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Accurate results for nonrelativistic energy, relativistic, QED, and finite nuclear mass corrections are obtained
for 21S1/2, 31S1/2, and 21P1/2 states of the Li atom and Be+ ion. Our computational approach uses the Hylleraas
basis set with the analytic integration and recursion relations. From comparison of experimental results for the
isotope shifts to theoretical predictions including nuclear polarizabilities, we obtain nuclear charge radii for Li
and Be isotopes.
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I. INTRODUCTION

The accurate evaluation of energy levels in atoms and
ions requires inclusion of both the electron correlations and
quantum electrodynamic �QED� effects. At present, in spite
of significant theoretical effort �1� there is no universal com-
putational method which treats accurately correlations and
QED effects all together. For heavy few electron systems,
electron interactions can be treated perturbatively within sys-
tematic QED approach �2�. For light systems involving few
electrons, the most fundamental approach is based on the
expansion of energy levels in the fine structure constant �,
and also in the electron-nucleus mass ratio. At the same time,
electron correlations are treated accurately by the use of ex-
plicitly correlated basis sets. This method has been advanced
significantly in the last years by the calculation of m�6 cor-
rections to helium energy levels �3�, m�7 to helium fine
structure �4,5�, and m�5 corrections in three- and four-
electron systems �6–8�. The achieved numerical precision is
sufficient to determine nuclear properties from isotope shift
measurements of transition energies. For example, the most
accurate determination of the deuteron charge radius comes
from the measurement of the 1S-2S transition in hydrogen
and deuterium �9�. Recently a series of measurements of iso-
tope shifts in helium �10,11� and lithium isotopes �12,13�
together with the intensive calculations of theoretical energy
levels �7,14–16� brought the accurate values of charge radii
of short-lived nuclei with respect to the stable isotope. How-
ever, at present, theoretical methods are not capable of pre-
dicting energy levels with such an accuracy, which would
make available the absolute determination of nuclear charge
radii, except for the hydrogenic systems, where accuracy is
limited only by small m�2�Z��6 higher order two-loop cor-
rections �17�.

The most important in the accurate calculation of �light�
atomic energy levels is the precise representation of the non-
relativistic wave function. The frequently used explicitly cor-
related Gaussian �ECG� functions give very accurate nonrel-
ativistic energies, but the wave function does not satisfy the
cusp condition, and for this reason this representation cannot
be used for the calculation of m�6 and higher order correc-

tions. Also, the estimation of numerical uncertainties within
the ECG method is quite problematic. More difficult to use is
the Hylleraas basis set �18–20�, but its achieved accuracy
exceeds significantly results with ECG for three electron sys-
tems. In order to solve accurately Schrödinger equation we
use the Hylleraas basis set with the number of functions of
about 10 000 for S states and 14 000 for P states. The cal-
culations of matrix elements of nonrelativistic Hamiltonian,
as well as relativistic and QED operators are performed ana-
lytically using newly developed recursion relations for the
Hylleraas integrals �20–23�.

In this work we present the most accurate calculations of
nonrelativistic, leading relativistic, and QED contributions,
including finite nuclear mass corrections and nuclear polar-
izability, to energy levels of 21S1/2, 31S1/2, and 21P1/2 states
of Li and Be+. As a main result, we obtain ionization ener-
gies of Li and Be+, transition energies 21S1/2-31S1/2 and
21S1/2-21P1/2, and corresponding isotope shifts. In compari-
son to the former work of Yan et al. �7�, our results are in
agreement for transition frequencies, but in slight disagree-
ment for the isotope shifts in Be+. For the Li isotope shift
both Ref. �7� and this work are in agreement with �16�. In all
cases our numerical precision is about an order of magnitude
higher, with the total uncertainty dominated by higher order
terms. The comparison to experimental values �24–27�, apart
from agreement with experimental transition energies in both
Li and Be+, reveals small discrepancy for the Be+ ionization
energy with the NIST data �27�. Together with these bench-
marking results, from our theoretical predictions and mea-
sured isotope shifts �12,13,28� we obtain improved nuclear
charge radii for various isotopes including halo nuclei 11Li
and 11Be.

II. RELATIVISTIC AND QED CORRECTIONS
WITH THE NUCLEAR CHARGE RADIUS

The energy level E�� ,�� as a function of � and �
=−� /mN=−m / �m+mN� is expanded in power series in its
arguments

E��,�� = m�2�E�2,0� + �E�2,1� + �2E�2,2��

+ m�4�E�4,0� + �E�4,1�� + m�5�E�5,0� + �E�5,1��
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and each coefficient is calculated separately from the expec-
tation value of the corresponding Hamiltonian or the opera-
tor. The leading terms E�2,0�, E�2,1�, and E�2,2� result from non-
relativistic Hamiltonian for three electrons and the nucleus
with Coulomb interactions between them,

H0 = �
a

pa
2

m
+

pN
2

mN
− �

a

Z�

ra
+ �

a�b

�

rab
. �2�

In order to calculate relativistic and nuclear recoil corrections
for atomic systems with the finite size nucleus, one should at
first properly define the nuclear charge radius. Therefore, let
us consider the interaction of the particle having spin s� and
the charge e with the electric field. The leading interaction
related to the finite size is

�H = −
e

6
��rch

2 ��ij + �sisj��2�QE�� jEi, �3�

where �rch
2 � is the averaged square of the charge radius, QE

is related to the electric quadrupole moment Q by
QE=3 / �sN�2sN–1��Q, and

�sisj��2� =
1

2
sisj +

1

2
sjsi −

�ij

3
s�2. �4�

For the point spin s=1 /2, particle �rch
2 � does not vanish and

is equal to 3 / �4m2�; it is the so-called Darwin term and it
depends on the value of the spin s �29�. This term is the
source of ambiguity in the definition of nuclear charge radii
�30�. If we want the point particle to have the vanishing
charge radius, the Darwin term should be excluded from
�rch

2 �. However, the value of the Darwin term for the arbitrary
spin point particle with the arbitrary magnetic moment is
unknown. Therefore, we propose the universal definition of
�rch

2 � by Eq. �3�, and thus include the Darwin term within the
charge radius. A similar, but even more complicated problem
appears when QED effects are being included. Now, assum-
ing the definition of charge radius by Eq. �3�, the atomic
Hamiltonian including relativistic corrections and neglecting
magnetic moment anomaly for electrons is of the form �31�

HBP = �
a

Ha + �
a�b

Hab + HN + �
a

HaN, �5�
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−
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4

8m3 , �6�
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1

2m2rab
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− 2s�b · r�ab � p�a + s�b · r�ab � p�b − s�a · r�ab � p�a�� , �7�
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� . �9�

In practice small relativistic terms involving nuclear mass
are treated perturbatively and in this work we neglect all
relativistic O�m /M�2 corrections. These terms become much
more important in muonic atoms and cannot be neglected
there.

Let us now consider leading QED corrections of order
m�5, which also include the inelastic contribution Epol due to
the nuclear polarizability. Since we do not consider the hy-
perfine structure, the spin of atomic nucleus can be ne-
glected, and the QED correction takes the form �32,33�

E�5� = −
4Z�2

3
	 1

m
+

Z

M

2��

a

�3�ra��ln k0

+ �
a

�HaN
�5�� + �

a�b

�Hab
�5�� + Epol, �10�

HaN
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m

M
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+ �19

30
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−
1
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3
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where

ln k0 �
��

a

p�a�H0 − E0�ln�2�H0 − E0�
�2m

�
b

p�b�
2��Z��c�

3�rc��
, �13�
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�	�P� 1

r3�
� = lim
a→0

� d3r	*�r��� 1

r3��r − a�

+ 4��3�r��� + ln a�
�r�� . �14�

The electron-electron terms have been simplified in the
above, since �3�rab� does not vanish only for singlet states,
therefore s�a ·s�b�3�rab�=−3 /4�3�rab�. We included in HaN the
leading logarithmic contribution that comes from the nuclear
self-energy, but neglected all nonlogarithmic �m /M�2 terms
which are proportional to �3�ra�. They are not known for a
general nucleus since they depend on the nuclear spin and
charge distribution within the nucleus. For the calculation of
the isotope shift in Li and Be+ we again neglect all O�m /M�2

terms. These terms are important for muonic atoms, but their
calculation requires proper definition of the nuclear charge
radius including QED effects, and its relation to the charge
radius obtained from a different type of measurements such
as the elastic electron scattering off nuclei.

The last term in Eq. �10�, Epol, is the nuclear polarizability
correction. It is significant for halo nuclei such as 11Li �16�,
or whenever the isotope shift transition in the optical range
reaches sub-MHz precision, for example, in the 1S-2S tran-
sition in deuterium �9�. The nuclear polarizability correction
is expected to be significant also for 11Be, as this nucleus has
the largest known B�E1� line strength among all nuclei. For
this reason, we calculate it using experimental �34� and the-
oretical �35� data for the electric dipole excitation of the 11Be
nucleus.

Considering m�6 corrections, they are well known for the
hydrogen. Results for few-electron atoms are expressed in
terms of the effective Hamiltonian �36�. Corresponding cal-
culations have been performed only for low-lying states of
helium �3�. Calculations for three-electron systems are at
present too difficult and therefore we use an approximate
formula on the basis of hydrogenic values,

E�6� = �Z2�3

m2 �427

96
− 2 ln�2� +

Z2�3

mmN
�35

36
−

448

27�2 − 2 ln�2�

+
6�3�

�2  +
Z3�3

mmN
�4 ln�2� −

7

2
����

a

�3�ra�� . �15�

It includes dominating electron-nucleus one-loop radiative,
radiative recoil, and pure recoil corrections �37�. We neglect
electron-electron radiative corrections and the purely relativ-
istic corrections, as we expect them to be relatively small, of
order 10%. The relativistic m�6 corrections are also very
difficult to calculate. Its neglect is the leading source of un-
certainty in the theoretical predictions for transition frequen-
cies. Similarly, the nuclear recoil correction m2 /M�6, which
is still significant for the isotope shift, is also estimated on
the basis of the known hydrogenic value in the above for-
mula. This introduced some uncertainty in the determination
of the isotope shift, from which nuclear charge radii are ob-
tained.

Due to numerical importance, one calculates approxi-
mately m�7 contribution which is known exactly only for
hydrogenic systems �37�,

EH
�7��n� = m

�

�

�Z��6

n3 �A60�n� + ln�Z��−2A61�n� + ln2�Z��−2A62�

+ m	�

�

2 �Z��5

n3 B50 + m	�

�

3 �Z��4

n3 C40. �16�

It includes one-, two-, and three-loop corrections, and values
of A ,B, and C coefficients may be found in �37�. Following
Ref. �32� these hydrogenic values of order m�7 are extrapo-
lated to lithium, according to

E�7��Z� = �2E�7��1S,Z� + E�7��nX,Z − 2��

�
��3�r1� + �3�r2� + �3�r3��Li

2��3�r��1S,Z + ��3�r��nX,Z−2
, �17�

for X=S, and for states with higher angular momenta
E�7��nX ,Z� is neglected. We expect this approximate formula
to be accurate to 25%. This completes QED corrections to
transition frequencies and the isotope shifts in light atomic
systems.

III. COMPUTATIONAL METHOD
AND NUMERICAL RESULTS

In the construction of the wave function we closely follow
the works of Yan and Drake in �19�. The global wave func-
tion � for both S and P states is expressed as a linear com-
bination of 
, the antisymmetrized product A of the spatial
function � and the spin function �,


 = A�	�r�1,r�2,r�3��� , �18�


a
i = A�	a

i �r�1,r�2,r�3��� , �19�

	�r�1,r�2,r�3� = e−w1r1−w2r2−w3r3 r23
n1 r31

n2 r12
n3 r1

n4 r2
n5 r3

n6, �20�

	a
i �r�1,r�2,r�3� = ra

i 	�r�1,r�2,r�3� , �21�

� = ��1���2���3� − ��1���2���3� , �22�

with ni being non-negative integers, wi�R+, and the sub-
script a=1,2 ,3. The matrix element of the nonrelativistic
Hamiltonian H0 in Eq. �2� or of any spin independent opera-
tor can be expressed after eliminating spin variables as

�
�H0�
�� = �2	�r1,r2,r3� + 2	�r2,r1,r3� − 	�r3,r1,r2�

− 	�r2,r3,r1� − 	�r1,r3,r2�

− 	�r3,r2,r1��H0�	��r1,r2,r3�� , �23�

�
a
i �H0�
b�

i� = �2	a
i �r1,r2,r3� + 2	a

i �r2,r1,r3� − 	a
i �r3,r1,r2�

− 	a
i �r2,r3,r1� − 	a

i �r1,r3,r2�

− 	a
i �r3,r2,r1��H0�	b�

i�r1,r2,r3�� . �24�

While for S states Hamiltonian matrix elements can be writ-
ten in one form, for P states with the help of an additional
r1 ,r2 ,r3 permutation they can take two different forms:
�	3

i �H0�	3�
i� or �	2

i �H0�	3�
i�. Next, all these spatial matrix el-
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ements are expressed as linear combination of Hylleraas in-
tegrals, namely the integrals with respect to ri of the form

f�n1,n2,n3,n4,n5,n6�

=� d3r1

4�
� d3r2

4�
� d3r3

4�

�e−w1r1−w2r2−w3r3r23
n1−1r31

n2−1r12
n3−1r1

n4−1r2
n5−1r3

n6−1, �25�

with non-negative integers ni. They are performed analyti-
cally for n1 ,n2 ,n3=0 ,1 and by recursion relations for larger
ni using formulas derived in �20�. These recursions give the
most accurate numerical values of Hylleraas integrals among
all the methods developed so far. Nevertheless, multiple pre-
cision arithmetic has to be used in generating the Hamil-
tonian matrix, in order to avoid near linear dependence of
Hylleraas basis functions.

The total wave function is generated from all 	 in Eq.
�23� with ni satisfying a condition

�
i=1

6

ni � � , �26�

for � between 3 and 12. For each � we minimize energy
with respect to the free parameters wi in Eq. �23�. In order to
increase the accuracy of the nonrelativistic wave function,
following Yan and Drake �19�, we divide the whole basis set
into five sectors �six sectors for P states�, each one with its
own set of wi’s. To avoid numerical instabilities, within each
sector we drop the terms with n4�n5 �or n4�n5� and for
n4=n5 drop terms with n1�n2 �or n1�n2�. This division
allows for a significant improvements of nonrelativistic en-
ergies by optimization of all, five for S and six for P states,
sets of wi’s. Numerical results for 21S1/2, 31S1/2, and 21P1/2

TABLE I. Nonrelativistic energy and relativistic and finite nuclear mass corrections in Li and Be+, �=� is a result of extrapolation.

� E�2,0� E�2,1� E�2,2� E�4,0� E�4,1�

Li 2 1S1/2
10 −7.478 060 323 786 3 −7.779 903 106 67 −1.801 631 491 −12.049 918 25 10.010 910 3

11 −7.478 060 323 861 5 −7.779 903 105 96 −1.801 631 553 −12.049 914 16 10.010 935 1

12 −7.478 060 323 889 7 −7.779 903 104 98 −1.801 631 587 −12.049 913 45 10.010 940 4

� −7.478 060 323 906�8� −7.7792 903 104 4�7� −1.801 631 62�4� −12.049 913 0�4� 10.010 945�4�

Li 3 1S1/2
10 −7.354 098 421 004 0 −7.646 138 262 557 −1.677 971 728 8 −11.871 192 0 10.014 596

11 −7.354 098 421 302 1 −7.646 138 262 527 −1.677 971 758 0 −11.871 177 9 10.014 649

12 −7.354 098 421 379 9 −7.646 138 262 612 −1.677 971 775 7 −11.871 171 5 10.014 687

� −7.354 098 421 426�19� −7.646 138 262 65�3� −1.677 971 789�11� −11.871 168�8� 10.014 72�4�

Li 2 1P1/2
10 −7.410 156 532 150 2 −7.656 895 306 5 −1.806 107 −11.801 371 0 9.685 503

11 −7.410 156 532 586 0 −7.656 895 217 6 −1.806 275 −11.801 365 9 9.685 230

12 −7.410 156 532 628 6 −7.656 895 191 1 −1.806 407 −11.801 363 5 9.685 356

� −7.410 156 532 665�14� −7.656 895 176�9� −1.806 51�8� −11.801 362�2� 9.685 43�8�

Be+ 2 1S1/2
10 −14.324 763 176 616 3 −14.777 682 315 84 −3.634 056 961 9 −43.688 039 3 26.932 300

11 −14.324 763 176 725 0 −14.777 682 314 48 −3.634 057 065 9 −43.688 034 4 26.932 382

12 −14.324 763 176 763 5 −14.777 682 313 66 −3.634 057 095 3 −43.688 026 3 26.932 370

� −14.324 763 176 784�11� −14.777 682 313 0�5� −3.634 057 110�11� −43.688 023�4� 26.932 37�2�

Be+ 2 1S1/2
10 −13.922 789 268 385 7 −14.351 840 883 53 −3.294 071 80 −42.344 339 8 27.308 080 8

11 −13.922 789 268 530 7 −14.351 840 888 66 −3.294 073 32 −42.344 323 8 27.308 224 8

12 −13.922 789 268 554 2 −14.351 840 890 68 −3.294 073 94 −42.344 318 4 27.308 210 6

� −13.922 789 268 570�10� −14.351 840 891 8�8� −3.294 074 4�4� −42.344 317�3� 27.308 21�2�

Be+ 2 1P1/2
10 −14.179 333 292 319 7 −14.345 507 657 −3.728 487 −42.123 997 4 24.352 898

11 −14.179 333 293 202 9 −14.345 507 560 −3.728 679 −42.123 985 4 24.352 585

12 −14.179 333 293 342 7 −14.345 507 534 −3.728 739 −42.123 978 2 24.352 564

� −14.179 333 293 42�3� −14.345 507 52�3� −3.728 78�4� −42.123 976�6� 24.352 55�4�
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TABLE II. Relativistic and QED operators in Li and Be+. Implicit sum over a and sum over a�b pairs
are assumed. Bethe logarithms are that from Yan et al. �7� All values are in atomic units.

Operator Li 2S1/2 Li S1/2 Li 2P1/2

papb 0.301 842 780 3�6� 0.292 039 841 2�2� 0.246 738 644�9�
papb / �E−H��pcpd −1.499 788 83�4� −1.385 931 96�2� −1.559 77�7�
pa

4 628.449 022�4� 622.859 40�2� 620.044 977�8�
�pa

4�mp 41.176 62�5� 40.628 83�7� 40.628 87�6�

pa
i �

�ij

rab
+

rab
i rab

j

rab
3 �pb

j 0.871 195 809�9� 0.859 817 43�18� 0.792 851 59�4�

�pa
i �

�ij

rab
+

rab
i rab

j

rab
3 �pb

j �mp
6.154 303 2�3� 5.844 828 2�5� 6.002 973�11�

�3�ra� 13.842 610 787�6� 13.736 502 84�7� 13.676 197 06�7�
��3�ra��mp 0.484 589 3�6� 0.487 894 7�6� 0.647 914�5�
�3�rab� 0.544 324 632 0�7� 0.536 168 418 9�4� 0.532 274 098 9�3�
��3�rab��mp −0.082 009 7�4� −0.078 406�2� −0.066 725�2�

pN
i �

�ij

ra
+

ra
i ra

j

ra
3 �pa

j 87.276 740 9�3� 86.289 222 5�7� 85.743 261 2�7�

1 /rab
3 0.273 413�5� 0.198 05�8� 0.289 57�5�

�1 /rab
3 �mp −1.627 46�5� −1.645 4�2� −1.892�5�

1 /ra
3 −308.314 23�6� −305.939 0�2� −304.517 7�2�

ln�k0�−2 ln Z 2.981 06�1� 2.982 36�6� 2.982 57�6�
�ln�k0��mp −0.113 05�5� −0.110 5�3� −0.111 2�5�
r�a /ra

3� p�a ·�� a −0.125 946 352�50�
�r�a /ra

3� p�a ·�� a�mp 0.376 388�3�
r�ab /rab

3 � p�a ·�� a −0.224 640 70�5�
�r�ab /rab

3 � p�a ·�� a�mp 0.570 585�4�
r�ab /rab

3 � p�b ·�� a 0.038 473 60�6�
�r�ab /rab

3 � p�b ·�� a�mp −0.213 52�3�
r�a /ra

3� p�N ·�� a 0.022 524 93�9�

Operator Be+ 2S1/2 Be+ 3S1/2 Be+ 2P1/2

papb 0.452 919 136 1�7� 0.429 051 623 1�7� 0.166 174 23�2�
papb / �E−H��pcpd −3.181 137 97�3� −2.865 022 8�3� −3.562 60�5�
pa

4 2146.520 76�5� 2108.368 02�9� 2088.652 95�4�
�pa

4�mp 115.923 1�2� 112.589 8�3� 154.322 2�4�

pa
i �

�ij

rab
+

rab
i rab

j

rab
3 �pb

j 1.819 804 86�12� 1.774 364 56�14� 1.226 817 28�11�

�pa
i �

�ij

rab
+

rab
i rab

j

rab
3 �pb

j �mp
17.854 151�2� 16.414 367�3� 17.777 145�11�

�3�ra� 35.105 055 72�8� 34.577 877 6�1� 34.245 820 96�5�
��3�ra��mp 0.927 607 3�4� 0.932 129 �2� 1.831 450�7�
�3�rab� 1.580 538 588�3� 1.537 328 373�1� 1.518 990 086�6�
��3�rab��mp −0.431 732�2� −0.409 936 9�9� −0.351 752�3�

pN
i �

�ij

ra
+

ra
i ra

j

ra
3 �pa

j 222.628 511 9�4� 217.799 579 5�7� 214.562 695 2�8�

1 /rab
3 −7.514 6�1� −7.579 45�7� −6.794 2�2�

�1 /rab
3 �mp −7.514 6�1� −7.579 45�7� −6.794 2�2�

1 /ra
3 −910.919 4�1� −897.084 8�3� −887.841 7�3�

ln�k0�−2 ln Z 2.979 26�2� 2.981 62�1� 2.982 27�6�
�ln�k0��mp −0.125 58 4 −0.117 1�1� −0.121 7�6�
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of Li and Be+ for various sizes of basis sets are presented in
Table I. The results for the ground state of Li are in agree-
ment with our previous evaluation �22�. Results denoted by
� are obtained by extrapolation to the infinitely large �com-
plete� basis set, by fitting the function X���=X0+X1 /�n

with some integer n. The similar fit is used for all other
matrix elements, presented in the following tables.

Calculation of relativistic corrections, which are given by
Eqs. �5�–�9�, involve spin-independent and spin-dependent
terms. The matrix element of spin-independent terms are cal-
culated according to Eq. �23�, while spin-orbit terms are ob-
tained for the P1/2 state by using

�
a��
c=1

3

Q� c · �� c�
b�J=1/2

= i�	� a�r1,r2,r3��− 2Q� 3 � �	� b�r1,r2,r3� + 	� b�r2,r1,r3��

+ �Q� 1 − Q� 2 + Q� 3� � �	� b�r2,r3,r1� + 	� b�r3,r2,r1��

+ �− Q� 1 + Q� 2 + Q� 3� � �	� b�r1,r3,r2� + 	� b�r3,r1,r2��� ,

�27�

and the result for P3/2 is equal to −1 /2 of that for P1/2. The
tensor spin-spin interaction vanishes for both the P1/2 and

TABLE III. Expansion of energy in powers of � and � in Li. The last column presents values in units cm−1 for the ground state ionization
energy for 7Li and 9Be+ with atomic masses from Table V. Efs

�4,0� is the finite size correction with rch�7Li�=2.39�3� fm �41� and rch�9Be�
=2.519�12� fm �43�.

Energy 3S1/2−2S1/2 2P1/2−2S1/2 I.P. 2S1/2 I.P. 2S1/2�cm−1�

Li

E�2,0� 0.123 961 902 48�2� 0.067 903 791 24�2� 0.198 146 911 238�12� 43 488.220 301�6�
E�2,1� 0.133 764 841 8�7� 0.123 007 928�10� 0.211 013 905 1�6� −3.621 708

E�2,2� 0.123 659 827�11� −0.004 88�7� 0.235 270 010�19� 0.000 316

E�4,0� 0.178 745�2� 0.248 551 4�10� 0.240 540 1�4� 2.811 269�5�
Efs

�4,0� −0.666 695�rch
2 � −1.045608�rch

2 � −0.870 799�rch
2 � −0.000 390

E�4,1� 0.003 78�4� −0.325 44�11� 0.013 50�3� −0.000 012

E�5,0� −2.193�3� −3.478�3� −2.860 8�6� −0.243 99�5�
E�5,1� −1.46�2� 1.30�3� −1.889�3� 0.000 013

E�6,0� −9.2�9� −14.4�1.4� −12.0�1.2� −0.007 5�7�
E�6,1� −38.�10� −46.�12� −49.�12� 0.000 002

E�7,0� 115.�29� 215.�54� 147.�37� 0.000 67�17�

Be+

E�2,0� 0.401 973 908 21�2� 0.145 429 883 35�5� 0.669 196 938 370�19� 146 871.751 363�4�
E�2,1� 0.425 841 421 2�13� 0.432 174 796�11� 0.701 595 771 3�4� −9.374 767

E�2,2� 0.339 982 7�3� −0.094 72�3� 0.721 945 175�15� 0.000 587

E�4,0� 1.343 705�3� 1.564 047�3� 1.892 557�3� 22.118 92�4�
Efs

�4,0� −4.416 477�1��rch
2 � −7.198 308�1��rch

2 � −5.937 280�1��rch
2 � −0.002 955

E�4,1� 0.375 84�2� −2.579 82�5� 0.620 19�3� −0.000 441

E�5,0� −13.168�2� −21.864�11� −17.742�4� −1.513 1�3�
E�5,1� 3.19�2� 30.92�13� 28.75�8� −0.000 149

E�6,0� −81.�8� −132.�13� −109.�11� −0.068�7�
E�6,1� −361.�90� −442.�111� −477.�119� 0.000 018�5�
E�7,0� 1036.�259� 1787.�447� 1360.�340� 0.006 2�15�
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P3/2 states. All these matrix elements include Hylleraas inte-
grals with ni=−1, which are difficult to obtain accurately. We
use the one-dimensional integral form for f�−1,0 ,0 ;0 ,0 ,0�
and f�0,0 ,0 ;−1 ,n5 ,n6� and other f’s with ni=−1 are ob-
tained by recursion relations �21,22�. Since these recursions
are not stable numerically, we used quadruple, sextuple, and
octuple precision arithmetic written by Korobov �38� to
avoid loss of the numerical precision. It was especially im-
portant for excited states. Individual results for various op-
erators are presented in Table II and the total relativistic cor-
rection in Table III. By the symbol �¯�mp in these tables, we
denote the mass polarization correction, namely,

�¯�mp = 2�¯�
1

�H − E�� �
a�b

p�a · p�b. �28�

QED corrections include two new terms, 1 /r3 and the
Bethe logarithm, see Eqs. �13� and �14�. Matrix elements of
the 1 /r3 term involve Hylleraas integrals with ni=−2. Their
calculation using recursion relations was presented in Ref.
�23�, and numerical results are presented in Table II. We note
a slow numerical convergence of 1 /r3 terms and its mass
polarization correction. Bethe logarithms are far the most
difficult in accurate numerical evaluation and in this work we
use the results obtained by Yan et al. in �7�. We note a weak
dependence of Bethe logarithms on a state, all close to the 1S
hydrogenic value.

IV. TRANSITION AND IONIZATION ENERGIES

Numerical values of all coefficients for relevant transition
energies are presented for lithium and beryllium in Table III.
E�5,0� does not include there the nuclear polarizability contri-
bution. It is a small correction, which results from modifica-
tion of the nucleus by atomic electrons. The effect of nuclear
polarizability in 11Li was estimated in �16�, and 11Be+ is
obtained here. While it does not affect, the absolute transition
frequencies much, it is significant for the isotope shift and
the corresponding determination of the charge radii differ-
ence, see the next section.

Obtained results for the energy expansion coefficients are
in general in good agreement with the former calculation of
Yan and Drake in �6,14,15�, with corrections and improve-
ments in �7�. We have not yet confirmed their results for the
Bethe logarithms �7� and use them in our coefficients E�5,0�

and E�5,1�. We note that the present numerical precision of
expansion coefficients is high enough, that the leading uncer-
tainty of transition frequencies comes from E�6,0�, more pre-
cisely from the rough estimate of the relativistic �nonradia-
tive� m�6 correction, which is about 10% of the leading
radiative correction.

Using this expansion coefficients in Table III and atomic
masses from Table IV, one obtains transition frequencies
which are compared in Table V to the previous calculations
of Yan et al. �7,14,15� and to the experimental results. Small
differences with results of Drake and Yan are due to the
better numerical accuracy of our results and the inclusion of

TABLE IV. Atomic masses of Lithium and Beryllium isotopes and the atomic binding energy.

Li isotope Mass �u� Ref. Be isotope Mass �u� Ref.

6Li 6.015122794�16� �41� 7Be 7.016 929 83�11� �42�
7Li 7.0160034256�45� �43� 9Be 9.012 182 20�43� �42�
8Li 8.02248624�12� �41� 10Be 10.013 533 82�43� �42�
9Li 9.02679020�21� �41� 11Be 11.021 661 55�63� �44�
11Li 11.04372361�69� �41� 14Be 14.042 890�140� �42�
ELi −7.281 au EBe −14.669 au

TABLE V. Comparison of our theoretical predictions with the previous theoretical and experimental
values in units cm−1.

I.P. 2S1/2 3S1/2−2S1/2 2P1/2−2S1/2

7Li �this work� 43 487.159 0�8� 27 206.093 7�6� 14 903.648 4�10�
7Li �the� 43 487.158 3�10�a 27 206.093 0�10�a 14 903.647 9�10�a

7Li �exp� 43 487.159 40�18�b 27 206.094 20�10�c 14 903.648 130�14�d

9Be+ �this work� 146 882.918�7� 88 231.919�5� 31 928.734�8�
9Be+ �the� 146 882.923�5�a 88 231.920�6�a 31 928.738�5�a

9Be+ �exp� 146 882.86e 88 231.915e 31 928.744e

aReference �7�.
bReference �25�.
cReference �26�.
dReference �24�.
eReference �27�.
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the finite nuclear size correction in transition and ionization
energies for Be+. In comparison to experimental values we
observe an agreement for both the lithium atom and beryl-
lium ion, with one exception. Namely, theoretical ionization
energy is larger by 0.06 cm−1 than the experimental value,
and this discrepancy was already pointed out in �7�. The
relatively lower accuracy of theoretical results for the beryl-
lium ion comes from the neglect of the nonradiative m�6

correction, which significantly grows with Z. The direct cal-
culation of this correction for the three electron system is a
challenge. A simpler approach would rely on matching the
high Z results for lithiumlike systems �45� with the low Z
results obtained by the expansion in �. We note that in spite
of the relatively large uncertainties coming from E�6,0� the
obtained results for transition frequencies are the most accu-
rate so far, and no other approach allows one for the system-
atic calculation of all corrections in the low Z atomic sys-
tems.

V. ISOTOPE SHIFT DETERMINATION
OF NUCLEAR CHARGE RADII

The isotope shift in atomic transitions come mainly from
different masses of nuclei. Much smaller effect of order
�10−6 is due to different nuclear charge radii. Nevertheless,
precision of isotope shift measurements and theoretical pre-
dictions is enough to derive charge radii from the compari-
son of the experimental and the theoretical data. Moreover,
this determination of charge radii is far more accurate than
the one obtained from electron scattering off nuclei and can

be applied even to unstable nuclei such as 11Li and 11Be.
From expansion coefficients for Li and Be+ in Table III, one
obtains contributions to the isotope shift. The example for
11Li-7Li and 11Be+-9Be+ is presented in Table VI. We ob-
serve that the leading nonrelativistic contribution gives at
least 99.9% of the total isotope shift. The relativistic recoil
corrections are small but still important, while the theoretical
uncertainty is dominated by rough estimation of E�6,1�. The
nuclear polarizability correction is significant for both 11Li
and 11Be+, and its value is presented in Table VI. Result from
11Li was obtained in �16�, while for 11Be+ it is calculated
here using both experimental �34� and theoretical data �35�
for the so-called B�E1� function which is the reduced line
strength for the nuclear E1 excitation,

��	N�d� �E��2 =
4�

3

dB�E1�
dE

, �29�

in units e2 fm2 MeV−1. The kets ��N� and �E� denote the
ground state of the nucleus and the excited state with exci-
tation energy E, respectively. The relevant formula relating
electric dipole nuclear transition moment with the shift of
atomic energy levels is �16�

�pol = − m�4��
a

�3�ra���m3�̃pol� , �30�

where �̃pol is a weighted electric polarizability of the nucleus
and is given by the following double integral:

�̃pol =
16�

3
� dE

1

e2 ��	N�d� �E��2�
0

� dw

w

E

E2 + w2

�
1

�� + ����1 +
1

�� + 1���� + 1�	 1

� + 1
+

1

�� + 1

 ,

�31�

where �=�1+2im /w. The first integral over the nuclear ex-
citation spectrum may involve a sum over discreet levels, as
it is the case of 11Be. This nucleus has an excited state with
E=0.320 MeV and B�E1�=0.116e2 fm2, and a continuum
spectrum starts at ET=0.504 MeV. The result for �̃pol using
the experimental �34� or the theoretical data �35� is

�̃pol = 39.7�40� fm3 = 6.90�69�10−7m−3, �32�

and this value is used to obtain the shift of energy levels �pol
in Eq. �5� for Be+ in Table VI.

From the difference between experimental and theoretical
isotope shift one determines nuclear charge radii by using

TABLE VI. Contributions to the 11Li-7Li isotope shift of
3S1/2-2S1/2 transition, and to the 11Be+9Be+ shift of 2P1/2-2S1/2 tran-
sition, with excluding the finite size correction. The second uncer-
tainty of ��the is due to the atomic mass.

Correction Li�3S1/2-2S1/2� �MHz� Be+�2P1/2-2S1/2� �MHz�

���2,1� 25 104.520 2�1� 31 568.577 3�8�
���2,2� −2.967 9 0.765 7�2�
���4,1� 0.037 8�4� −10.035 0�2�
���5,1� −0.106 4�15� 0.877 7�36�
���6,1� −0.020�5� −0.092�23�
��pol 0.039�4� 0.208�21�
��the 25 101.502 8�64��27� 31 560.302�31��12�
��the �7� 25 101.470�22� 31 560.01�6�

TABLE VII. Summary of isotope shift determination of Li charge radii from 3S1/2-2S1/2 transition with
respect to 7Li, r�7Li�=2.39�3� fm �39�; the first uncertainty of �the comes from unknown higher order terms,
the second uncertainty is due to the atomic mass.

Isotope �exp �MHz� �13� �the �MHz� C �MHz fm−2� �rch
2 �fm2� rch �fm�

6Li −11 453.983�20� −11 452.820 5�23��2� −1.571 9�16� 0.740�13� 2.540�28�
8Li 8 635.782�44� 8 634.981 2�17��9� −1.572 0�16� −0.509�28� 2.281�32�
9Li 15 333.272�39� 15 331.799 5�31��12� −1.572 1�16� −0.937�25� 2.185�33�
11Li 25 101.226�125� 25 101.502 8�64��27� −1.576 8�17� 0.176�79� 2.426�34�
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��exp − ��the = CAB�rchA
2 − rchB

2 � , �33�

with constant C obtained from Eq. �9� by including logarith-
mic relativistic corrections to the wave function at the origin

C =
2�

3
Z�4��

a

��3��ra���1 − �Z��2 ln�Z�mrch�� . �34�

Using isotope shifts as measured for Li in �12,13� and Be+ in
�28�, we obtain nuclear charge radii for corresponding iso-
topes in Tables VII and VIII. Results for Li are slightly more
accurate than our previous determination in �16� due to the
more accurate �the and nuclear masses. Our results for Be
isotopes agree with the recent determination presented in
�28�. The uncertainty of our ��the comes mainly from 25%
of ���6,1� and 10% of ��pol. Non-negligible are numerical
uncertainties of Bethe logarithms and their mass polarization
corrections. The uncertainty of C coefficients comes from the
estimation of relativistic correction to the wave function at
origin, which is about 25% of the logarithmic part. Never-
theless, uncertainties in �rch

2 come mainly from the experi-
mental value for the isotope shift, and the uncertainty of the
final rch comes mostly from the charge radius of the refer-
ence nucleus. As we have already mentioned, the direct de-
termination of the charge radius from the absolute transition
frequency is at present not possible for lithiumlike systems
due to insufficient precision of theoretical predictions.

VI. SUMMARY

We have calculated nonrelativistic, relativistic, and QED
contributions to low-lying energy levels of Li and Be+ ions,
including finite nuclear mass corrections. The computational
method uses the Hylleraas basis set with the analytic integra-
tion technique. The obtained results are the most precise to
date, with the accuracy limited mainly by higher order rela-
tivistic m�6 corrections. Using the experimental results for
the isotope shift of 3S1/2-2S1/2 transition in Li �12,13� and
2P1/2-2S1/2 transition in Be+ �28�, we obtain improved charge

radii for Li and Be isotopes. We note the significance of the
nuclear polarizability effect in 11Li and 11Be+ and relativistic
correction to the wave function at origin for the determina-
tion of charge radii.

The presented computational method is limited by un-
known higher order relativistic and QED corrections, which
become more significant for heavier nuclei. One possible so-
lution for the charge radii determination for heavier nuclei is
the spectroscopy of the four-electron ion, for which we think
accurate calculations can be performed with the help of a
Gaussian basis set with linear terms �46,47�. Apart from
nuclear charge radii, precise atomic spectroscopy may bring
information about the magnetic moment distribution within
nuclei. Indeed a measurement of the hyperfine splitting in
11Be+ �48� may give the size of neutron halo, which cannot
be probed by other means. However, the interpretation of the
shift of the hyperfine splitting in terms of the Bohr-Weiskopf
effect is not obvious, due to possible large nuclear polariz-
ability effects �49�.

The significant advantage of the presented computational
approach with Hyllerras functions is the ability to calculate
higher order relativistic �50� and QED corrections, although
such a calculation is not simple. We aim to obtain O��2� and
O��3� corrections to the hyperfine splitting in order to inves-
tigate nuclear structure correction with halo nuclei, and also
to verify the accuracy of simplified approaches such as the
relativistic configuration interaction or the multiconfiguration
Dirac-Fock method.
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