�r�,

Itail
�0��r� =

1

�
�

r

rO

p0�r��dr� − ��rO� . �32�

The integral can only be taken to a finite upper limit rO
without diverging, and it is regularized by subtracting a
phase ��rO�, which diverges in the same way for rO→�.
For sufficiently large rO, Itail

�0��r� must be independent of rO,
and its phase is defined such that the WKB representation
�31� of u�0��r� agrees with the exact wave function for
r→0. The integrand Jtail

�0��r� describing the r dependence of
w�

�0� in the WKB region differs from Itail
�0��r� by an

r-independent phase which depends on the length � govern-
ing the relative weights of the �r and the �r ln�r� contribu-
tions in w�

�0�. A simple possibility of defining the length � is
to require w�

�0��r� to be phase shifted for r→0 by 

2 relative

to the uniquely defined wave function u�0��r�, which tends to
�r asymptotically,

Jtail
�0��r� �

r→0

Itail
�0��r� −




2
⇒ w�

�0��r� �
r→0 B0

�p0�r�
sin�Itail

�0��r�� .

�33�

The linear combination of u�0� and w�
�0�, which describes in-

coming boundary conditions for r→0, is thus

u�0��r� � u�0��r� + i
D0

B0
w�

�0��r�

�
r→0 D0

�p0�r�
exp� i

�
�

r

rO

p�r��dr� − ��rO�	 . �34�

Inspection of the asymptotic �r→�� behavior �27� of u�0��r�
shows

� = 
a
, arg�a� = −
B0

D0
. �35�

With the definition �13� of the real logarithmic function L,
Eq. �28� can be written as

cot d �
k→0 2



�L�k
a
� +

k2

2
Re�reff

2 � + i�arg�a� +
k2

2
Im�reff

2 �	 .

�36�

Inserting this into the expression �26� for R gives

R �
k→0

− i�1 +
i


L�k
a
� +
1

2
k2 Re�reff

2 � + i�arg�a� −



2
+

1

2
k2 Im�reff

2 ��� . �37�

IV. NEAR-THRESHOLD QUANTIZATION

A potential well with a tail falling off faster than 1 /r2 can
support �at most� a finite number of bound states. This also
holds for s waves in two dimensions, even though the radial
Schrödinger equation �2� contains an attractive centrifugal
term − 1

4�
2 / �2Mr2� �30�. The bound-state energies En are de-

termined by a quantization function F�E� according to the
quantization rule

nth − n = F�En� , �38�

where nth is the not necessarily integer threshold quantum
number. An integer value of nth implies the existence of a
bound state exactly at threshold. For s waves in three dimen-
sions we have recently demonstrated �15,16� how knowledge
of the near-threshold behavior of F�E� can be used to imme-
diately read off scattering lengths from the energy of a high-
lying �not necessarily the highest-lying� bound state, or to
determine to very high accuracy the dissociation limit from
spectroscopic energies of high-lying states. In this section we
adapt the subthreshold effective-range theory described in
�16� in order to derive the leading contributions to the near-

threshold behavior of F�E� for s waves in the two-
dimensional case.

The potential U�r� is, for large distances, described by the
attractive tail Utail�r�, which is more singular than −1 /r2. The
WKB approximation of the Schrödinger equation �2� with
Utail becomes increasingly accurate for small r. We assume
that the region where the WKB approximation is sufficiently
accurate overlaps with the region in coordinate space where
the full potential U�r� is well represented by Utail. The solu-
tion of the radial Schrödinger equation �2� �with m=0�,
which obeys decaying boundary conditions for large r is

u��r� �
r→�

exp�− �r� . �39�

In the WKB region, u� can be written as a WKB wave,

u��r� =
D���
�p��r�

cos� 1

�
�

r

rout�E�

p��r��dr� −
�out�E�

2  .

�40�

Here rout�E� is the outer classical turning point and �out�E� is
the outer reflection phase, which is defined such that the
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wave function on the right-hand side of Eq. �40� has the
correct phase in the WKB region. Coming from short dis-
tances we have,

u��r� �
1

�p��r�
cos� 1

�
�

rin�E�

r

p��r��dr� −
�in�E�

2  , �41�

where �in�E� is the reflection phase at the inner classical
turning point rin�E�. Bound states exist at energies En for
which the two wave functions �40� and �41� match, which
leads to the generalized WKB quantization rule �23�,

1

�
S�En� �

1

�
�

rin�En�

rout�En�

p��r�dr = n
 +
�in�En�

2
+
�out�En�

2
.

�42�

The only condition for the applicability of Eq. �42� is, that
there is a WKB region �which can be arbitrarily small� be-
tween the inner and outer classical turning points, where the
WKB approximation is accurate. Subtracting Eq. �42� from
its threshold version �E=0� leads to the quantization rule
�38� with the quantization function

F�E� �
S�0�

�

−
�out�0�

2

− �S�E�


�
−
�out�E�

2



−
�in�0� − �in�E�

2

. �43�

The expression �43� is a bit more subtle than the corre-
sponding expression for the quantization function for s
waves in three dimensions �16�, because, due to the attractive
centrifugal term in the Schrödinger equation, the action inte-
gral S�E� diverges in the limit E→0. However, the outer
reflection phase �out also diverges, and the difference
1
�S�E�− 1

2�out�E� assumes a well-defined value in this limit,
which we write as 1

�S�0�− 1
2�out�0� for transparency.

The contribution of the potential tail to the quantization
function �43� can be written as

Ftail�E� �
Stail�0�

�

−
�out�0�

2

− �Stail�E�


�
−
�out�E�

2

 ,

�44�

where all quantities are now defined for the potential Utail,
e.g.,

Stail�E� = �
rl

rout�E�

p��r��dr�,

p��r� = ��2/�4r2� + 2M�E − Utail�r�� . �45�

The lower integration limit rl in Eq. �45� can be arbitrarily
small. Although the small-distance contributions to the ac-
tion integrals diverge for rl→0, their difference remains fi-
nite in this limit. The error caused by neglecting the contri-
bution from the inner reflection phases in Eq. �44� and by
replacing the action integrals from the full potential with Stail
depends smoothly and analytically on E, and it vanishes at
threshold, so we can write

F�E� = Ftail�E� + Fsr�E�, Fsr�E� �
E→0

�srE + O�E2� .

�46�

Here Fsr is the contribution from the short-ranged part of the
potential and �sr is the coefficient in its leading term.

Guided by the procedure used in Secs. II and III to derive
the effective-range expansion of scattering theory or quan-
tum reflection above threshold, or in Ref. �16� for the quan-
tization function for s waves in three dimensions, we con-
sider the wave function u�, which solves the radial
Schrödinger equation �2�—with m=0 and the potential
Utail—at energy E=−�2�2 / �2M�, and the solution v� of the
free equation �without Utail� obeying the same boundary con-
ditions,

v��r� = i�
�r

2
H0

�1��i�r� �
r→�

e−�r,

u��r� �
r→�

v��r� . �47�

Here H0
�1�=J0+ iY0 is the Hankel function �17�.

Again, taking the limit �→0 is a bit more subtle than for
s waves in three dimensions. Since

H0
�1��i�r� �

�r→02i



L��r� , �48�

with the logarithmic function L as defined in Eq. �13�, we
need to renormalize the wave functions �47� in order to get
�-independent limits at threshold. To this end we again in-
troduce a length �, to be determined, and we divide the wave
functions �47� by −� 2


�L����,

v�
����r� =




2i
�r

H0
�1��i�r�
L����

�
�→0

�r ,

u�
����r� �

r→�

v�
����r�, u�

����r� →
�→�

u�0��r� �
r→�

�r . �49�

From the Schrödinger equation �2�, with the potential
Utail, we obtain

�
rl

ru

�u�0�u�
���� − u�0��u�

����dr = �u�0�u�
���� − u�0��u�

����rl

ru

= �2�
rl

ru

u�0�u�
���dr �50�

for arbitrary lower and upper integration limits rl and ru. The
contribution from the upper integration limit to the right-
hand side of the upper line of Eq. �50� vanishes in the limit
ru→�, because u�

����exp�−�r� and u�
�����−� exp�−�r�. We

obtain the contribution from the lower integration limit rl by
looking at the wave functions u�

��� �cf. Eq. �40�� and their
derivatives,
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u�
�����r� =

D����
�p��r��−

1

2

p���r�
p��r�

cos� 1

�
�

r

rE

p��r��dr� −
�out�E�

2 
+

p��r�
�

sin� 1

�
�

r

rE

p��r��dr� −
�out�E�

2 	 , �51�

where D����=−�
 / �2��D��� /L����. Since Utail is more sin-
gular than −1 /r2 for small r, 1 / p��r� vanishes more rapidly
than r and the contributions from the cosine term in Eq. �51�
to products such as u�0�u�

���� in Eq. �50� vanish for rl→0.
Introducing the abbreviation

Itail
��� =

Stail�E�
�

−
�out�E�

2
, �52�

we obtain from Eqs. �40� and �51�,

�u�0�u�
���� − u�0��u�

����rl→0 =
D����D��0�

�
sin�Itail

��� − Itail
�0�� .

�53�

Equation �52� extends the definition �32� in Sec. III to sub-
threshold energies. The integrals diverge as rl→0, but the
difference Itail

���− Itail
�0� remains well defined.

From the free Schrödinger equation without potential we
have

��rv�
���� − ��r��v�

����rl

ru = �2�
rl

ru �rv�
���dr . �54�

Again, the contributions from ru vanish for ru→�, while the
contributions from rl are

��rv�
���� − ��r��v�

����rl→0 =
1

L����
. �55�

Combining Eqs. �50� and �53�–�55� gives

D��0�D����
�

sin�Itail
�0� − Itail

����

= −
1

L���
− �2�

0

�

��rv�
����r� − u�0��r�u�

����r��dr .

�56�

Inverting this expression provides an exact expression for
the tail contribution �44� to the quantization function,


Ftail�E� =
Stail�0�

�
−
�out�0�

2
− �Stail�E�

�
−
�out�E�

2


= arcsin� �

D��0�D����
�−

1

L����
−
�2�2

2
	 ,

�57�

where �2 has the dimension of a length squared and is given
by

�2�E� = 2�
0

+�

��rv�
����r� − u�0��r�u�

����r��dr . �58�

The near-threshold behavior of Ftail is determined by the
near-threshold behavior of D����, and the subthreshold ef-
fective range �eff given by the threshold limit of Eq. �58�,

�eff
2 = 2�

0

�

�r − „u�0��r�…2�dr . �59�

In order to understand the near-threshold behavior of
D���� we study the threshold solution u�0�, which behaves

asymptotically as u�0��r� �
r→�

�r �cf. Eq. �49��, and a linearly
independent second solution w�

�0� of the Schrödinger equation
�with Utail�, which behaves asymptotically as

w�
�0��r� �

r→�

− �rln� r

�
 . �60�

As in Sec. III we now choose the length � to be equal to the
modulus 
a
 of the complex scattering length a defining the
leading near-threshold behavior of the amplitude for quan-
tum reflection by Utail �see Eqs. �26�, �28�, and �35��. Since
the energy enters the Schrödinger equation linearly, we can
express the near-threshold behavior of the asymptotically de-
caying solution u�=
a


��� , to order below �2, as a superposition
of the linearly independent threshold solutions u�0� and w�=
a


�0�

with �-dependent coefficients. From the asymptotic behavior
�49� of u�=
a


��� and the near-threshold behavior �48� of H0
�1� we

see that the correct superposition is

u�=
a

��� �r� = u�0��r� −

w�=
a

�0� �r�

L��
a
�
+ O��2� . �61�

In the WKB region we can exploit Eqs. �31� and �33� to
write

u�=
a

��� �r� =

D0

�p0�r�
�cos„Itail

�0��r�… + A���sin„Itail
�0��r�…� + O��2�

=
D0

�1 + A���2

�p0�r�
cos�Itail

�0��r� − arctan„A���…� + O��2� ,

�62�

with the abbreviation

A��� = −
B0

D0L��
a
�
. �63�

An alternative expression for u�=
a

��� is provided by Eq. �40�—

divided by −� 2

�L��
a
�. Comparing the amplitude in Eq.

�62� with the alternative expression �40� gives

D�=
a
��� �
�→0

D0��1 + A���2 +
��d�2

2
	, D�=
a
�0� = D0.

�64�

We expect a term of order �2 due to the contributions O��2�
on the right-hand sides of Eqs. �61� and �62�; d is some
length characterizing this term.
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Comparing the phase in Eq. �62� with the alternative ex-
pression �40� gives

1

�
�

r

rout�E�

p��r��dr� −
�out

2

= Itail
�E��r� �

�→0

Itail
�0��r� − arctan„A���… + O��2� . �65�

Comparing Eq. �65� with the leading contributions to Eq.
�57� shows that � /D0

2=B0 /D0=−arg�a�, so

A��� =
arg�a�
L��
a
�

. �66�

Inserting these results into the subthreshold effective-
range expansion �57� yields the following formula for the
near-threshold behavior of the tail contribution Ftail to the
quantization function,

sin„
Ftail�E�… �
�→0 A���

�1 + A���2

��1 + L��
a
�
���eff�2

2
−

��d�2/2
�1 + A���2 .

�67�

Up to and including terms of order �2 we thus have


Ftail�E� �
�→0

arctan„A���…

+ arg�a�� ���eff�2

2
−

��d�2/2
�arg�a�2 + L��
a
�2	 .

�68�

For the expansion of functions containing a logarithmic de-
pendence on the argument, it is important to realize that any
finite power of the logarithm does not significantly change
the order of a term corresponding to a given power of the
argument. Thus any power of A��� in the Taylor series for
arctan(A���) in Eq. �68� is essentially of order �0. Among the
terms of order �2, the contribution proportional to �eff

2 is the
leading one, but the next term containing the less readily
accessible parameter d is smaller only by the reciprocal of a
logarithm.

V. SCATTERING LENGTHS AND NEAR-THRESHOLD
QUANTIZATION

The real scattering length a introduced in Sec. II, see Eq.
�11�, depends on the whole potential U and not only on the
�singular� potential tail Utail. The same is true for the thresh-
old quantum number nth which, together with the quantiza-
tion function, determines the bound state energies. Both are
connected through a relation containing parameters of Utail as
only further ingredients. To derive this relation we look at the
two wave functions u�0� and w�

�0�, which solve the radial
Schrödinger equation �2� �for m=0� with the potential Utail
and behave asymptotically as �r and −�r ln�r /��, respec-
tively, �see Eqs. �49� and �60��, and we again assume that the
parameter � is the modulus of the complex scattering length

a, which determines the leading near-threshold behavior of
the quantum reflection amplitude as described in Sec. III and
is a property only of the potential tail. The regular threshold
solution ureg

�0� of the Schrödinger equation, with the full po-
tential U, behaves asymptotically as

ureg
�0��r� �

r→�

− �r ln� r

a
 = − �r�ln� r


a
 − ln� a


a
	 .

�69�

At distances where the full potential U is well represented by
Utail it is a superposition of the solutions u�0��r� and w�=
a


�0� �r�,

ureg
�0��r� = w�=
a


�0� �r� + ln� a


a
u�0��r� . �70�

In the WKB region we can exploit Eqs. �31� and �33� to
write

ureg
�0��r� �

B0

�p0�r�
�sin„Itail

�0��r�… +
D0

B0
ln� a


a
cos„Itail
�0��r�…	

�
1

�p0�r�
cos„Itail

�0��r� − �…, cot � =
D0

B0
ln� a


a
 .

�71�

We can also write ureg
�0� as a WKB wave with reference to the

inner classical turning point rin�0� of the full potential,

ureg
�0��r� �

1
�p0�r�

cos� 1

�
�

rin�0�

r

p0�r��dr� −
�in

2  . �72�

The argument of the cosine in Eq. �72� must agree to within
a sign and/or an integral multiple of 
 with that in the lower
line of Eq. �71�, giving the following condition which no
longer depends on the exact value of r, as long as r lies in the
WKB region:

1

�
�

rin�0�

r

p0�r��dr� −
�in

2
+ Itail

�0��r� = � − n
 + O��2� .

�73�

This is, to order below �2, the threshold version of the quan-
tization condition �42�; the fact that Itail

�0��r� is defined with the
potential Utail according to Eq. �32� instead of with the full
potential only affects the result in order �2. With Eq. �35�,
the relation connecting scattering length a with threshold
quantum number nth is

nth =
def�



=

1



arctan�−

arg�a�
ln�a/
a
� ,

a = 
a
exp�−
arg�a�

tan�
nth�
 . �74�

For a bound state exactly at threshold, nth is the integer and a
is undefined, as in the three-dimensional case. In contrast to
the three-dimensional case, however, the scattering length
�74� is always positive when defined, i.e., for noninteger nth.

If there is a bound state at energy E=−�2�n
2 / �2M� very

close to threshold, we can use the quantization rule �38� with
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the expression �68� for the quantization function to express
the scattering length �74� in terms of �n,

a �
�n→02e−�E

�n
+ �ne−�E�eff

2 �arg�a�2 + L��n
a
�2�

− �ne−�Ed2�arg�a�2 + L��n
a
�2. �75�

A possible contribution from short-range effects to the quan-
tization function according to Eq. �46� is accounted for by
replacing �eff

2 with �eff
2 −�sr�

2 / (M arg�a�) on the right-hand
side of Eq. �75�. Note that, in contrast to the analogous ex-
pansion for s-wave scattering lengths in three dimensions
�16�, the right-hand side of Eq. �75� contains no contribution
of order �n

0.

VI. APPLICATION TO HOMOGENEOUS POTENTIALS

A. s-wave scattering by repulsive potentials

For a homogeneous repulsive potential,

U�r� = U�
rep�r� =

�2

2M

�����−2

r�
, � � 2, �76�

the regular zero-energy solution of Eq. �2� �for m=0� is es-
sentially a modified Bessel function of the argument

z = 2����

r
1/�2��

, � =
1

� − 2
, �77�

namely,

ureg
�0��r� = − 2��rK0�z� . �78�

For large r �small z�, its asymptotic behavior is

ureg
�0��r� �

r→�

− �r�ln� r

��
 − 2���E + ln����	 . �79�

Comparing with Eq. �11� shows that the scattering length arep

for the repulsive homogeneous potential �76� is

arep = �2� exp�2��E���. �80�

The leading near-threshold behavior of the s-wave phase
shift is given by Eq. �10�,

cot  �
k→0 2



L�karep� , �81�

with the logarithmic function L as defined in Eq. �13�. Ac-
cording to Eq. �14�, the zero of L�karep� occurs for

karep = x0 = 2e−�E ⇒ k�� =
2e−�1+2���E

�2� =
def

x�. �82�

The effective range is obtained via Eq. �24� from the wave
functions ureg

�0��r� and v�0��r�=−�r ln�r /arep�,

�reff
rep�2 = 2�

0

�

�„v�0��r�…2 − „ureg
�0��r�…2�dr =

�����1 − 2���4

2��1 − 4��
��

2 .

�83�

Numerical values of arep and �reff
rep�2 are listed in Table I for

integer values of ��2. Note that a finite value of �reff
rep�2

TABLE I. Characteristic parameters for homogeneous potentials. The first two rows show the �real�
scattering length arep �80� for the repulsive potential �76� and the argument arg�a� �87� of the complex
scattering length a for the attractive potential tail �85�. Remember that 
a
=arep according to Eq. �89�. The
third row shows the dimensionless number x�, which gives the value of k�� �or ���� at which the logarith-
mic function L�k
a
� �or L��
a
� vanishes, cf. Eq. �82��. The next three rows show the effective range squared
�reff

rep�2 �83� for the repulsive potential �76�, and both real and imaginary parts of the complex effective range
squared reff

2 �90� for the attractive potential tail �85�. The last row shows the subthreshold effective range
squared �eff

2 �99�. All lengths are in units of �� and all squared lengths are in units of ��
2 .

� 3 4 5 6 7 8 �→�

arep /�� 3.1722190 0.8905362 0.7063830 0.6672841 0.6617358 0.6670782 1

arg�a� /
 −1 − 1
2 − 1

3 − 1
4 − 1

5 − 1
6 −

1

�−2

x� 0.3539853 1.2609470 1.5896745 1.6828198 1.6969295 1.6833392 1.1229190

�reff
rep�2 /��

2 see Eq. �119� −1.4651483 0 0.1478103 0.1900491 1

2

Re�reff
2 � /��

2 see Eq. �115� 0.7325741 0 0.0456759 0.0950245 1

2

Im�reff
2 � /��

2 see Eq. �115� 1.2688556 0 −0.1405759 −0.1645873
−




�−2

�eff
2 /��

2 1.0020413 0.6366198 0.5479553 0.5199119 1
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exists only for ��4 �see Sec. VII�, and that �reff
rep�2 is nega-

tive for ��6.
The near-threshold behavior of the phase shifts for scat-

tering by the homogeneous repulsive potentials �76� is illus-
trated in Fig. 1. The top left panel shows the numerically
calculated phase shifts for several powers �; from bottom to
top �for k���1� the curves show the results for �=3 to
�=7. The other five panels show, each for a given power �,
the numerically calculated phase shifts �solid lines� together
with the leading contribution �81� �dotted lines�. For �=5 to
�=7 the dashed lines show the results of the effective-range
expansion �23�, while for �=4 the dashed line is the result of
the modified effective-range expansion �119�, as derived in
Sec. VII below. The vertical dotted lines show the position
k��=x�, where the logarithmic function L�karep� is zero ac-
cording to Eq. �82�.

The leading contribution �81� clearly reproduces the sud-
den near-threshold decrease of the phase shifts. Inclusion of
the modified effective-range contribution according to Eq.
�119� improves the agreement over a larger range of values
of k�� for �=4, but for �=5 the effective range formula �23�
leads to much worse agreement for k�5�0.4. Note that
�reff

rep�2 has a large negative value in this case. To verify that

the effective-range expansion �23� is nevertheless valid up to
and including O�k2�, we plot in Fig. 2 the absolute value of
the difference

��k�5� = eff.range�k�5� − num�k�5� �84�

between the prediction of Eq. �23� and the numerically cal-
culated phase shift, divided by �k�5�2. The curve in Fig. 2
tends smoothly to zero as k�5→0, showing that the differ-
ence �84� is of higher order than �k�5�2.

For �=6 we have �reff
rep�2=0, so the effective-range expan-

sion up to and including O�k2� gives the same result as the
leading contribution �81�. For �=7, the leading contribution
�81� is still accurate to within 0.016
 for k�7�1, and with
the effective-range formula �23� the error is smaller still by
more than a further factor of 5. Similar or better accuracy is
obtained for higher powers �.

B. Quantum reflection by attractive potentials

For an attractive homogeneous potential tail,

Utail�r� = U�
att�r� = −

�2

2M

�����−2

r�
, � � 2, �85�

the appropriately normalized zero-energy solution of Eq. �2�
�with m=0� obeying incoming boundary conditions is essen-
tially a Hankel function of the argument z given in Eq. �77�,
namely,

u�0��r� = − i
��rH0
�1��z�

�
r→�

− i
��r − �r�ln� r

��
 − 2���E + ln����	 .

�86�

Comparing with the asymptotics as expressed in Eq. �27� in
terms of the complex scattering length a shows that


a
 = �2� exp�2��E���, arg�a� = − 
� . �87�

The difference between the complex wave function
u�0��r�, Eq. �86�, and the real wave function ureg

�0��r�, Eqs. �78�
and �79�, is merely that the real parameter �� in Eqs. �78�
and �79� is replaced by ��e−i
�; this is precisely the transfor-
mation which transforms the repulsive homogeneous poten-
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FIG. 1. Phase shifts for s-wave scattering by a homogeneous
repulsive potential �76� in two dimensions. Numerically calculated
phase shifts for �=3 to �=7 are shown in the top left panel, from
bottom to top �for k���1�. In the other panels, each corresponding
to a given power �, the numerically calculated phase shifts �solid
lines� are compared with the leading behavior �81� �dotted lines�,
while the dashed lines show the prediction of the effective-range
expansion �23� �for ��4� or of the modified effective-range expan-
sion �119� �for �=4�. The vertical dotted lines show the position
k��=x�, where the logarithmic function L�karep� is zero according
to Eq. �82�.
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FIG. 2. Difference �84� between the numerically calculated
phase shift and the prediction of the effective-range expansion �23�
for scattering by the repulsive potential �76� with �=5. The curve
represents the absolute value of the difference �84� divided
by �k�5�2.
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tial �76� into the attractive potential tail �85�, and at the same
time transforms the regular behavior of ureg

�0��r� near the origin
into incoming boundary conditions for u�0��r�. As already
discussed in connection with quantum reflection by homoge-
neous potential tails for s waves in three dimensions �14�,
complex lengths characteristic of quantum reflection are ob-
tained from the corresponding real lengths describing con-
ventional scattering by the repulsive homogeneous potential
via the transformation

�� → ��e−i
�, ��
2 → ��

2e−2i
�. �88�

Thus

a = arepe−i
�, 
a
 = arep, �89�

and for the integral in Eq. �29�, which is the square of a
length,

reff
2 = 2�

0

�

�„v�0��r�…2 − „u�0��r�…2�dr = �reff
rep�2e−2i
�

=
�����1 − 2���4

2��1 − 4��
��

2e−2i
�. �90�

Numerical values of the real part Re�reff
2 � and of the imagi-

nary part Im�reff
2 � of reff

2 are listed in Table I.
For homogeneous potential tails, we have

L�k
a
� = ln� k��

2
 + �E + 2��ln��� + �E� , �91�

and the formula �37� becomes

R �
k→0

− i�1 +
i


L�k
a
� +
1

2
k2 Re�reff

2 � − i��� +
1

2
	
 −

1

2
k2 Im�reff

2 � � . �92�

Including only the leading terms of order k0 in the expansion
�28� for cot d, i.e., setting reff

2 =0 in Eq. �92�, gives the lead-
ing behavior of 
R
2 as


R
2 �
k→0

1 −
2
2�

L�k
a
�2 + �� +
1

2
2


2

, �93�

and the leading behavior of the phase of R is

arg�R� �
k→0

−



2
+


L�k
a
�

L�k
a
�2 + arctan���2 −
1

4
	
2 . �94�

The probability 
R
2 for quantum reflection is shown for
various powers � in Fig. 3. In the top left panel, the curves
from bottom to top show the numerically calculated values
of 
R
2 for �=3 to �=7. In the other panels, each for a given
power �, the numerically calculated values of 
R
2 �solid
lines� are compared with the leading contributions �93� �dot-
ted lines�, and the dashed lines show 
R
2 as obtained with
the effective-range expansion �92� for ��4 and with the
modified effective-range expansion �115� for �=4 �see Sec.
VII below�.

Figure 3 shows that the probability for quantum reflection
tends to unity at threshold, as for s waves in three dimen-
sions, but it drops below unity very rapidly due to the loga-
rithmic denominator in Eq. �93�. For a given value of k��,
the probability for quantum reflection increases with increas-
ing power � as the potential becomes less smooth.

The argument arg�R� of the amplitude for quantum reflec-
tion by a homogeneous potential tail �85� is shown in Fig. 4.

In the top left panel, the curves from bottom to top show the
numerically calculated values of arg�R� for �=3 to �=7. In
the other panels, each for a given power �, the numerically
calculated values of arg�R� �solid lines� are compared with
the leading contributions �94� �dotted lines�, and the dashed
lines show arg�R� as given by the effective-range expansion
�92� for ��4 and by the modified effective-range expansion
�115� for �=4 �see Sec. VII below�.

As for the quantum reflection probabilities, the effective-
range expansion �92� reproduces the numerically calculated
values of arg�R� quite well, except for �=5. For �=4, the
modified effective-range expansion �115� works well; a spu-
rious drop through 
 around k�4�1.1 is commented on in
Sec. VII below. The derivatives of arg�R� with respect to
energy or wave number can be related to the time shift �t or
the space shift �r to which an almost monochromatic wave
packet is subjected through quantum reflection �31,32�. For
example,

�r = −
1

2

d

dk
„arg�R�… , �95�

meaning that the time evolution of the reflected wave packet
corresponds to that of a free wave �free also of the influence
of the attractive centrifugal term�, which is reflected not at
r=0 but at r=�r. The derivative of arg�R� with respect to k
is negative throughout in Fig. 4, so �r�0; the apparent point
of reflection lies in front of the origin. This corresponds to a
time gain relative to the free particle reflected at r=0.
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C. Near-threshold quantization

The leading near-threshold behavior of the contribution
Ftail to the quantization function is determined according to
Eqs. �66� and �68�, by modulus and argument of the complex
scattering length a, which are given for homogeneous tails in
Eq. �87�. Equation �68� thus becomes


Ftail�E� �
�→0

arctan�−

�

L��
a
�
− 
�

���eff�2

2
+


���d�2/2
��
��2 + L��
a
�2

, �96�

and, in analogy to Eq. �91�, the logarithmic function L is

L��
a
� = ln����

2
 + �E + 2��ln��� + �E� . �97�

The leading contribution to the right-hand side of Eq. �96�,
obtained by replacing the arcus tangent by its argument, has
already been given in �18�. Remember, however, that all
powers of the logarithmic argument of the arcus tangent are
essentially of order �0.

The subthreshold effective range �eff
2 is as defined in Eq.

�59�. The wave function u�0�, which tends to �r asymptoti-
cally, is

u�0��r� = �rJ0�z� , �98�

where z is the argument already defined in Eq. �77�. Accord-
ing to Eq. �59�, �eff

2 is thus given by

�eff
2 = 2�

0

�

r�1 − J0�z�2�dr =

�2��4���1 − 2����1

2
+ 2�

�
��1 + 2��2
��

2 .

�99�

Numerical values of �eff
2 are listed in Table I.

As for s-wave scattering in three dimensions, the scatter-
ing length a depends on the absolute positions of near-
threshold bound states, and it is not defined for integer values
of threshold quantum number nth �see Eq. �74� in Sec. V�,

a = 
a
exp�−
arg�a�

tan�
nth�
 . �100�

In contrast to the three-dimensional case, however, a is al-
ways positive. As nth increases a little above an integer value,
n0, say, a decreases from +�, similar to the three-
dimensional situation. For nth=n0+ 1

2 we have a= 
a
. Beyond
n0+ 1

2 the scattering length a decreases uniformly, almost lin-
early, over a long stretch and then approaches the next inte-
ger value n0+1 very flatly. This is illustrated in Fig. 5, where
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FIG. 3. Probability 
R
2 for s-wave quantum reflection by a ho-
mogeneous potential �85� in two dimensions. The results for �=3 to
�=7 are shown from bottom to top in the top left panel. In the other
panels, each corresponding to a given power �, the solid lines show
the numerically calculated quantum reflection probabilities and the
dotted lines show the leading contributions �93�; the dashed lines
show the predictions of the effective-range expansion �92� for
��4 and of the modified effective-range expansion �115� for �
=4. The vertical dotted lines show the position k��=x�, where the
logarithmic function L�k
a
� is zero according to Eqs. �82� and �89�.
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FIG. 4. Argument arg�R� of the amplitude for s-wave quantum
reflection by a homogeneous potential �85� in two dimensions. The
results for �=3 to �=7 are shown from bottom to top in the top left
panel. In the other panels, each corresponding to a given power �,
the solid lines show the numerically calculated values of arg�R�, the
dotted lines show the leading contributions �94�, and the dashed
lines show the prediction of the effective-range expansion �92� �for
��4� or the modified effective-range expansion �115� �for �=4�.
The vertical dotted lines show the position k��=x�, where the loga-
rithmic function L�k
a
� is zero according to Eqs. �82� and �89�.
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we have taken parameters corresponding to the homoge-
neous potential tail �85� with �=6 as an example:

a
�0.667�6, arg�a�=−


4 .
For a bound state very near threshold, the expansion �75�

for the scattering length a in terms of the asymptotic inverse
penetration depth �n is

a �
�n→02e−�E

�n
+ �ne−�E��eff

2 ��
��2 + L��
a
�2�

− d2��
��2 + L��
a
�2� . �101�

Among the terms of order �n, the leading contribution con-
tains the square �eff

2 of the subthreshold effective range as
given in Table I, and it may be supplemented by a contribu-
tion accounting for short-range effects �see the discussion
after Eq. �75��. The second contribution of order �n is weaker
by 1 /�L�k
a
�2+ �
��2, and it contains the coefficient d2,
which is difficult to access in general. In order to verify the
structure of Eq. �101�, we have solved the Schrödinger equa-
tion �2� for Lennard–Jones-type potentials,

ULJ�r� = E�� rmin

r
2�

− 2� rmin

r
�	 . �102�

The dimensionless strength parameter BLJ=2ME�rmin�2 /�2

was varied around 930 for �=5, around 1020 for �=6, and
around 1175 for �=7; the highest bound state then has quan-
tum number n=9 for �=5, n=7 for �=6, and n=6 for
�=7. A given range of values of �n�� can be covered by
appropriately varying BLJ. This allows us to study the behav-
ior of the scattering length as a function of �n�� in the near-
threshold regime. In Fig. 6 we plot the normalized differ-
ence,

����n��� = −

a −
2e−�E

�n
− �ne−�E��eff

2 ��
��2 + L��
a
�2��

�ne−�E��
��2 + L��
a
�2

�103�

of the numerically calculated scattering length a and the
known terms on the right-hand side of Eq. �101� as a func-

tion of the �n��. According to Eq. �101�, �� should approach
d2 as �n��→0. The numerical results in Fig. 6 are consistent
with this expectation and suggest that d2 is near unity for
�=5, near −0.2 for �=7, and close to zero for �=6.

Figure 7 shows the scattering length a for the Lennard-
Jones potential �102� with �=6 as a function of �n�6, n=7.
The numerically calculated values �dots� are compared with
the prediction of the formula �101� with d2 taken as zero
�solid line� and with the leading term alone, a=2e−�E /�7
�dot-dashed line�. The divergence for �7�6→0 is well de-
scribed by the leading term, and the improvement due to the
term of order �7

1 is clearly visible.

VII. POTENTIALS PROPORTIONAL TO 1 Õr4

In this section we describe how the effective-range theory
in Secs. II and III can be modified to describe s-wave scat-
tering and quantum reflection by a homogeneous 1 /r4 poten-
tial in two spatial dimensions. The Schrödinger equation �2�,
with the repulsive potential

Urep�r� =
�2

2M

�2

r4 �104�

and m=0 can be transformed via

� =
u0

�r
, y = ln� r

�
, y0 = ln� 1

�k�
 ,

n0 n0�1 n0�2 n0�3
0

2

4

6

nth

a�
Β 6

FIG. 5. s-wave scattering length a for a potential well in two
dimensions as a function of the threshold quantum number nth ac-
cording to Eq. �100�. For definiteness we have taken parameters
corresponding to the homogeneous potential tail �85� with �=6 as
an example: 
a
=0.667. . .�6, arg�a�=−
 /4.
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FIG. 6. For the Lennard–Jones-type potential �102�, �� repre-
sents the normalized difference �103� of the numerically calculated
scattering length and the known terms on the right-hand side of Eq.
�101�. The abscissa is labeled by �n��, where �n is the asymptotic
inverse penetration depth of the highest bound state.
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� = y − y0 = ln� kr
�k�

 �105�

into

d2�

d�2 + 2k� sinh�2������ = 0. �106�

In this section, the potentials are always proportional to 1 /r4,
so we drop the subscript “4” on U and on �. For an attractive
potential tail

Utail�r� = Uatt�r� = −
�2

2M

�2

r4 , �107�

the same transformations �105� lead to

d2�

d�2 + 2k� cosh�2������ = 0. �108�

This is essentially Eq. �3.4� in the classic paper by O’Malley,
Spruch, and Rosenberg on a modified effective-range theory
in three dimensions �33�, except that the centrifugal contri-
bution −�l+ 1

2 �2 is missing in Eq. �108� above, because s
waves in two dimensions �m=0� correspond to l=− 1

2 .
Since Eq. �108� has a symmetric potential term, its solu-

tions are easier to handle than those of Eq. �106�. One set of
solutions consists of the Mathieu functions M�M

�j� ��� �34�,
which are labeled by a characteristic parameter �M and be-
have for large positive arguments as

M�M

�j� ��� �
�→�

C�M

�j� �2�k� cosh �� . �109�

Here C�M

�j� stands for a Bessel function, and by convention
j=1,2 ,3 ,4 labels the cases J�M

, Y�M
, H�M

�1�, H�M

�2�. The charac-
teristic parameter is related to the coefficient 2k� in front of
the cosh term in �108�, and for small values,

�M �
k�→0 k�

�2
+ O��k��3� . �110�

From Eq. �105� we see that �→−� corresponds to r→0 and
�→ +� corresponds to r→�. The argument of the Bessel
functions in Eq. �109� is

2�k� cosh � = kr +
�

r
. �111�

A solution of Eq. �108� obeying incoming boundary condi-
tions for r→0 is given by

��r� = �rM�M

�3��− �� �
r→0

�rH�M

�1���
r
 . �112�

For large r we have �→�, and the wave function �112� can
be matched via

M�M

�3��− �� �
r→�

M�M

�4���� + R�M
M�M

�3���� � H�M

�2��kr� + R�M
H�M

�1��kr�

�113�

to a superposition of an incoming and a reflected wave at
large r. According to �34� we have

R�M
= −

1

2�M�M

�4��0�

M�M

�3��0�
+

M�M

�4���0�

M�M

�3���0�	 . �114�

Due to the additional phase �� 1
2�M+ 1

4 �
 in the asymptotic
�large kr� behavior of the Hankel functions, the quantum
reflection amplitude R defined according to Eq. �25� is
R=−iR�M

exp�−i
�M�. From the formulas given in �34� we
obtain

R �
k→0

− i
L�k
a
�

L�k
a
� − i


+ 
�k��23 − 4��3� − 
2L�k
a
� − 3i
L�k
a
�2 + 2L�k
a
�3

12�L�k
a
� − i
�2 ,

�115�

where � stands for the Riemann zeta function and
L�k
a
�=2�E+ln�k� /4�=ln�k��+2��E−ln 2�, corresponding
to Eq. �91� when �=4, �= 1

2 . The contribution of the first
term on the right-hand side of Eq. �115� �i.e., on the upper
line� yields 
R
2 and arg�R� in agreement with Eqs. �93� and
�94�. The lower line of Eq. �115� modifies the second-order
term in the effective-range expansion as necessary for the
case �=4. As has already been shown in Figs. 3 and 4 in
Sec. VI B, Eq. �115� quite accurately reproduces the behav-
ior of the quantum reflection probability and of arg�R� for an
appreciable range of values of k�4, and it is definitely an
improvement over the predictions of the leading terms �93�
and �94� alone. Around k�4�1.1, there is a spurious smooth
but rather steep drop through 
 in the prediction of Eq. �115�
for arg�R�. For larger values of k�4, Eq. �115� predicts a
value of arg�R� very close to zero �modulo 2
�, whereas the
exact, numerically calculated value is close to −
.

The results derived above for quantum reflection by the
attractive potential are readily transferred to the case of scat-
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FIG. 7. s-wave scattering length a for the Lennard–Jones-type
potential �102� with �=6. In the label of the abscissa, �7 is the
asymptotic inverse penetration depth of the n=7 state. The dots are
the numerically calculated scattering lengths and the solid line
shows the prediction of Eq. �101� when d2=0. The dot-dashed line
is the leading term a=2e−�E /�7.
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tering by the repulsive potential. The transformation which
changes the attractive potential �107� into the repulsive po-
tential �104� and incoming boundary conditions for the wave
function into regularity near the origin is

� → �e+i
� = i� �116�

�cf. Eq. �88��. The logarithmic function L�k
a
�=L�karep�
=ln� 1

2karep�+�E occurring in formulas for scattering by the
repulsive potential �104� is replaced by ln� 1

2karep�− i
2 +�E
for the corresponding formulas for quantum reflection
by the attractive potential tail �107�. The reverse
transformation is achieved by replacing ln� 1

2karep�+�E with
ln� 1

2karep�+ i
2 +�E. In order to transform the expression
�115� for the quantum reflection amplitude by the attractive
potential tail �107� to the reflection amplitude for scattering
by the repulsive potential �104�, we have to apply, in addition
to Eq. �116�, the transformation

L�k
a
� → L�k
a
� + i



2
. �117�

Applying Eqs. �116� and �117� to Eq. �115� gives the follow-
ing expression for the S matrix, Sm=0= iR �compare Eqs. �25�
and �26�� for scattering by the repulsive potential �104�:

Sm=0 �
k→0L�k
a
� + i




2

L�k
a
� − i



2

− i
�k��2

3 − 4��3� +

2

2
L�k
a
� + 2L�k
a
�3

12�L�k
a
� − i



2
	2 .

�118�

It is easy to verify that the modulus of Sm=0=e2i is unity to

order below �k��4, and the cotangent of the real phase shift 
can be obtained via cot =−i�1+Sm=0� / �1−Sm=0� as

cot  �
k→0 2



�L�k
a
� +

�k��2

2
�1

2
−

2

3
��3� +


2

12
L�k
a
�

+
1

3
L�k
a
�3	 . �119�

In order to verify that Eq. �119� is the correct expansion
up to the order O�k2�, we plot in Fig. 8 the absolute value of
the difference

��k�4� = eff.range�k�4� − num�k�4� �120�

between the prediction of Eq. �119� and the numerically cal-
culated phase shift, divided by �k�4�2. The curve in Fig. 8
tends smoothly to zero as k�4→0, showing that the differ-
ence �120� is of higher order than �k�4�2. As has already
been shown in Fig. 1 in Sec. VI A, Eq. �119� quite accurately
reproduces the behavior of the s-wave phase shift for an
appreciable range of values of k�4, and it is definitely an
improvement over the predictions of the leading term �81�
alone.

VIII. NONVANISHING ANGULAR MOMENTUM

For m�0, the two threshold solutions of the free radial
Schrödinger equation �2�, proportional to r�1/2��
m
, are lin-
early independent, and many results from the three-
dimensional case can be transferred to the two-dimensional
case by writing 
m
− 1

2 for l. Del Giudice and Galzenati
�35,36� determined the leading and next-to-leading terms in
the near-threshold behavior of the phase shifts l for the
three-dimensional radial Schrödinger equation with a homo-
geneous repulsive potential �76� using the theory of Jost
functions and a matching method �37� to fit the Jost solutions
to the regular solution at small distances. In a recent paper
�38� we have shown that this theory can be extended to the
case of attractive singular potentials �85� and incoming
boundary conditions via the transformation �88�. The work in
�35,36� and in �38� was restricted to integer l, but this restric-
tion is not essential. Noninteger “angular momentum” quan-
tum numbers play a role whenever the potential energy term
contains an inverse-square contribution, whose origin is not
related to angular momentum. An example is the interaction

TABLE II. Power  representing the order of the first term not
included in Eq. �130� describing the leading near-threshold behavior
of tan m�0 in the noncritical cases.
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FIG. 8. Difference �120� between the numerically calculated
phase shift and the prediction of the effective-range expansion �119�
for scattering by the repulsive potential �104�. The curve represents
the absolute value of the difference �120� divided by �k�4�2.
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of a point charge with a dipole. In this section we present
results for the Schrödinger equation �2� with arbitrary not
�necessarily� integer m�0, i.e., the “centrifugal” potential
may be attractive, but it is less attractive than the centrifugal
potential for s waves in two dimensions. Since the radial
Schrödinger equation �2� does not depend on the sign of m,
we assume m�0, i.e., l=m− 1

2 �− 1
2 .

In order to calculate the phase shifts m for m�0 for the
repulsive potential �76�, we follow the steps in �35� and ex-
press the solutions um�r� of Eq. �2� in terms of the S matrix
Sm=e2im �see Eq. �15�� and the Jost solutions �39� f��k ,r�,
which are irregular solutions defined via the boundary con-

ditions e"ikrf��k ,r� →
r→�

1,

um�r� = A�f−�k,r� − ie−i
mSm�k�f+�k,r�� , �121�

�cf. Eq. �6� in Sec. II�. If the exact regular solution ureg,m�k ,r�
of Eq. �2� is known for r�r0 �with an arbitrary finite r0�,
then the Jost solution can be matched to the regular solution
at r=r0 via the logarithmic derivatives,

�ureg,m�

ureg,m
�

r=r0

= � f−��k,r� − ie−i
mSm�k�f+��k,r�
f−�k,r� − ie−i
mSm�k�f+�k,r�

�
r=r0

,

�122�

and the Jost functions F��k� can be defined as the Wronsk-
ian determinants of the respective Jost solution f� and the
exact solution ureg,m,

F��k� = 
W�f��k,r�,ureg,m�k,r��
r=r0
. �123�

The S matrix is related to the Jost functions via

Sm�k� = e2im = ie−i
m
F−�k�
F+�k�

, �124�

so the phase shifts are given by

tan m =

Im�F−�k�exp�i
�m

2
−

1

4
	�

Re�F−�k�exp�i
�m

2
−

1

4
	� . �125�

Many different approaches can be found to calculate the
Jost solutions, e.g., �40�. For the special case of homoge-
neous potentials, f−�k ,r� can be found by transforming the
radial Schrödinger equation into a corresponding integral
equation �see Eq. �32� in �38��, which can be solved itera-
tively and provides a power expansion of f−�k ,r�. With the
substitutions

z = k2/���
−��−2�/�r, q = �k�����−2�/� and � = 2� ,

�126�

we get the following expression for f−�q ,z�:

f−�q,z� = −
1

�2

exp�−

3

4

iq1/2�exp�−

1

2
m
i��m�2mz−m+1/2

��q−m +
1

4
� �2

1 + �m
z−2/� −

1

1 − m
z2q−m+2 +

1

4�

��− 1/����m − 1/����1/� + 1/2�

��1/� + m + 1�
exp�i




�
q−m+2/�+2 + ¯ 	�

+ exp�1

2
m
i��− m�2−mzm+1/2�

��qm +
1

4
� �2

1 − �m
z−2/� −

1

1 + m
z2qm+2

+
1

4�

��− 1/����− m − 1/����1/� + 1/2�

��1/� − m + 1�
exp�i




�
qm+2/�+2 + ¯ 	� . �127�

Near the origin, the regular solution decays exponentially and can be written, with the substitutions given above, as

um
reg�q,z� �

qz→0

z1/2z1/�2�� exp�− �qz−1/�� . �128�

Using a simple transformation �see Eq. �39� in �38��, the series expansion of um
reg�q ,z� can be found from the corresponding

expression of f−�q ,z�,

um
reg�q,z� =

1
�2


��q�1/2����m�2�mzm+1/2���q�−�m −
1

4
� 1

�2�m + 1�
z2 −

1

1 − �m
z−2/���q�−�m+2

−
1

4�

��− �����m − ����� + 1/2�

��� + �m + 1�
��q�−�m+2�+2 + ¯ 	

+ ��− �m�2−�mz−m+1/2���q��m −
1

4
� 1

�2�1 − m�
z2 −

1

�m + 1
z−2/���q��m+2
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−
1

4�

��− ����− �m − ����� + 1/2�

��� − �m + 1�
��q��m+2+2� + ¯ 	� . �129�

With Eq. �125� the tangents tan m of the �real� phase shifts can be calculated, remembering that in Eqs. �127� and �129�
only terms proportional to zm−1/2 and z−m−1/2 contribute �see �36� and the discussion within�. As in the case of integer l, we have
to distinguish between noncritical and critical powers �. For the noncritical cases we get

tan m�k� �
k→0�
�„m − 1/�2��…�„1/2 + 1/�2��…

4�„1 + m + 1/�2��…�„1 + 1/�2��…
�k����−2 +

2−2m
�4m���− 2m��
��m���1 + m���2m��

�k���2m

−
2−4m
�8m� cos�m
���1 − m��2�− 2m��

��m��2�1 + m��2�2m��
�k���4m

+
2−2m+4�
3/2�2+4�1+m����− 2����− 2m����1/2 + 2��

��m���1 + m���2m���„1 − 2�m − 1��…�„1 + 2�1 + m��…

��csc�2�m − 1�
�� + csc�2�m + 1�
����k���2m+2 + O„�k��� … . �130�

Terms in Eq. �130� are to be ignored, if they are of order  or
higher, where  depends on the power � and on the �not
necessarily integer� value m�0 as listed in Table II.

The critical cases are easily identified as those cases
where the arguments of some of the gamma functions in Eq.
�130� are zero or a negative integer. Well-defined results can
be obtained for these cases by taking limits as m approaches
the critical value. For the critical case m=1, which corre-
sponds to the p wave in two dimensions, we get

tan 1�k� �
k→0

−
2

3
k�3 + O„�k�3�2

… for � = 3, �131�

tan 1�k� �
k→0


8
�k�4�2 ln�k�4� −




32
�1 − 8�E + 8 ln 2��k�4�2

+ O„�k�4�3
… for � = 4, �132�

tan 1�k� �
k→035/3
��− 2/3�

108��2/3�
�k�5�2 +

16

45
�k�5�3

+ O„�k�5�4
… for � = 5, �133�

tan 1�k� �
k→0

−



8
�k�6�2 −




16
�k�6�4 ln„�k�6�…

−



384
�− 19 + 36�E − 24 ln 2��k�6�4

+ O„�k�6�6
… for � = 6, �134�

tan 1�k� �
k→0
�4���− 2��

4��2��
�k���2

−

�8��2�− 2��

8�2�2��
�k���4 ln�k���

+

�8��2�− 2��

8�2�2��
�1 − �E + ln 2 + 
��cot�2
��

+ csc�4
��� − ��H4� + 2 ln � − 2#�2�����k���4

+ O„�k���5
… for � � 6, �135�

with the harmonic number Hn, which is defined via the inte-
gral

Hn = �
0

1 1 − xn

1 − x
dx . �136�

For the critical case �crit=2m+2,

tan m�k� �
k→0 2−1−2m


�2�1 + m�
ln�k�2m+2��k�2m+2�2m −

2−1−2m


m�2�1 + m�
��1 + m��ln�2� − �E� + m�Hm − 1/2H2m� + ln m��k�2m+2�2m

−
2−3−2mm−6−2/m
3/2�2�− 1/m��„− �1 + m�/m…

��1/2 − 1/m��2�m�
�k�2m+2�2m+2 + O„�k�2m+2� … , �137�

with  =6 for �=5 and  =2m+4 for �!6.
For the critical case �crit=2m+4,
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tan m�k� �
k→02−2m�2+m�/�1+m��1 + m�−2m/�1+m�
�„− 1 + 1/�1 + m�…

��m��„m/�1 + m�…��1 + m�
�k�2m+4�2m −

2−2−2m


��1 + m���2 + m�
�k�2m+4�2m+2 ln�k�2m+4�

+
2−3−2m


�2�2 + m��3 +
m2 + 1

m
− �2 + m��E + �2m + 4�ln 2 + 2 ln�1 + m� + 
 csc� �m − 1�


m + 1
 + 2�1 + m�#�m�

− #� 2

1 + m
 + #� m

1 + m
 + #�− 1 +

1

1 + m
 − �1 + m�#�2 + 2m�	�k�2m+4�2+2m

+ O„�k�2m+4�2m+4
… . �138�

For �crit=3 and m�0, Eq. �125� reduces to

tan m�k� �
k→0 2−2m
��− 2m�

��m���2m���1 + m�
�k�3�2m −

2

4m2 − 1
k�3

+
2−2m�
 cos�m
���− 1 − 2m���1 − m���− 2m���3/2 + m�

�3�2m��2�1 + m�
�k�3�4m + O„�k�3� … , �139�

with a remainder of order  =1 for 0�m�
1
4 ,  = 3

2 for m= 1
4 ,

 =4m for 1
4 �m�

1
2 , and  =2, if m�

1
2 . For m= 1

2 , which
corresponds to the s-wave contribution in three dimensions
we get �see Eq. �12�� in �35��

tan 1/2�k� �
k→0

�k�3�ln�k�3� + �ln 2 + 3� −
3

2
�k�3�

+ O„�k�3�2
… .

And finally, for �crit=4,

tan m�k� �
k→0 2−4m
��− m�

�2�m���1 + m�
�k�4�2m −




8m�m2 − 1�
�k�4�2

+
2−8m
2 cot�m
���1 − m���− m�

�3�m��3�1 + m�
�k�4�4m

+ O„�k�4� … , �140�

with a remainder of order  =1 for 0�m�
1
4 ,  = 3

2 for m= 1
4 ,

 =2 for 1
4 �m�

1
2 ,  =4m+2 for 1

2 �m�1,  =4 for 1�m
�

3
2 ,  =3 for 3

2 �m�2, and  =4 for m!2.
For the special case m= 1

2 , which corresponds to the
s-wave contribution in three dimensions, we get �see Eq.
�12�� in �35��

tan 1/2�k� �
k→0

− �k�4� +



3
�k�4�2 +

4

3
�k�4�3 ln�k�4�

+ �8

3
��E + ln 2� −

28

9
�k�4�3 + O„�k�4�4

… .

�141�

For attractive singular potentials the Schrödinger equation
�2� can be solved with incoming boundary conditions for
r→0, where the WKB approximation becomes increasingly
accurate. When m�

1
2 , the centrifugal potential is repulsive

and contributes to a genuine potential barrier. In this case,
reflection at near-threshold energies is not “quantum reflec-

tion,” but classically allowed reflection, and any deviation of
the reflection probability from unity at sub-barrier energies is
due to �quantum� tunneling through the potential barrier. The
formalism described in Sec. III is essentially independent of
whether the “centrifugal term” is attractive or repulsive. The
incoming boundary conditions describe total absorption
at small distances �14�. The S matrix Sm=exp�2idm� is
no longer necessarily unitary and the reflection amplitude
Rm=−�−1�miSm �cf. Eqs. �6� and �25� in Secs. II and III� is
given by the complex phase shift in analogy to Eq. �26�,

Rm = − �− 1�mi
cot dm + i

cot dm − i
. �142�

For homogeneous attractive potentials �85�, the near-
threshold behavior of the complex phase shifts dm can be
derived from the analytical expressions for the real phase
shifts for scattering by the repulsive homogeneous potential
�76� by simply applying the transformation �88�. For ex-
ample, for the critical case �crit=4 we get

tan dm�k� �
k→0 2−4m
��− m�

�2�m���1 + m�
�k�4�2me−im


−



8m�m2 − 1�
�k�4�2e−i


+
2−8m
2 cot�m
���1 − m���− m�

�3�m��3�1 + m�
�k�4�4me−2im


+ O„�k�4� … , �143�

where  is defined as above.
As a last point we wish to comment on the effective-range

expansion we formulated for nonvanishing angular momen-
tum in �38� �see Eqs. �53� and �54� in that paper�. In terms of
m� l+ 1

2 , Eq. �53� of �38� becomes
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k2m cot„m�k�… = −
1

al
2m +

1

2
reff,m

2−2mk2. �144�

From Eq. �130� above, we see that this form is only valid for
m�1. For m�1 there is an additional term of order k2m,
which vanishes for m= 1

2 .

IX. SUMMARY AND DISCUSSION

We have presented a detailed and comprehensive descrip-
tion of scattering, quantum reflection and near-threshold
quantization for circularly symmetric potentials in two spa-
tial dimensions. In contrast to the one- and three-dimensional
cases, the radial Schrödinger equation �2� contains a centrifu-
gal term �2�m2− 1

4 � / �2Mr2�, which is nonzero for all integer
m, even for s waves, m=0. The near-threshold behavior of
scattering phase shifts, quantum reflection amplitudes, and
quantization functions is dominated by a logarithmic depen-
dence on the wave number k �above threshold� or the
asymptotic inverse penetration depth � �below threshold�.
The effective-range theory known from three-dimensional
systems can be adapted to scattering in two dimensions by an
appropriate definition of the scattering length a and a quan-
tity reff

2 , which has the dimensions of a length squared and
can be called an effective range squared. The appropriate
effective range expansion for the cotangent of the s-wave
phase shift is given quite generally by Eq. �23�, as already
formulated by Verhaar et al. �11�. In contrast to the situation
in three dimensions, the scattering length a is always positive
when defined, i.e., when there is not a bound state exactly at
threshold, and reff

2 can be negative.
The results for elastic scattering can be adapted to the

case of �quantum� reflection by a singular attractive potential
tail by imposing incoming boundary conditions at small dis-
tances, where the WKB approximation becomes increasingly
accurate. This is an unambiguous description of total absorp-
tion at small distances. The S matrix is now no longer nec-
essarily unitary, and the s-wave phase shift d is complex.
The effective-range expansion of ordinary scattering theory
is adapted to describe the near-threshold behavior of the
complex phase shift and the amplitude for quantum reflec-
tion in terms of a complex scattering length a and a complex
effective range squared reff

2 �see Eqs. �28�, �36�, and �37��.
Below threshold, the leading and next-to-leading behavior

of the quantization function F�E�, which defines the position
of near-threshold bound states according to the quantization
rule �38�, nth−n=F�En�, are derived with a subthreshold
effective-range theory, as done recently for the three-
dimensional case in �15,16�. The near-threshold behavior of
F�E� is dominated up to O�E� by the contribution Ftail of the
potential tail as described in Eq. �68�. From the leading loga-
rithmic term �see also Eq. �66��,

F�E� �
�→0

Ftail�E� �
�→0 1



arctan� arg�a�

L��
a
� , �145�

we can derive a relation directly connecting the energy
E=−�2�n

2 / �2M� of a bound state very near threshold to the
scattering length a,

a =
x0

�n
+ O��n�, x0 = 2e−�E. �146�

In contrast to s waves in three dimensions, the expansion
�146� contains no contribution of order �n

0. The term of order
�n

1 is given in Eq. �75�. It contains a large contribution from
the subthreshold effective range, which may be slightly
modified due to short-range properties of the potential. It
also contains a probably smaller contribution, which is more
difficult to access and due to the term of order E in the WKB
representation of the threshold wave function �71�.

The applicability of the effective-range formulas derived
for scattering, quantum reflection, and near-threshold quanti-
zation for s waves in two dimensions is demonstrated for
repulsive homogeneous potentials and for attractive homoge-
neous potential tails in Sec. VI. Analytical expressions are
given for the scattering length �80� and the effective range
squared �83� of the repulsive potentials, as well as for the
modulus and argument �89� of the complex scattering length
and the effective range squared �90� for attractive potential
tails. The analytical expression for the subthreshold effective
range for attractive homogeneous potential tails is Eq. �99�.
The modified effective-range theory required for potentials
proportional to 1 /r4 is presented in Sec. VII, and analytical
expressions are given for the expansion of the real phase
shift �119� in the repulsive case as well as for the quantum
reflection amplitude �115� in the attractive case. Numerical
values of the parameters determining the near-threshold be-
havior of phase shifts, etc. are given in Table I.

To complement the extensive treatment of s waves,
m=0, in Secs. II–VII, Sec. VIII presents various formulas for
the leading contributions to the near-threshold behavior of
real and complex phase shifts for nonvanishing angular mo-
mentum quantum number m. The results of the present paper
should be useful for the study of planar scattering problems
and of three-dimensional problems with translational invari-
ance in one degree of freedom, such as the scattering of cold
atoms or molecules by a conducting or dielectric nanotube.
Since the results of Sec. VIII are not restricted to integer or
half-integer values of m, they are also applicable to a wide
range of other physical situations involving inverse-square
potentials, such as monopole-dipole scattering.
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