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The dipole polarizability of the Si2+ ground state has been determined by a large-scale configuration-
interaction �CI� calculation using the sum-over-states approach. The CI calculation was used to describe the
valence electron dynamics with respect to the Hamiltonian which treats core-valence correlations with a
semiempirical approach. Various higher-order polarizabilies were computed, and this permitted a more refined
analysis of the energy intervals measured by resonant excitation Stark ionization spectroscopy �RESIS�. The
polarizability derived from the revised analysis of the RESIS data was 11.669�9� a.u., only 0.03% larger than
that reported in Komara et al. �J. Phys. B 38, 87 �2005��. The CI value of the polarizability, 11.688 a.u., was
only 0.2% larger than experiment, while the quadrupole polarizability of 35.75 a.u. was also consistent with
experiment. A resonant oscillator strength of 1.621�3� was derived from the experimental dipole polarizability.
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I. INTRODUCTION

Recently, the dipole polarizability of Mg-like silicon—i.e.
Si2+—has been measured by resonant excitation Stark ion-
ization spectroscopy �RESIS� �1�. This technique has given
polarizabilities for Mg+ �2�, Si3+ �3,4�, Ba+ �5,6�, and Si2+

�7�. The precision in the dipole polarizabilities deduced from
these experiments is about 0.1%.

While these experiments are interesting in themselves,
they are relevant to the new generation of single atomic ion
clocks currently under investigation �8–12�. These clocks
have the potential the exceed the precision of the existing
cesium microwave standard �13,14�.

For many of these clocks the single largest systematic
source of uncertainty is the blackbody radiation �BBR� shift
�12,15–20�. The lowest-order expression for the BBR shift is
proportional to the difference in polarizabilities of the two
states involved in the clock transition. Accordingly, the de-
termination of atomic polarizabilities for atomic �ionic�
states involved in clock transitions has become a topic of
high priority.

One of these clocks is based upon the Al+ 3P0
o→ 1Se tran-

sition. Indeed, a recent experiment measured the frequency
ratio for the Al+ and Hg+ clock transitions to a precision of
4.3�10−17 �12�. While the polarizability of Al+ has not been
measured in a RESIS experiment, the isoelectronic ion Si2+

has had its dipole polarizability measured �7�. Therefore, a
calculation of the Si2+ polarizability and comparison with the
RESIS polarizability can be used to benchmark the accuracy
of calculations upon Al+ provided the same basic calcula-
tional technique is used. These comparisons can be used to
assign realistic error limits on any theoretical techniques and
thus ultimately help constrain the uncertainties associated
with the BBR shift.

A calculation of the dipole polarizability of the ground
state of Si2+ using a configuration-interaction �CI� approach
is presented. The basis used to describe the two valence elec-
trons was large, and consequently the error associated with
this part of the calculation is small enough to be ignored. The
underlying Hamiltonian is based upon a fixed-core Hartree-
Fock wave function with core-valence correlations repre-

sented by semiempirical polarization potentials. The impor-
tance of terms in the polarization expansion beyond the
leading-order dipole polarization potential was also studied.
This permitted a more refined analysis of the RESIS data and
gives increased confidence in the RESIS determination of the
dipole polarizability.

II. DESCRIPTION OF THE GROUND
AND EXCITED STATES

A. CI calculations

The CI calculations used to generate the physical and L2

pseudostates were very similar in style to those used previ-
ously to determine the dispersion parameters of a number of
two-electron systems �22,21,23�. The Hamiltonian for the
two active electrons is written

H = �
i=1

2 �−
1

2
�i

2 + Vdir�ri� + Vexc�ri� + Vp1�ri��
+ Vp2�r1,r2� +

1

r12
. �1�

The direct and exchange interactions of the valence electrons
with the Hartree-Fock �HF� core were calculated exactly. The
1s22s22p6 core wave function was taken from a HF calcula-
tion �24� of the Si3+ ground state using an �8s ,5p� Slater-
type orbital �STO� basis. The �-dependent polarization po-
tential Vp1 was semiempirical in nature with the functional
form

Vp1�r� = − �
�m

�dg�
2�r�

2r4 ��m	
�m� . �2�

The coefficient �d is the static dipole polarizability of the
core, and g�

2�r�=1−exp�−r6 /��
6� is a cutoff function designed

to make the polarization potential finite at the origin. The
cutoff parameters �� were tuned to reproduce the binding
energies of the Si3+ ns ground state and the np, nd, and nf
excited states. The core polarizability of �d=0.1624 a.u. was
computed with the random phase approximation �25�. The
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cutoff parameters for �=0→3 were 0.7473a0, 0.8200a0,
1.022a0, and 0.900a0, respectively. The cutoff was set to
0.90a0 for ��3.

The two-body polarization potential Vp2 is defined as

Vp2�ri,r j� = −
�d

ri
3rj

3 �ri · r j�gp2�ri�gp2�rj� , �3�

where gp2 has the same functional form as g��r�. The cutoff
for gp2 was 0.869a0—i.e., the average of �0, �1, �2, and �3

There were a total of 187 valence orbitals with a maxi-
mum orbital angular momentum of �=6. The radial depen-
dence of the orbitals was described by a mixture of STOs
and Laguerre-type orbitals �LTOs� �21,22�. The number of
active orbitals for �=0→6 was 32, 30, 30, 30, 25, 20, and
20, respectively. Some �=0 and �=1 valence orbitals were
generated from the STOs used for the core. All the other
orbitals were written as LTOs due to the superior linear de-
pendence properties of LTOs when compared with STO basis
sets. The use of the large orbital basis resulted in wave func-
tions and energies for the low-lying states that were close to

convergence. The length of the CI expansions for the differ-
ent states ranged from 2000 to 7000. There were some minor
changes made to the �� values tuned to the Si3+ spectrum to
improve the agreement of the Si2+ energies with experiment.
The current CI calculations with a semiempirical core poten-
tial are termed the CICP model.

The oscillator strengths were computed with operators
that included polarization corrections �21,28–30�. The cutoff
parameter in the operator correction was 0.869a0. The quad-
rupole core polarizability was chosen as 0.1021a0

5 �25�, while
the octupole polarizability was set to zero.

B. Energy levels

The binding energies of some low-lying states of the Si2+

ion are tabulated and compared with experiment in Table I.
The agreement between the CICP energies and the experi-
mental energies is generally of the order of
10−4–10−3 hartree.

C. Oscillator strengths

Table II lists the oscillator strengths for a number of Si2+

transitions involving low-lying states. The absorption oscil-
lator strength for a multipole transition from g→n, with an
energy difference of �Eng=Eg−En, is defined as

fgn
�k� =

2�
�g;Lg�rkCk�r̂���n;Ln	�2�Eng

�2k + 1��2Lg + 1�
. �4�

In this expression, Lg is the orbital angular momentum of the
initial state, while k is the polarity of the transition. This
definition of the oscillator strength is convenient for theoret-
ical analysis. However, there are other definitions of the
oscillator strength that give different numerical values for
k�2 �39�.

Values from the extensive tabulation of dipole line
strengths using a B-spline nonorthogonal configuration inter-
action with the Briet interaction �BSR-CI� �31� are listed in
Table II. Oscillator strengths from an older CI calculation
�32� based on a semiempirical model potential �MPCI� are
also listed in Table II.

TABLE I. Theoretical and experimental energy levels �in har-
tree� of some of the low-lying singlet states of the Si2+ ion. The
energies are given relative to the energy of the Si4+ core. The ex-
perimental energies are taken from the National Institute of Stan-
dards database �26,27�.

State

Energy �a.u.�

Theory Experiment

3s2 1Se −2.889727 −2.889775

3s3p 1Po −2.512090 −2.512126

3p2 1De −2.331706 −2.332925

3p2 1Se −2.189308 −2.190632

3s4s 1Se −2.165268 −2.165001

3s3d 1De −2.134707 −2.134494

3s4p 1Po −2.085718 −2.085640

3s4d 1De −1.958978 −1.958775

3s4f 1Fo −1.956832 −1.956510

TABLE II. Theoretical and experimental values of the oscillator strengths for selected transitions of the
Si2+ ion. Oscillator strengths from other sources are identified by citation. The uncertainties in the last digits
are given in parentheses.

Transition CICP BSR-CI �31� MPCI �32� Other

3s2 1Se→3s3p 1Po 1.623 1.609 1.62 1.694 CI �33�, 1.59 MBPT �34�, 1.60�24� Expt.
�35�, 1.64�41� Exp. �36�

3s2 1Se→3s4p 1Po 0.0215 0.0225 0.031 0.0147 CI �33�
3s2 1Se→3p2 1De 6.020

3s2 1Se→3s3d 1De 8.758

3s3p 1Po→3p2 1Se 0.2211 0.2246 0.279 0.173�12� Expt. �37�
3s3p 1Po→3s4s 1Se 0.0806 0.0767 0.0175

3s3p 1Po→3p2 1De 0.0458 0.0480 0.0482 0.062�4� Expt. �38�
3s3p 1Po→3s3d 1De 1.661 1.655 1.66
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The present CICP and BSR-CI oscillator strengths are
within 1% of each other for the strong transitions and 4% for
the weaker transitions. The oscillator strengths for the stron-
ger transitions from the older MPCI calculation agree well
with the more modern calculations. A relativistic many-body
perturbation theory �MBPT� calculation �34� gave 1.59 for
the resonance oscillator strength. The MBPT calculation is
not expected to be as accurate as either the CICP or BSR-CI
calculation. The correlations between the two valence elec-
trons were treated perturbatively, while more modern MBPT-
type calculations used CI to treat the interactions between
valence electrons while using MBPT to treat core-valence
correlations �40�.

A number of experimental oscillator strengths are listed in
Table II. However the data do not have sufficient precision to
discriminate between the BSR-CI and CICP oscillator
strengths.

III. POLARIZATION EXPANSION

A. Definitions

The polarization interactions between the core and a
single Rydberg electron leads to the effective potential
�1,41,42�

Vpol = −
C4

r4 −
C6

r6 −
C7

r7 −
C8

r8 −
C8LL�L + 1�

r8 + ¯ . �5�

This functional form has been applied to the analysis of the
fine-structure spectrum of the Rydberg states of neutral Mg
and Si2+, resulting in precise estimates of the dipole polariz-
abilities of the sodiumlike Mg+ and Si3+ ground states �2–4�.

The leading coefficient C4 is half the size of the static
dipole polarizability:

C4 =
�1

2
. �6�

The dipole polarizability is defined as

�1 = �
n

fgn
�1�

��Egn�2 , �7�

where fgn
�k� is the absorption oscillator strength for a dipole

transition from state g to state n. The sum is over all excited
states of the system.

The next term C6 is composed of two separate terms:

C6 =
�2 − 6�1

2
. �8�

The quadrupole polarizability, �2 is computed as

�2 = �
n

fgn
�2�

��Egn�2 . �9�

The second term in Eq. �8� is the nonadiabatic dipole polar-
izability. It is defined as

�1 = �
n

fgn
�1�

2��Egn�3 . �10�

The r−7 term C7 also comes in two parts: namely,

C7 = −
��112 + 3.2q	1�

2
. �11�

The 	1 is a higher-order nonadiabatic term; it is defined as

	1 = �
n

fgn
�1�

4��Egn�4 , �12�

where q is the charge on the core. The dipole-dipole-
quadrupole polarizability �112 arises from third order in per-
turbation theory �41� and cannot be expressed as an oscillator
strength sum. Explicit expressions have been given by Snow
and Lundeen �4�. Quite a few terms contribute to C8:

C8 =
�3 − �2 − �1�1 + �1111 + 72	1

2
. �13�

The octupole polarizability �3 is computed as.

�3 = �
n

fgn
�3�

��Egn�2 . �14�

The �2 comes from the nonadiabatic part of the quadrupole
polarizability; it is

�2 = �
n

fgn
�2�

2��Egn�3 . �15�

The fourth-order term �1111 is part of the hyperpolarizability
�41,41,43�, and explicit expressions have been given by
Robb and co-workers �43�. The final term C8L is nonadia-
batic in origin and defined as

C8L =
18	1

5
. �16�

B. Computed polarizabilities

The values of all polarizabilities for the 3s2 ground state
are listed in Table III. The static and nonadiabatic dipole
polarizabilities are dominated by the term arising from the
resonant transition. One finds that 97.4% of �1 arises from
the f3s2→3s3p transition. The weighting of the resonant tran-
sition is even larger for the nonadiabatic polarizabilities with
99.5% of �1 and 99.85% of 	1 coming from this transition.

TABLE III. The final polarizabilities and Cn parameters used in
the analysis of the RESIS spectrum for Si2+.

Property Value Property Value

�1 11.688 C4 5.8440

�2 35.754 C6 −27.558

�3 171.85 C7 −124.89

�1 15.145 C8 595.23

�2 27.904 C8L 71.957

	1 19.988

�112 121.86

�1111 175.05
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The actual breakdown of the different contributions to the
polarizability is 11.3859 a.u. from the resonant transition,
0.1396 a.u. from the rest of the valence transitions, and
0.1624 a.u. from the core.

The dipole polarizability of the 3s3p 1P0 excited state was
also computed. It was found to be 12.707 a.u.

The actual calculations of the �112 and �1111 polarizabil-
ities were performed in an excitation space restricted to the
3s3p 1P0 state and the two lowest 1Se and three lowest 1De

excited states. The core was also omitted from the calcula-
tion.

One aspect of Table III that is relevant to the interpreta-
tion of experiments is the importance of the nonadiabatic
dipole polarizabilities for the higher-order terms. The respec-
tive contributions to C6 are 17.877 from �2 and −45.44 from
−6�2. Similarly, one finds that the 	1 term of −3.2�19.988
makes up 50% of the C7 value of −124.9 a.u. Finally, the C8
value of 595.2 a.u. is largely due to the 36	1 contribution of
719.6 a.u.

The procedures used to determine the �112 and �1111 po-
larizabilities were validated on the He+ system. A calculation
of the He+ excitation spectrum was performed, and the re-
sulting lists of reduced matrix were entered into the polariz-
ability programs. All the coefficients given by Drachman
�44� were reproduced.

C. Assessment of polarizability uncertainties

The CICP calculation is semiempirical in nature, so an a
priori determination of the uncertainty is problematic. How-
ever, comparisons with high-precision experiments and high-
precision calculations make it possible to place some bounds
on the polarizabilities.

The polarizabilities are evaluated by oscillator strength
sum rules, so the uncertainties in the polarizabilities are
largely determined by the uncertainties in the oscillator
strengths. The underlying accuracy of the one electron-core–
valence interaction can be deduced by examination of line
strengths for the alkali-metal-like ions. A systematic com-
parison of the 3s→3p line strengths for the Na and isoelec-
tronic systems Mg+, Al2+, and Si3+ revealed a consistent
trend when the HF plus core polarization �HFCP� �a model
based on similar physics to the present CICP model�, a
MBPT calculation, and CI-BSR were contrasted �45�. The
MBPT calculation was a relativistic all-order single-double
calculation which treats all single and double excitations
from a Dirac-Fock reference state to all orders of many-body
perturbation theory. The spread between the line strengths
was generally about 1%, with the HFCP line strengths being
the smallest and the BSR-CI being the largest with the
MBPT line strength being intermediate in size. The highest-
precision experiments gave line strengths closer to the HFCP
and BSR-CI values. A reasonable conclusion would be that
the present model is capable of predicting the resonant oscil-
lator strengths of low Z Na-like ions to an accuracy of 0.5%
better �45�.

There are additional uncertainties associated with the pre-
diction of the resonant oscillator strength of Mg-like ions.
Unfortunately, there have not been any really high-precision

lifetime experiments upon the Mg-like ions. The most re-
fined ab initio calculations were a CI+MBPT calculation
which gave a Mg line strength of 16.24�16� �40,46�, while
the BSR-CI calculation gave 16.05 �31�. An earlier CICP-
type calculation �47� on Mg gave 16.24 for the line strength.
Therefore an uncertainty of 1% or 0.117 a.u. has been as-
signed to the CICP line strength. The rest of the valence and
core transitions only contribute 0.303 a.u. to the dipole po-
larizability. The uncertainty in the core polarizability of
0.1624 a.u. has been estimated at 5% or 0.0080 a.u. �45�.
The rest of the valence f-value distribution will be conserva-
tively assumed to have a relative uncertainty twice as large
as that of the resonant transition, giving a contribution of
0.0028 a.u. In total, this gives a relative uncertainty of 1.1%
or an overall uncertainty of 0.129 a.u. in �1.

The uncertainties in the nonadiabatic polarizabilities �1
and 	1 are slightly smaller than that of �1 since the higher
power in the energy denominator means they are less suscep-
tible to errors coming from the core polarizability and other
valence transitions. The uncertainties in the quadrupole and
octupole polarizabilities can be assumed to be roughly the
same size as that of the dipole polarizability—i.e., 1%. The
uncertainty in C6 is therefore �0.358+6�0.127� /2=1.1 a.u.

The major errors in the �112 and �1111 evaluations arise
from the restricted excitation space used in the sum rules. An
indication of the error can be estimated by evaluating the
polarizabilities in the restricted space. The ground-state di-
pole polarizability was 11.386 a.u., while the quadrupole po-
larizability was 34.95 a.u. The 3s3p 1P0 static dipole polar-
izability was 12.31 a.u. These polarizabilities are all within
3% of sum-rule values when the entire excitation space is
included. The multiplicative structure of the �112 and �1111
polarizabilities suggests that the relative uncertainties should
be added and the uncertainties can be assessed as 9% and
12%, respectively. Errors in the evaluation of �112 and �1111
do not have a major impact in the derived values of C7 and
C8. For example, a 13% error in �112 would result in a 4%
change in C7, while a 12% error in �1111 would lead to a
1.5% change in C8.

D. Polarization plot

Polarizabilities can be extracted from experimental data
using a polarization plot. This is based on a similar proce-
dure that is used to determine the ionization limits of atoms
�48�. Assuming that the dominant terms leading to departures
from hydrogenic energies are C4 and C6 terms, we can write

�E

�
r−4	
= C4 + C6

�
r−6	
�
r−4	

. �17�

In this expression, �E is the energy difference between two
states of the same n, but different L—i.e., �E=E�n ,L�
−E�n ,L��. �
r−6	 and �
r−4	 are the differences in the radial
excitation values of the two states.

There are other corrections that can result in Eq. �17�
departing from a purely linear linear form. These are relativ-
istic energy shifts, Stark shifts due to a residual electric field,
and polarization shifts due to the C7 and C8 �and possibly
higher-order� terms of Eq. �5�. The energy difference be-
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tween the �n ,L� and �n ,L�� states can be written

�E = �E4 + �E6 + �E7 + �E8 + �E8L + �Erel + �Esec + �Ess,

�18�

where �En arises from the polarization terms of order 
r−n	.
Dividing Eq. �18� through by �
r−4	 and replacing �E6 by

C6�
r−6	 gives

�E

�
r−4	
= C4 + C6

�
r−6	
�
r−4	

+
�E7 + �E8 + �E8L

�
r−4	

+
�Erel + �Esec + �Ess

�
r−4	
. �19�

The influence of the Stark shifts, relativistic shifts, and
second-order polarization correction can be incorporated into
the polarization plot by simply subtracting the energy shifts.

The corrected energy shift �Ec1 is derived from the ex-
perimental energy shifts �7� as

�Ec1

�
r−4	
=

�Eobs

�
r−4	
−

�Erel + �Esec + �Ess

�
r−4	
. �20�

An approximate result is used for the relativistic energy cor-
rection. This is taken as

Erel = −
�2Z4

2n3 � 1

j + 1/2
−

3

4n
� . �21�

The corrections due to relativistic effects for the Rydberg
states of Si+ for which RESIS data existed are listed in Table
IV. Corrections due to energy shifts from other sources are
also given in Table IV.

The second-order correction �Esec used the analytic re-
sults of Drake and Swainson �49,50�. There was one issue in
applying the Drake-Swainson formulation. Equations �41�
and �42� of �49� imply a second-order energy correction that
scales as Z10 for a fixed polarizability, whereas the actual Z
scaling should be Z6. A Z6 scaling is also compatible with the
text just after Eq. �15� of �50�. The Stark shift correction
�Ess used the Stark shift coefficients tabulated by Komara et
al. �7� and their value for the background electric field.

The second corrected energy is defined by further sub-
tracting the polarization shifts �E7, �E8, and �E8L:

�Ec2

�
r−4	
=

�Ec1

�
r−4	
−

�E7 + �E8 + �E8L

�
r−4	
. �22�

The radial expectation values needed for the polarization en-
ergy shift were computed with the formulas of Bockasten
�51�, while the Cn values were taken from Table III.

Table IV shows the sizes of all the corrections to the
energies of the Rydberg states used in the RESIS analysis.
The RESIS data start for the �n ,L�= �19,9�– �19,10� interval.
The largest energy correction to any of the levels comes from
the C4 term. The next largest term is �E6, which is 1.1% of
�E4 for �19,9�-�19,10� interval.

One finds that �E8+8L is larger than �E7 for the �19,9�-
�19,10� interval largely due to the impact of the C8L term.
The impact of the higher multipole corrections �E7 and
�E8+8L diminishes as L increases. The �E7,8,8L corrections
for the �19,9�-�19,10� interval amount to about 40% of the
�E6 energy shift. As mentioned by Drachman �44�, a condi-
tion for the usefulness of the polarization series is that the
�E7,8,8L corrections should be smaller than the �E6 correc-
tions. Therefore, the series, Eq. �5�, is justified for the current
�n ,L� values of Si+ for which RESIS data exists.

The previous analysis of Komara et al. �7� did not explic-
itly include the contribution from C7, C8, and C8L terms. In a
later analysis, Snow et al. �4� underestimated the possible
influence of these terms on the polarization plot. However,
this omission had only a marginal impact on the derived
dipole polarizability.

Figure 1 shows the polarization plot for Si+. One feature
is the irregularity in the plot for the smallest values of �
r−6	

�
r−4	 .
This irregularity occurs for the two states that were resolved
by increasing the microwave intensity so as to make two-
and three-photon transitions detectable. The high microwave
intensities do lead to a significant ac Stark shift, which in
turn entails making corrections to the energy intervals. The
easiest way to deal with the problem is to remove these two
points from the linear regression analysis used to derive the
dipole and quadrupole polarizabilities. It is noted in passing
that little information describing the details of the Stark shift
correction is available.

A notable aspect of Fig. 1 are the slopes of the �Ec1 and
�Ec2 plots. The �Ec1 data points show a distinct departure
from a purely linear curve. This indicates that polarization

TABLE IV. Various energy corrections �in units of MHz� for some n=19 energy intervals of Si+. The L1 and L2 columns give the � values
of the adjacent Rydberg states. All first- and second-order polarization corrections were computed using the Cn values listed in Table III. The
relativistic corrections were computed using Eq. �21�, while the Stark shift corrections are those used in Komara et al. �7�.

n L1 L2 �Erel �E4 �E6 �E7 �E8 �E8L �Esec �Ess

19 9 10 4.0968 658.6201 −6.3133 −1.2900 0.2835 2.8728 0.4738 −0.0833

19 10 11 3.3843 364.9377 −2.2672 −0.3697 0.0644 0.7944 0.1430 −0.0987

19 11 12 2.8428 212.5616 −0.8843 −0.1172 0.0165 0.2436 0.0477 −0.1025

19 12 13 2.4217 129.0478 −0.3687 −0.0402 0.0046 0.0810 0.0172 −0.0837

19 13 14 2.0876 81.1276 −0.1623 −0.0147 0.0014 0.0287 0.0067 −0.0269

19 13 15 3.9059 133.6673 −0.2369 −0.0204 0.0019 0.0393 0.0094 0.0711

19 13 16 5.5038 168.5725 −0.2724 −0.0226 0.0020 0.0434 0.0106 0.3910
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corrections beyond C6 /r6 have an impact on the energy split-
tings. On the other hand, the �Ec2 polarization plot has no
detectable nonlinear features apart from the first two points
at the smallest values of �
r−6	

�
r−4	 , which were influenced by ac
Stark shifts. This indicates that inclusion of the �E7 and
�E8+8L corrections takes into account most of the higher-
order polarization effects.

A linear regression was applied to the five single-photon
data points in Fig. 1. The intercept was 5.8343, which trans-
lates to a polarizability of 11.669�9� a.u. The dipole polariz-
ability originally derived in Komara et al. was 11.666�4� a.u.
�7�. The inclusion of the higher-multipole corrections to the
polarization energy leads to the derived dipole polarizability
changing by an amount equal to the stated uncertainty of the
original experiment.

The slope was −30.543. Using �1=15.145 a.u. gives a
quadrupole polarizability of �2=−61.09+90.87=29.78 a.u.
This is about 6 a.u. smaller than the CICP quadrupole polar-
izability of 35.75 a.u. The previous analysis of Komara et al.
�7� did not present an estimate of the quadrupole polarizabil-
ity.

1. Uncertainties in �1 and �2

The difference between the experimental C6=−30.543
and the calculated C6 of −27.56�110� is used to assign an
uncertainty to the derived �1. A pair of linear regressions
were performed with C6 fixed to be −26.45 and −34.62, re-
spectively, to estimate the uncertainty in the intercept. The
polarizability with error limits was 11.669�9� a.u.

The value of �2 derived from the polarization plot experi-
ment is susceptible to large errors due to the cancellations
implicit in the calculation. The uncertainty is


�2 = 2
C6 + 6
�1. �23�

The uncertainty in � is small since the dipole polarizability is
well reproduced. Assigning a relative uncertainty of 0.5% to
�1 gives 6
�1=0.5. The major source of uncertainty in C6 is
the possible impact of higher-order adiabatic and nonadia-

batic polarizabilities. This was estimated to be half the dif-
ference in the slopes of the �Ec1 and �Ec2 plots depicted in
Fig. 1. This choice was motivated by the discussion of
Drachman on the convergence of the polarization series �44�.
Therefore, using 2
�C6�=10.0 gives 
�2=10.5 a.u. The RE-
SIS and CICP quadrupole polarizabilities agree when the
relatively large uncertainty is taken into consideration.

2. Estimate of the resonant oscillator strength

An estimate of Si2+ resonant oscillator strength can be
derived from the experimental oscillator strength via the re-
lation

f3s2→3s3p = ��E3s2→3s3p�2��1 − �core − ��� = 0.3776492

� �11.669 − 0.1624 − 0.1396� = 1.621. �24�

The �� polarizability is the valence polarizability with the
resonant transition removed. Incorporating the uncertainties
given previously gives a final value of 1.621�3� for the reso-
nant oscillator strength. This oscillator strength is compatible
with the CICP oscillator strength and incompatible with the
BSR-CI oscillator strength.

IV. CONCLUSIONS

The polarizabilities of the Si2+ ion ground state have been
calculated with the sum-over-states approach in conjunction
with some large-basis CI calculations. The higher-order po-
larizabilities are used to make corrections to the RESIS fine-
structure intervals of the Lundeen group �2�. A polarization
plot is then made, yielding a revised polarizability of
11.669�9� a.u. This is marginally larger than the original ex-
perimental value of 11.666�4� a.u. �7�. The dipole polariz-
ability obtained from the CICP model is 11.688 a.u.

A semiempirical CI calculation based on a HF core is seen
to give an accurate dipole polarizability for Si2+, and by im-
plication it should be able to accurately predict the polariz-
abilities of other Mg-like atoms and ions. This difference
between CICP and experimental polarizabilities of 0.2% was
fortuitious. While the high level of agreement between CICP
and CI+MBPT calculations of the Mg ground-state polariz-
ability �21,47,40� did suggest that a CICP accuracy of better
than 1% was achievable, an accuracy of 0.2% indicates that
there has been some fortunate cancellation of errors. Earlier
in this paper, a first-principles estimate of the uncertainty in
the ground state polarizability of 1.1% was made. The
present CICP calculation was partly done in order to estab-
lish a better estimate of the uncertainty that could be trans-
lated to Al+. A conservative, after-the-fact conclusion would
be that the CICP approach is capable of predicting the
ground-state polarizabilities of Mg-like ions to an accuracy
of 0.5% or better. The circumstances that conspired to make
the CICP very accurate for Si2+ can be expected to apply to
other Mg-like ions such as Al+ provided the CICP method-
ology is applied in a consistent manner.
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