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We introduce a perturbative approach to solving the time-dependent Schrödinger equation, named adiabatic
perturbation theory �APT�, whose zeroth-order term is the quantum adiabatic approximation. The small pa-
rameter in the power series expansion of the time-dependent wave function is the inverse of the time it takes
to drive the system’s Hamiltonian from the initial to its final form. We review other standard perturbative and
nonperturbative ways of going beyond the adiabatic approximation, extending and finding exact relations
among them, and also compare the efficiency of those methods against the APT. Most importantly, we deter-
mine APT corrections to the Berry phase by use of the Aharonov-Anandan geometric phase. We then solve
several time-dependent problems, allowing us to illustrate that the APT is the only perturbative method that
gives the right corrections to the adiabatic approximation. Finally, we propose an experiment to measure the
APT corrections to the Berry phase and show, for a particular spin-1 /2 problem, that to first order in APT the
geometric phase should be two and a half times the �adiabatic� Berry phase.
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I. INTRODUCTION

Aside from interpretation, quantum mechanics �QM� is
undoubtedly one of the most successful and useful theories
of modern physics. Its practical importance is evidenced at
microscopic and nano scales where Schrödinger’s equation
�SE� dictates the evolution of the system’s state—i.e., its
wave function—from which all the properties of the system
can be calculated and confronted against experimental data.
However, SE can only be exactly solved for a few problems.
Indeed, there are many reasons that make the solution of
such a differential equation a difficult task, such as the large
number of degrees of freedom associated with the system
one wants to study. Another reason, the one we want to ad-
dress in this paper, is related to an important property of the
system’s Hamiltonian: its time dependence.

For time-independent Hamiltonians the solution to SE can
be cast as an eigenvalue and eigenvector problem. This al-
lows us to solve SE in many cases exactly, in particular when
we deal with systems described by finite-dimensional Hilbert
spaces. For time-dependent Hamiltonians, on the other hand,
things are more mathematically involved. Even for a two-
level system �a qubit� we do not, in general, obtain a closed-
form solution given an arbitrary time-dependent Hamil-
tonian, although a general statement can be made for slowly
varying Hamiltonians. If a system’s Hamiltonian H changes
slowly during the course of time, say, from t=0 to t=T, and
the system is prepared in an eigenstate of H at t=0, it will
remain in the instantaneous �snapshot� eigenstate of H�t�
during the interval t� �0,T�. This is the content of the well-
known adiabatic theorem �1�.

But what happens if H�t� is not slowly enough varied?
For how long can we still consider the system to be in a

snapshot eigenstate of H�t�; i.e., for how long the adiabatic
approximation is reliable? What are the corrections to the
adiabatic approximation? One of our goals in this paper is to
provide practical and useful answers to these questions. We
introduce a perturbative expansion about the adiabatic ap-
proximation, named adiabatic perturbation theory �APT�, us-
ing the quantity v=1 /T as our small parameter. This power
series expansion in v is subsequently used to calculate cor-
rections to the adiabatic approximation for several time-
dependent two-level systems. It is worth noting that answers
to previous questions can also be seen, under certain provi-
sos, as a way of solving perturbatively any time-dependent
problem. We should stress that the APT is not related to the
time-ordered Dyson series method since the latter is not a
perturbative expansion about the adiabatic approximation, in
terms of the small parameter v. Rather, it is an iterative way
of getting the unitary operator governing the evolution of a
system in terms of a small perturbative potential in the
Hamiltonian.

Another goal is to present an exhaustive comparison of all
the approximation methods developed so far to solving SE.
In particular, we show the exact equivalence between Garri-
son’s multivariable expansion method �2� �which solves an
extended set of partial differential equations� and APT. How-
ever, it is important to stress that the APT, being an algebraic
method, is straightforward to use, while Garrison’s approach
is very hard to extend beyond first order. We also provide an
extension to Berry’s iterative method �3� where, contrary to
the original approach, we keep all terms of the new Hamil-
tonian obtained after each iteration. We then discuss the pos-
sibility to choose other types of iteration �unitary transforma-
tions� to potentially do better than Berry’s prescription.

Furthermore, it is known that if the conditions of the adia-
batic theorem are satisfied and H�T�=H�0�, it follows that
the state ���T�� describing the system at t=T is given by
���T��=ei��T� ���0��, where ���0�� is the initial state and
��T� is a phase that can be split into dynamical and geo-
metrical parts �4�. This raises another question we address
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here and which is not independent from the ones above: what
are the corrections to the Berry phase �4� as the system de-
viates from the adiabatic approximation? To provide an an-
swer we make use of the Aharonov-Anandan �AA� geometric
phase �5�, which is a natural extension of the Berry phase
having a geometric meaning whenever the initial state re-
turns to itself, even for a nonadiabatic evolution. We thus
compute the AA phase for the corrections to the adiabatic
approximation, which, therefore, possess the geometrical and
gauge invariance properties of any AA phase. We then show,
for a particular spin-1/2 example, that whenever H�T�
=H�0� and the evolving state corrected up to first-order re-
turns to itself �up to a phase� at t=T, we obtain a geometric
phase that is two and a half Berry’s phase value.

In order to provide a clear and complete analysis of the
questions raised above we structure our paper as follows.
�See Fig. 1 for a structural flowchart of the paper.� In Sec. II
we review the adiabatic approximation, highlighting the con-
ditions that the snapshot eigenvectors and eigenvalues of
H�t� must satisfy for this approximation to be valid. In Sec.
III we review many strategies that may be employed to find
corrections to the adiabatic approximation as well as to the
Berry phase. As shown later, those methods are unsatisfac-
tory since either they do not furnish all the terms that correct
the geometrical phase and the adiabatic approximation or
they cannot be seen as a perturbation in terms of the small
parameter v=1 /T. In Sec. IV we present our perturbation
method—i.e., APT—in its full generality and provide ex-
plicit corrections to the adiabatic approximation up to second
order. In Sec. V we deal with corrections to the geometric
phase using the previous method, presenting its first-order
correction. In Sec. VI we compare all other methods with the
APT, emphasizing the main differences among them. In Sec.
VII we review the exact and analytical solution of a time-

dependent problem and expand it in terms of the small pa-
rameter v. Then we show that our perturbative method is the
only one that gives all the terms obtained from the expansion
of the exact solution. We also propose an experiment where
APT corrections to the Berry can be measured. In Sec. VIII
we solve numerically three other time-dependent problems
and compare them with our perturbative method. Finally, in
Sec. IX we provide our concluding remarks.

II. ADIABATIC APPROXIMATION

Let us start rewriting the time-dependent SE in terms of
the rescaled time s=vt, where T=1 /v is the relevant time
scale of our Hamiltonian H�t�. We then formally solve SE,
emphasizing the assumptions imposed on the spectrum of
H�t�, and show the conditions the instantaneous �snapshot�
eigenvectors of H�t� must satisfy for the adiabatic approxi-
mation to be valid.

The time-dependent SE is written as

i�
d

dt
���t�� = H�t����t�� , �1�

where ���t�� is the state describing our system at time t.
Since we want to work with the rescaled time s and d

dt
=v d

ds , it results in

i�v
d

ds
���s�� = H�s����s�� . �2�

Building on the knowledge that the adiabatic phase can be
split into a geometrical ��� and a dynamical ��� part �4� we
may write down the solution ���s�� as

���s�� = �
n=0

ei�n�s�e−�i/v��n�s�bn�s��n�s�� , �3�

in which bn�s� are time-dependent coefficients to be deter-
mined later on. The sum over n includes all snapshot eigen-
vectors of H�s�,

H�s��n�s�� = En�s��n�s�� , �4�

with eigenvalue En�s� �n=0 represents its ground state
�g.s.��. The Berry phase associated to the eigenvector �n�s��
is

�n�s� = i�
0

s 	n�s���
d

ds�
n�s��
ds� = i�

0

s

Mnn�s��ds�, �5�

while

�n�s� =
1

�
�

0

s

En�s��ds� = v�n�t� �6�

defines its dynamical phase. Let us start assuming that H�s�
has a nondegenerate spectrum during the whole evolution.
Note that the initial �s=0� conditions on ���s�� are encoded
in bn�0�. Therefore, if the initial state is �0�0��, we will have
bn�0�=�n0, where �ij is the Kronecker delta. In this case, as
we will see below, the spectrum needs to satisfy the less
restrictive condition E0�s��En�s�, ∀s� �0,T�, n�0, for our

AA
Sec. II

Secs. IIIA2, IV, V
APT

SA
TDPT
Sec. VISec. IIIB

IRBM

Schroedinger Equation

Approximate solution

Exact solution

FIG. 1. Different approximation methods to solving the time-
dependent Schrödinger equation. APT: adiabatic perturbation theory
�Garrison, Ponce, this paper�. IRBM: iterative rotating-basis method
�Kato, Garrido, Nenciu, Berry�. TDPT: time-dependent perturbation
theory �Dirac�. SA: sudden approximation �Messiah�. AA: adiabatic
approximation �Born and Fock�.
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perturbation method to work. In other words, our method
will work whenever one starts the evolution at the g.s. and
there is no level crossing between E0�s� and any other En�s�
�even though the excited-state part of the spectrum may dis-
play level crossings�. Similar types of conditions can be
shown to apply to states residing in subspaces spectrally
separated from the rest.

Replacing Eq. �3� into �2� using Eq. �4� and left multiply-
ing it by �m�s�� leads to

ḃn�s� + �
m=0

m�n

e−�i/v��mn�s�ei�mn�s�Mnm�s�bm�s� = 0, �7�

where the overdot means d
ds and the indices m↔n were ex-

changed. Here �mn�s�=�m�s�−�n�s�, �mn�s�=�m�s�−�n�s�,
and

Mnm�s� = �n�s��ṁ�s�� . �8�

So far, no approximation was invoked and in principle the
time dependence can be found by solving the system of
coupled differential equations given in �7�. General numeri-
cal methods to solve such equations will face the computa-
tional difficulty of integrating highly oscillatory terms such
as e−�i/v��mn�s�ei�mn�s�, making the approach numerically un-
stable. Later on, we show that our perturbative method gets
rid of this problem.

The adiabatic approximation consists in neglecting the
coupling terms �7�, i.e., setting Mnm�s�=0,

bn�s� = bn�0� → �adiabatic approximation� . �9�

Replacing Eq. �9� into �3� we obtain

���0��s�� = �
n=0

ei�n�s�e−�i/v��n�s�bn�0��n�s�� , �10�

where we used ���0��s�� instead of ���s�� since the adiabatic
approximation will be the zeroth-order term in the perturba-
tive method developed later. In the case the system starts at
the g.s.,

���0��s�� = ei�0�s�e−�i/v��0�s��0�s�� . �11�

For the sake of completeness, let us analyze some general
properties of Mnm�s�. Since the eigenvectors of H�s� are or-
thonormal, we have �n�s� �m�s��=�nm. Taking the derivative
with respect to s, we get Mnm�s�+M

mn
* �s�=0, which implies

that Mnn�s� is a purely imaginary number, as it should be
since �n�s� is real. When n�m, by taking the derivative of
Eq. �4� with respect to s and left multiplying by �m�s�� one
gets

Mnm�s� = �n�s��Ḣ�s��m�s��/�mn�s� , �12�

where �mn�s�=Em�s�−En�s�. This last expression indicates
that the adiabaticity condition is related to the existence of a
gap. A spectrum of discussions on the validity of the adia-
batic approximation can be found in Refs. �6–10�.

III. CORRECTIONS TO THE ADIABATIC
APPROXIMATION

We can classify all the strategies to find corrections to the
adiabatic approximation into two groups. The first one in-
cludes those methods that perform a series expansion of the
wave function in terms of the small parameter v=1 /T�1,
with T representing the time scale for adiabaticity. In this
group we include the pioneering approach of Garrison �2�
and the seminal work of Ganduglia, Goldberg, and Ponce
�11�. The second group includes those methods that intend to
approximate the solution to the time-dependent SE without
relying on a formal series expansion of the wave function
�3,12–14�, but using the adiabiatic approximation as their
zeroth-order step. In this section we review two methods
belonging to the first group and one to the second, called
adiabatic iteration by Berry �3�. We then comment on a pos-
sible extension of the latter.

A. Examples of the first group

We first show how to manipulate Eq. �7� in order to get a
series expansion in terms of the small parameter v, which we
call the standard �textbook� approach. We then discuss the
multivariable expansion method of Garrison �2�, who also
dubbed it APT.

1. Standard approach

One can formally integrate Eq. �7� to obtain

bn�s� = bn�0� − �
m=0

m�n

�
0

s

ds�e−�i/v��mn�s��Bmn�s�� , �13�

where

Bmn�s� = ei�mn�s�Mnm�s�bm�s� . �14�

The integral inside the sum in Eq. �13� can be written as

I = �
0

s

ds�Bmn�s��exp�1

v
�

0

s�
ds�Cmn�s�� , �15�

in which Cmn�s�=−i�mn�s� /�. Our goal here is to expand I in
powers of v. This can be done by using the mathematical
identity

Bmn�s�exp�1

v
�

0

s

ds�Cmn�s��
=

d

ds�v
Bmn�s�
Cmn�s�

exp�1

v
�

0

s

ds�Cmn�s���
− v

d

ds
�Bmn�s�

Cmn�s�
exp�1

v
�

0

s

ds�Cmn�s�� . �16�

Replacing Eq. �16� into �15� we arrive at
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I = v�Bmn�s�
Cmn�s�

exp�1

v
�

0

s

ds�Cmn�s�� −
Bmn�0�
Cmn�0��

− v�
0

s

ds�
d

ds�
�Bmn�s��

Cmn�s��
exp�1

v
�

0

s�
ds�Cmn�s�� .

�17�

One can apply the identity �16� again to the integrand of the
last term by substituting Bmn�s� for v d

ds �
Bmn�s�
Cmn�s� �,

I = v�Bmn�s�
Cmn�s�

exp�1

v
�

0

s

ds�Cmn�s�� −
Bmn�0�
Cmn�0��

− v2�� 1

Cmn�s�
d

ds
�Bmn�s�

Cmn�s�
exp�1

v
�

0

s

ds�Cmn�s����
0

s

+ O�v3� , �18�

with the symbol O�v3� standing for the term

v2�
0

s

ds�
d

ds�
� − 1

Cmn�s��
d

ds�
�Bmn�s��

Cmn�s��
�

	exp�1

v
�

0

s�
ds�Cmn�s�� .

One can similarly continue the iteration to obtain higher-
order terms, but the first two are already enough for our
purposes. We should note that, strictly speaking, the proce-
dure just described is not a genuine power series expansion
in terms of the small parameter v. This is because to all
orders we have a phase contribution �Cmn�s� is purely imagi-

nary� of the form exp� 1
v�0

s�ds�Cmn�s���. This term is related to
the dynamical phase of our system and together with the
Berry phase will play an important role in the APT devel-
oped in Sec. IV.

Using Eq. �18� in �13� and keeping terms up to first order
in v, we obtain after substituting the values of Bmn�s� and
Cmn�s�

bn�s� = bn�0� − i�v

	 �
m=0

m�n

��e−�i/v��mn�s�ei�mn�s� Mnm�s�
�mn�s�

bm�s��
0

s

.

�19�

Note that we have to solve this equation iteratively keeping
terms up to first order in v. This is equivalent to replacing
bm�s�→bm�0� on the right-hand side of �19�,

bn�s� = bn�0� − i�v

	 �
m=0

m�n

��e−�i/v��mn�s�ei�mn�s� Mnm�s�
�mn�s�

bm�0��
0

s

.

�20�

Finally, substituting Eq. �20� into �3� we get the �unnormal-
ized; normalization introduces higher-order corrections in v�

state that corrects the adiabatic approximation up to first or-
der via the standard approach,

���s�� = ���0��s�� + v���1��s�� + O�v2� , �21�

where ���0��s�� is given by Eq. �10� and

���1��s�� = i� �
n,m=0

m�n

e−�i/v��m�s�ei�m�s� Mnm�s�
�nm�s�

bm�0��n�s��

− i� �
n,m=0

m�n

e−�i/v��n�s�ei�n�s� Mnm�0�
�nm�0�

bm�0��n�s�� ,

�22�

with �mn�s�=−�nm�s�. If the system is at the g.s. at s=0,
bn�0�=�n0, and Eq. �22� reduces to

���1��s�� = i��
n=1

e−�i/v��0�s�ei�0�s� Mn0�s�
�n0�s�

�n�s��

− i��
n=1

e−�i/v��n�s�ei�n�s� Mn0�0�
�n0�0�

�n�s�� , �23�

which displays no linear in v correction to the �0�s�� compo-
nent �the sum starts at n=1�. As shown in Sec. IV, there is a
missing term correcting the coefficient multiplying the g.s.
that naturally appears in the APT. Also, ���1��0��=0, as we
would expect since we must recover the initial state ���0��0��
at s=0.

2. Multivariable expansion method

To obtain a time-dependent multivariable SE we consider
the quantities �n�s� as independent variables—i.e., �n�s�
→�n �2�. They are called fast variables in contrast to the
rescaled time s, which is the slow variable. In this language
the differential operator v d

ds is replaced by v�s+D�, where

D� = �
n=0

En

�
v�wn

,

and the modified SE is written as

i��v�s + D�����s�� = H�s����s�� . �24�

To solve Eq. �24� we write the wave function as follows:

���s�� = �
n=0

e−�i/v��ncn��,s��n�s�� , �25�

where � represents all the variables �n and

cn��,s� = �
p=0




vpcn
�p���,s� . �26�

Note that cn�� ,s� is written as a power series in v and our
goal is to obtain cn

�p��� ,s� to all orders. Using Eq. �26� we
can rewrite �25� as
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���s�� = �
n=0

�
p=0




vpe−�i/v��ncn
�p���,s��n�s�� . �27�

Substituting Eq. �27� into the modified SE �Eq. �24��, carry-
ing out the derivatives, and taking the scalar product with
�m�s�� we get

�
p=0




vp+1�e−�i/v��m�scm
�p���,s� + �

n=0
e−�i/v��nMmn�s�cn

�p���,s�
+ �

p=0




vpe−�i/v��mD�cm
�p���,s� = 0. �28�

Noting that the last term of the previous equality can be
written as

�
p=0




vpe−�i/v��mD�cm
�p���,s� = e−�i/v��mD�cm

�0���,s�

+ �
p=0




vp+1e−�i/v��mD�cm
�p+1���,s� ,

we can rewrite Eq. �28� in the following form:

�
p=0




vp+1e−�i/v��n�D�cn
�p+1���,s� + �scn

�p���,s�

+ �
m=0

e−�i/v��mnMnm�s�cm
�p���,s� + e−�i/v��nD�cn

�0���,s�

= 0, �29�

where we have exchanged n↔m. A sufficient condition for
the validity of Eq. �29� is obtained when we set

D�cn
�0���,s� = 0 �30�

and

D�cn
�p+1���,s� + �scn

�p���,s� + �
m=0

e−�i/v��mnMnm�s�cm
�p���,s�

= 0. �31�

Hence, we can calculate the coefficients cn
�p��� ,s� by solving

the partial differential equations �30� and �31�. Note that to
seek for the solution of order p we need to have the previous,
p−1, order solution. Furthermore, as we increase the order,
the partial differential equations become more cumbersome,
constituting a practical limitation of this method. The APT
developed in Sec. IV, on the other hand, does not rely on any
differential equations whatsoever. All corrections to the adia-
batic approximation of order p are obtained via algebraic
recursive relations that involve coefficients of order p−1.
This will allow us to derive in a relative straightforward
manner explicit expressions up to second order in the small
parameter v.

In what follows we derive explicit expressions for
cn

�0��� ,s� and cn
�1��� ,s�. To zeroth order Eq. �30� tells us

that cn
�0��� ,s� does not depend on the variables �—i.e.,

cn
�0��� ,s�=cn

�0��s�. Moreover, since at s=0 we have the initial
condition ���0��=�n=0bn�0��n�0��, then it immediately fol-
lows that cn

�0��0�=bn�0� and

cn
�p��0,0� = 0, p � 0. �32�

To have the adiabatic approximation as the zeroth-order term
in the power series solution, we must have �cf. Eq. �3� with
�27��

cn
�0��s� = ei�n�s�bn�0� , �33�

which according to Eq. �31� leads to

D�cn
�1���,s� + �scn

�0��s� + Mnn�s�cn
�0��s�

+ �
m=0

m�n

e−�i/v��mnMnm�s�cm
�0��s� = 0. �34�

But Eq. �33� together with �5� implies that �scn
�0��s�

+Mnn�s�cn
�0��s�=0. Thus, Eq. �34� becomes

D�cn
�1���,s� + �

m=0

m�n

e−�i/v��mnei�m�s�Mnm�s�bm�0� = 0,

�35�

and we now want to solve this equation.
Following Garrison �2� we write

cn
�p���,s� = c̄n

�p��s� + dn
�p���,s� , �36�

with the assumption that �average over ��

�dn
�p���,s��� = �D�dn

�p���,s��� = 0. �37�

In other words, we have separated out the � and s depen-
dence of cn

�p� into two contributions; the first depends only on
s and is called the average term; the second one depends on
both � and s, but with the additional condition that its aver-
age over the fast variables � be zero. Thus, �c̄n

�p��s���

= c̄n
�p��s�. Substituting Eq. �36� into �35� we get

D�dn
�1���,s� + �

m=0

m�n

e−�i/v��mnei�m�s�Mnm�s�bm�0� = 0 �38�

and solving for dn
�1�, we obtain

dn
�1���,s� = i� �

m=0

m�n

e−�i/v��mnei�m�s� Mnm�s�
�nm�s�

bm�0� . �39�

Note that dn
�1��� ,s�+��s�, with ��s� independent of the vari-

ables �, is also a solution of Eq. �38�. However, since we
imposed that �dn

�p��� ,s���=0, the only possible value for
��s� is zero.

If the initial state is �0�0�� �bn�0�=�n0�, one gets

dn
�1���,s� = i�e−�i/v��0nei�0�s� Mn0�s�

�n0�s�
�1 − �n0� , �40�

and since �dn
�p��� ,s���=0 and the only dependence on � in

Eq. �39� is in e−�i/v��mn, we get
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�e−�i/v��mn�� = �nm. �41�

We are now able to determine the average term c̄n
�1��s�. In-

serting Eq. �36� into �31� we get, for p=1,

D�dn
�2���,s� + �sdn

�1���,s� + �sc̄n
�1��s� + Mnn�s�dn

�1���,s�

+ Mnn�s�c̄n
�1��s� + �

m=0

m�n

e−�i/v��mnMnm�s�dm
�1���,s�

+ �
m=0

m�n

e−�i/v��mnMnm�s�c̄m
�1��s� = 0,

where we have used that D�cn
�2��s�=0. Averaging over � and

noticing that �D�dn
�2��w ,s���= �dn

�1��� ,s���=0, ��sdn
�1��� ,s���

=�s�dn
�1��� ,s���=0, and using Eq. �41� we obtain

�sc̄n
�1��s� + Mnn�s�c̄n

�1��s� + �
m=0

m�n

Mnm�s��e−�i/v��mndm
�1���,s���

= 0. �42�

We can recast the average �using Eq. �39�� as

�e−�i/v��mndm
�1���,s��� = i� �

k=0

k�m

Mmk�s�
�mk�s�

ei�k�s��e−�i/v��kn��bk�0�

= i�
Mmn�s�
�mn�s�

ei�n�s�bn�0� , �43�

in which we have used that �mn+�km=�kn. Equation �43�
plus Mnm�s�=−M

mn
* �s� implies that Eq. �42� can be written as

dc̄n
�1��s�
ds

+ p�s�c̄n
�1��s� = q�s� , �44�

where

p�s� = Mnn�s� , �45�

q�s� = i� �
m=0

m�n

�Mmn�s��2

�mn�s�
ei�n�s�bn�0� , �46�

and whose well-known general solution is

c̄n
�1��s� =

1

��s���0

s

��s��q�s��ds� + c̄n
�1��0� ,

��s� = exp��
0

s

p�s��ds� = e−i�n�s�. �47�

It is interesting to note that the integrating factor ��s� is
related to the Berry phase �n�s�. Inserting Eqs. �45� and �46�
into �47� we get

c̄n
�1��s� = i�ei�n�s��

0

s

ds� �
m=0

m�n

�Mmn�s���2

�mn�s��
bn�0� + ei�n�s�c̄n

�1��0� .

�48�

We can now write down the expression for cn
�1� given dn

�1�

�Eq. �39�� and c̄n
�1� �Eq. �48��,

cn
�1���,s� = i� �

m=0

m�n

e−�i/v��mnei�m�s� Mnm�s�
�nm�s�

bm�0�

+ i�ei�n�s��
0

s

ds� �
m=0

m�n

�Mmn�s���2

�mn�s��
bn�0�

+ ei�n�s�c̄n
�1��0� . �49�

To determine c̄n
�1��0� we use Eq. �32�, which guarantees that

the adiabatic approximation is obtained as zeroth order,

c̄n
�1��0� = − i� �

m=0

m�n

Mnm�0�
�nm�0�

bm�0� . �50�

Finally, expressing ���s�� as given in Eq. �21� and using
Eqs. �27�, �49�, and �50� we get, for the first-order correction
to the adiabatic approximation,

���1��s�� = i� �
n,m=0

m�n

e−�i/v��n�s�ei�n�s�Jmn�s�bn�0��n�s��

+ i� �
n,m=0

m�n

e−�i/v��m�s�ei�m�s� Mnm�s�
�nm�s�

bm�0��n�s��

− i� �
n,m=0

m�n

e−�i/v��n�s�ei�n�s� Mnm�0�
�nm�0�

bm�0��n�s�� ,

�51�

in which

Jmn�s� = �
0

s

ds�
�Mmn�s���2

�mn�s��
. �52�

Note that now we are writing again explicitly the dependence
of �n on time—i.e., �n→�n�s�. For completeness, we write
down the first-order correction when we start at the g.s.
�bn�0�=�n0�

���1��s�� = i��
n=1

e−�i/v��0�s�ei�0�s�Jn0�s��0�s��

+ i��
n=1

e−�i/v��0�s�ei�0�s� Mn0�s�
�n0�s�

�n�s��

− i��
n=1

e−�i/v��n�s�ei�n�s� Mn0�0�
�n0�0�

�n�s�� , �53�

where we have replaced m→n in the first sum.
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Comparing Eqs. �51� and �53� with Eqs. �22� and �23� we
immediately see that now we have a new extra term for the
first-order correction, the one proportional to Jmn�s�. We
would like to remark, though, that in Garrison’s original
work �2� he only obtained the first line in Eq. �53�, and thus
our presentation constitutes an elaboration on his general
idea. Going beyond first order in v within Garrison’s ap-
proach is an extraordinary tour de force. Fortunately, we will
see in Sec. IV that not only the extra term appears in our
APT, but moreover, it is quite easy to obtain higher-order
corrections. Indeed, we will prove the mathematical equiva-
lence between the two methods.

B. Example of the second group

The iterative method proposed by Berry �3� consists of
successive unitary operations that hopefully rotate the origi-
nal basis or axes �the eigenvectors of the original Hamil-
tonian� closer and closer to the evolving state. In the most
optimistic scenario a finite number of rotations would bring
us to a moving frame in which the Hamiltonian, as seen from
this new frame, becomes time independent �this is the case in
the simple single spin problem of Ref. �21��. Then we can
solve the transformed Hamiltonian using well-developed
time-independent techniques and, by reversing the transfor-
mations, we would have the answer to the original problem.

Berry �3� was only interested in corrections to the geomet-
ric phase that can be obtained by such a procedure. He
showed that this strategy leads to successive corrections to
the Berry phase, although only in an asymptotic sense; i.e.,
after, let us say, the kth rotation, the next following terms
cannot improve the result achieved up to this iteration;
rather, they spoil any possible useful correction. In Ref. �3� it
was also shown, and we will review it here, that this iterative
process is not an expansion in the small parameter v since
every iteration contains v to infinite orders. We should also
note that, as stated in Ref. �14�, Berry’s iterative method is
equivalent to the ones of Refs. �12–14�.

In what follows we will extend Berry’s approach to
include corrections to the wave functions. For the ease of
notation and since we will be dealing with successive itera-
tions, we will denote the original Hamiltonian, its eigenval-
ues, and eigenvectors as H�0��s�, En

�0��s�, and �n�0��s��, respec-
tively; after j iterations, we will have H�j��s�, En

�j��s�, and
�n�j��s��. Also, as in previous sections, the initial state is writ-
ten as ���0��0��.

The main idea behind Berry’s approach lies in the realiza-
tion that the unitary operator U0�s� �U0�s�U0

†�s�
=U0

†�s�U0�s�=1� that gives the snapshot eigenvector of
H�0��s�, i.e.,

�n�0��s�� = U0�s��n�0��0�� , �54�

can be used to construct the state

���1��s�� = U0
†�s����0��s�� , �55�

whose time evolution is determined to be

i�v��̇�1��s�� = H�1��s����1��s�� , �56�

with

H�1��s� = U0
†�s�H�0��s�U0�s� − i�vU0

†�s�U̇0�s� . �57�

Repeating the previous argument with a new unitary operator
U1�s�, which gives the snapshot eigenvectors of H�1��s�,

�n�1��s�� = U1�s��n�0��0�� , �58�

allows us to generate a new state ���2��s��, and by iterating
this procedure j times we obtain

���j��s�� = U j−1
† �s����j−1��s��

= U j−1
† �s�U j−2

† �s� ¯ U1
†�s�U0

†�s����0��s�� ,

which satisfies the SE

i�v��̇�j��s�� = H�j��s����j��s�� , �59�

with �n�j��s��=U j�s��n�0��0�� and

H�j��s� = U j−1
† �s�H�j−1��s�U j−1�s� − i�vU j−1

† �s�U̇ j−1�s� .

�60�

Using that Mmn
�j−1��s�= �m�j−1��s� � ṅ�j−1��s��, the matrix ele-

ments of H�j��s� are

�m�0��0��H�j��s��n�0��0�� = En
�j−1��s��nm − i�vMmn

�j−1��s� .

�61�

Loosely speaking, ���j��s�� can be seen as the state obtained
after canceling or freezing �U j−1

† �s�� the time evolution of the
snapshot eigenvectors of H�j−1��s�; i.e., we are always trying
to suppress the time dependence of the new Hamiltonian
H�j��s�. Before we move on we should remark that U j�s� is
not the usual unitary operator U j�s� that evolves an arbitrary
state ���j��0�� into the state ���j��s��—i.e., ���j��s��
=U j�s����j��0��.

Let us now explicitly show how to determine the state
���j��s�� �15�. For this purpose we write it as

���j��s�� = �
n=0

ei�n
�j−1��s�e−�i/v��n

�j−1��s�bn
�j��s��n�0��0�� , �62�

in which �n
�j−1��s�= i�0

s Mnn
�j−1��s��ds� is Berry’s phase for the

snapshot eigenvector �n�j−1��s��, with dynamical phase
�n

�j−1��s�= 1
��0

sEn
�j−1��s��ds�. Note that as opposed to Eq. �3�,

the eigenbasis used in �62� is not changing over time; i.e.,
instead of the snapshot eigenvectors �n�0��s��, we now have
�n�0��0��. But as before, our goal is to find the equations
satisfied by bn

�j��s� which are obtained after inserting Eq. �62�
into �59�:

ḃn
�j��s� + �

m=0

m�n

e−�i/v��mn
�j−1��s�ei�mn

�j−1��s�Mnm
�j−1��s�bm

�j��s� = 0,

�63�

where �mn
�j−1��s�=�m

�j−1��s�−�n
�j−1��s� and �mn

�j−1��s�=�m
�j−1��s�

−�n
�j−1��s�. We see that Eq. �63� is formally identical to Eq.

�7�, which means that any technique developed to solve �7�
can be employed to solve �63�, in particular the APT of Sec.
IV. Moreover, this formal similarity between these two equa-
tions evidences that Berry’s iterative procedure is not a per-
turbative expansion about the small parameter v. Actually, as
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already anticipated, after each iteration we still have �in gen-
eral� terms involving v to all orders.

In closing, let us indicate a way to, in principle, extend
Berry’s iterative approach. One can easily check that unitary
iterations not constrained by the relations �n�j��s��
=U j�s��n�0��0�� lead to the same formal set of equations pre-
viously derived. Nonetheless, for a given number of itera-
tions, the optimal choice of unitaries approximating the real
time evolution is a difficult problem related to the complex-
ity of efficiently approximating an arbitrary unitary operator
in a quantum circuit.

IV. ADIABATIC PERTURBATION THEORY

The reasons for introducing an APT are threefold. First,
APT is a method that allows straightforward evaluation of
corrections to the geometrical phase �Berry phase�. Such cor-
rections are presented as a power series in terms of the small
parameter v=1 /T, where T is the relevant time scale of the
problem �see Sec. I�. Second, it is an algebraic procedure that
does not involve correction terms determined as solutions of
differential equations �such as Garrison’s approach�. Finally,
we want a useful and practical method, one that allows us to
do actual calculations; we want to be able to check the first-
and second-order corrections formally deduced here against
the exact solutions of many time dependent problems.

To accomplish the expectations above, we need to come
up with the right ansatz for the state ���s��. An ideal ansatz
should factor out the dependence of ���s�� on all the terms
of order O�v0�, O�v−1�, and below. The terms of order O�v−1�
and below are related to e−�i/v��n�s� �see Eq. �3�� and they are
extremely oscillatory when v→0, while the zeroth-order
term is connected to Berry’s phase ei�n�s�. If this factorization
could be done, we would have control over the divergent
terms in v and immediately have information about the Berry
phase.

Inspired by Ponce et al. �11� we write down the following
ansatz for the state ���s��:

���s�� = �
p=0




vp���p��s�� , �64�

where

���p��s�� = �
n=0

e−�i/v��n�s�ei�n�s�bn
�p��s��n�s�� �65�

and

bn
�p��s� = �

m=0
e�i/v��nm�s�e−i�nm�s�bnm

�p��s� , �66�

with all quantities defined in Sec. II. We should note that the
geometrical terms ei�n�s� and ei�nm�s� were absent in the origi-
nal ansatz given in Ref. �11�. Inserting Eqs. �65� and �66�
into �64� we get

���s�� = �
n,m=0

�
p=0




vpe−�i/v��m�s�ei�m�s�bnm
�p��s��n�s�� . �67�

Since the initial condition is ���0��= ���0��0��
=�n=0bn�0��n�0��, it follows that bn

�0��0�=bn�0� and

���p��0�� = 0 ⇒ bn
�p��0� = �

m=0
bnm

�p��0� = 0, p  1. �68�

Also, imposing that the adiabatic approximation be the
zeroth-order term in the power series expansion implies

bn
�0��s� = bn

�0��0� ⇒ bnm
�0��s� = bnm

�0��0� = bn�0��nm. �69�

Inserting Eq. �67� into the SE, Eq. �2�, and left multiplying
by �k�s�� one gets

�
m=0

�
p=0




vpe−�i/v��m�s�ei�m�s�� i

v�
�km�s�bkm

�p��s� + ḃkm
�p��s�

+ i�̇m�s�bkm
�p��s� + �

n=0
Mkn�s�bnm

�p��s� = 0. �70�

Noting that �̇m�s�= iMmm�s� and

�
p=0




vp i

v�
bkm

�p��s� =
i

v�
bkm

�0��s� + �
p=0




vp i

�
bkm

�p+1��s� , �71�

one can rewrite Eq. �70� in the following form:

�
m=0

�
p=0




vpe−�i/v��m�s�ei�m�s�� i

�
�nm�s�bnm

�p+1��s� + ḃnm
�p��s�

− Mmm�s�bnm
�p��s� + �

k=0
Mnk�s�bkm

�p��s�
+ �

m=0
e−�i/v��m�s�ei�m�s� i

v�
�nm�s�bnm

�0��s� = 0, �72�

where we have exchanged n↔k. The last term in Eq. �72�
seems to diverge when v→0. However, it does not because
for n=m we have �nm�s�=0, while for n�m the following
holds: bnm

�0��s�=0 �initial conditions given by Eq. �69��.
A sufficient condition to satisfy Eq. �72� �since its last

term vanishes� is

i

�
�nm�s�bnm

�p+1��s� + ḃnm
�p��s� + Wnm�s�bnm

�p��s�

+ �
k=0

k�n

Mnk�s�bkm
�p��s� = 0, �73�

with

Wnm�s� = Mnn�s� − Mmm�s� . �74�

Equation �73� is a main result of this paper. With the aid of
the initial conditions given by Eqs. �69� and �68� one can
build corrections to the adiabatic approximation recursively.
The coefficients bnm

�p+1��s� are readily calculated with the
knowledge of bnm

�p��s�, without the need to solve any partial
differential equation as in the multivariable expansion
method presented in Sec. III A 2. As we will show next, this
fact allows us to calculate the second-order correcting terms
in a straightforward manner. Moreover, we have removed the
highly oscillatory terms e−�i/v��m�s� from the expression for
the coefficients bnm

�p��s�, allowing a better control over any
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numerical algorithm designed to solve Eq. �73�; i.e., it is
numerically stable.

We now proceed to calculate explicitly the first- and
second-order correction terms ���1��s�� and ���2��s��. The
zeroth-order term ���0��s�� is given by Eq. �10�, the adiabatic
approximation.

A. Determination of ��(1)(s)‹

When p=0, Eq. �73� becomes

i

�
�nm�s�bnm

�1��s� + ḃnm
�0��s� + Wnm�s�bnm

�0��s�

+ �
k=0

k�n

Mnk�s�bkm
�0��s� = 0. �75�

Using Eq. �69� we see that ḃnm
�0��s�=0 and that Wnm�s�bnm

�0��s�
=Wnm�s�bn�0��nm=0, since Wnn�s�=0. For n�m the sum in
Eq. �75� is simply Mnm�s�bm�0� and we get

bnm
�1��s� = i�

Mnm�s�
�nm�s�

bm�0�, n � m . �76�

When n=m, Eq. �75� is an identity and we need to work with
the higher-order expression. Setting p=1 and n=m in Eq.
�73� we have

ḃnn
�1��s� + �

k=0

k�n

Mnk�s�bkn
�1��s� = 0. �77�

Integrating Eq. �77� using �76� and changing k→m we ob-
tain, after using Mnm�s�=−M

mn
* �s�,

bnn
�1��s� = i� �

m=0

m�n

�
0

s

ds�
�Mmn�s���2

�mn�s��
bn�0� + bnn

�1��0�

= i� �
m=0

m�n

Jmn�s�bn�0� + bnn
�1��0� , �78�

where Eq. �52� was employed to arrive at the last expression.
The constant bnn

�1��0� is determined using Eq. �68�:

bnn
�1��0� = − �

m=0

m�n

bnm
�1��0� = − i� �

m=0

m�n

Mnm�0�
�nm�0�

bm�0� . �79�

Since we now have bnm
�1��s�, for any n and m, we can insert

Eqs. �78�, �76�, and �66� into �65� to get

���1��s�� = i� �
n,m=0

m�n

e−�i/v��n�s�ei�n�s�Jmn�s�bn�0��n�s��

+ i� �
n,m=0

m�n

e−�i/v��m�s�ei�m�s� Mnm�s�
�nm�s�

bm�0��n�s��

− i� �
n,m=0

m�n

e−�i/v��n�s�ei�n�s� Mnm�0�
�nm�0�

bm�0��n�s�� .

�80�

Had we started at the g.s. �bn�0�=�n0� we would get

���1��s�� = i��
n=1

e−�i/v��0�s�ei�0�s�Jn0�s��0�s��

+ i��
n=1

e−�i/v��0�s�ei�0�s� Mn0�s�
�n0�s�

�n�s��

− i��
n=1

e−�i/v��n�s�ei�n�s� Mn0�0�
�n0�0�

�n�s�� , �81�

where m→n in the first sum.
By looking at Eqs. �80� and �81� we see that they are

identical to the ones obtained via the multivariable expansion
method, Eqs. �51� and �53�, respectively. Also, we have a
new additional term for the first-order correction, the one
proportional to Jmn�s�, as compared to the results of the stan-
dard approach, Eqs. �22� and �23�.

Using Eq. �81� we can also give the conditions for the
validity of the adiabatic approximation that comes from the
APT by imposing that ���1��s�� be negligible:

�v��
n=1

Jn0�s�� � 1,

�v��
n=1

�Mn0�s�
�n0�s�

− e−�i/v��n0�s�ei�n0�s� Mn0�0�
�n0�0� � � 1.

B. Determination of ��(2)(s)‹

We can proceed as before and write Eq. �73� for p=1 and
n�m as

bnm
�2��s� =

i�

�nm�s��ḃnm
�1��s� + Wnm�s�bnm

�1��s�

+ �
k=0

k�n

Mnk�s�bkm
�1��s�, n � m . �82�

Using Eq. �76� to replace ḃnm
�1��s� above and separating out

from the sum the term where k=m we get
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bnm
�2��s� =

i�

�nm�s��i�
d

ds
�Mnm�s�

�nm�s�
bm�0� + Wnm�s�bnm

�1��s�

+ Mnm�s�bmm
�1� �s� + �

k=0

k�n,m

Mnk�s�bkm
�1��s�� . �83�

We can now employ Eqs. �76� and �78� to replace bnm
�1��s�,

n�m, and bnn
�1��s� in �83� to finally obtain

bnm
�2��s� =

�i��2

�nm�s�� d

ds
�Mnm�s�

�nm�s�
 +

Wnm�s�Mnm�s�
�nm�s�

+ Mnm�s� �
k=0

k�m

Jkm�s� + �
k=0

k�n,m

Mnk�s�Mkm�s�
�km�s� �bm�0�

−
�i��2

�nm�s�
Mnm�s� �

k=0

k�m

Mmk�0�
�mk�0�

bk�0�, n � m . �84�

To calculate bnn
�2��s� we set p=2 and n=m in Eq. �73�, which

gives

bnn
�2��s� = − �

m=0

m�n

�
0

s

ds�Mnm�s��bmn
�2��s�� + bnn

�2��0� , �85�

where bmn
�2��s�� is given by Eq. �84� and the constant term

bnn
�2��0� is determined by the initial condition in Eq. �68�,

bnn
�2��0� = − �

m=0

m�n

bnm
�2��0� , �86�

with bnm
�2��0� obtained from Eq. �84� setting s=0. Finally, the

second-order correction to the state ���s�� is

���2��s�� = �
n,m=0

e−�i/v��m�s�ei�m�s�bnm
�2��s��n�s�� . �87�

We should point out that, as can be seen from Eqs. �84� and
�85�, the second-order correction can be calculated with just
the knowledge of the snapshot eigenvalues En�s� and eigen-
vectors �n�s�� of the Hamiltonian H�s�. This also holds true
for the first-order correction and all higher-order terms. In
other words, the APT can be seen as a way of converting the
time-dependent SE into an eigenvalue problem and a series
expansion in the small parameter v.

Two-level system

We now want to apply the results obtained in Eqs. �84�
and �85� to the case of a qubit. The sum in Eq. �87� runs from
n ,m=0 to n ,m=1, and the Hamiltonian H�s� is assumed to
be nondegenerate. Thus, the second-order correction is

���2��s�� = e−�i/v��0�s�ei�0�s�b00
�2��s��0�s�� + e−�i/v��1�s�ei�1�s�b01

�2��s�

	�0�s�� + e−�i/v��0�s�ei�0�s�b10
�2��s��1�s��

+ e−�i/v��1�s�ei�1�s�b11
�2��s��1�s�� . �88�

Since we assume that the qubit starts at the g.s. �0�0�� of
H�0�—i.e., bn�0�=�n0—Eq. �84� gives

b01
�2��s� = − �i��2 M01�s�M10�0�

�01�s��10�0�
�89�

and

b10
�2��s� =

�i��2

�10�s�� d

ds
�M10�s�

�10�s�
 +

W10�s�M10�s�
�10�s�

+ M10�s�J10�s�� . �90�

For a two-level system Eq. �86� is reduced to

b00
�2��0� = − b01

�2��0� and b11
�2��0� = − b10

�2��0� .

Inserting the previous result into �85� and using Eqs. �89�
and �90� we get

b00
�2��s� = �i��2�

0

s

ds��M01�s��
�01�s��

d

ds�
�M10�s��

�10�s��


+
W10�s���M10�s���2

�10
2 �s��

+
�M10�s���2

�10�s��
J10�s���

+ �i��2 �M10�0��2

�10
2 �0�

�91�

and

b11
�2��s� =

�i��2

�10�0��M10�0�J10�s� − � d

ds
�M10�s�

�10�s�
�

s=0

−
W10�0�M10�0�

�10�0� � . �92�

In the examples of Secs. VII and VIII, Eqs. �88�–�92� will be
extensively used.

V. CORRECTIONS TO THE GEOMETRIC PHASE

Let us consider a system in which its time-dependent
Hamiltonian H�s� returns to itself at the rescaled time
�s—i.e., H��s�=H�0�. As is well known �4�, if the system is
initially prepared in one of the eigenvectors of H�0�—i.e.,
���0��0��= �n�0��—and the adiabatic approximation is valid,
then the state of the system at �s is ���0���s��
=ei��0���s����0��0��. The phase ��0���s� can be written as

��0���s� = ��0���s� + ��0���s� , �93�

where ��0���s� stands for the dynamical phase and ��0���s� for
the Berry phase �4�:

��0���s� = − �n�s�/v , �94�

��0���s� = �n�s� . �95�

�See Eqs. �5� and �6� for the definition of these quantities.�
The Berry phase is a geometrical phase since it only depends
on the path described by the varying parameter in the Hamil-
tonian. More explicitly, if we write H�s�=H(r�s�), where
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r�s� is the parameter that is changed in the Hamiltonian, then
�4� �n��s� depends only on the trajectory in parameter space
described by r�s�. For a more formal interpretation of the
Berry phase in terms of the holonomy of a fiber bundle over
the parameter space, see Ref. �16�.

The concept of a geometric phase is not restricted to sys-
tems that start in one of the eigenvectors of H�s� or to adia-
batic evolutions. Indeed, AA �5� generalized the Berry phase
to include those two possibilities. As before, we consider a
nondegenerate Hamiltonian �17�. The key idea in Ref. �5�
was the recognition that by defining the dynamical phase as

��s� = −
��s�

v
= −

1

v�
�

0

s

ds����s���H�s�����s��� , �96�

it is possible to show that

���c� = ���c� − ���c� �97�

only depends on the closed path of the curve induced by
���s�� on its projective Hilbert space �18�. Here ����c��
=ei���c����0��. The quantity ���c� is the total phase of the
state at s=�c and can be written as

���c� = Im ln���0�����c�� . �98�

In the adiabatic regime, the AA phase ���c� reduces to the
Berry phase. Note that �c is not necessarily the period of the
Hamiltonian �s.

The AA phase is precisely the concept we need to prop-
erly find corrections to the Berry phase in terms of the small
parameter v defined in Sec. I and used in Sec. IV to build
successive corrections to the adiabatic approximation. How-
ever, we need the normalized state that corrects the adiabatic
approximation up to order p= j,

���s��Nj
= Nj��̃�s�� j , �99�

with

��̃�s�� j = �
p=0

j

vp���p��s�� �100�

and

�Nj�−2= j��̃�s���̃�s�� j , �101�

where ���p��s�� is defined in Eq. �65�. Following Ref. �5� and
with the aid of Eq. �99� we can define, up to order j, the
geometric phase

��j���s� = ��j���s� − ��j���s� , �102�

where now we have

��j��s� = − ��j��s�/v , �103�

��j��s� = Im ln���0����s��Nj
, �104�

and

��j��s� = −
1

�
�

0

s

ds�Nj
���s���H�s�����s���Nj

. �105�

In our definition for ��j� we have used the period of the
Hamiltonian �s. This is not mandatory and we could have
chosen �c as well. But we stick with �s since it is closer to
what happens in an experimental situation, where the Hamil-
tonian is slowly changed back and forth from its initial value.
Note, however, that if �c��s, we lose the meaning of � �Eq.
�97�� as given by the closed path of ���s�� on its projective
Hilbert space.

A. Zeroth-order correction

Before we show the nontrivial correction to the Berry
phase, which is given by the first-order term, it is instructive
to compute the zeroth-order term. This gives us the flavor of
what comes next without long calculations and, as a bonus,
we are able to check that the zeroth-order term is simply the
Berry phase. We assume that the system starts at s=0 in the
g.s. of the Hamiltonian,

���0�� = �0�0�� ,

although we could as well develop the same analysis for an
arbitrary initial condition in a straightforward manner.

The first step is the calculation of ���s��N0
, as given in Eq.

�99� when j=0. Since ���0��s�� �Eq. �11�� is normalized it is
obvious that ���s��N0

= ���0��s��. Then, using Eqs. �103� and
�105� we get

��0��s� = −
1

v�
�

0

s

ds��0�s���H�s���0�s���

= −
1

v�
�

0

s

ds�E0�s�� = −
�0�s�

v
. �106�

On the other hand, Eq. �104� gives

��0��s� = − �0�s�/v + �0�s� + Im ln�0�0��0�s�� . �107�

Remembering that for s=�s we have Im ln�0�0� �0��s��=0
since �0��s��= �0�0��, Eq. �102� naturally leads to the Berry
phase

��0���s� = �0��s� . �108�

B. First-order correction

We now turn our attention to the first-order correction. As
before, the first step consists in the computation of the ex-
plicit expression for the state ���s��N1

. Using Eqs. �99� and
�100� we have

���s��N1
= N1����0��s�� + v���1��s��� , �109�

where ���0��s�� and ���1��s�� are given by Eqs. �11� and �81�,
respectively. Had we prepared the system in an arbitrary ini-
tial state we would need Eqs. �10� and �80� instead.

To calculate the normalization constant we employ Eq.
�101�:
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�N1�−2 = 1 + 2v Re���0��s����1��s�� + v2���1��s����1��s�� ,

where Re means the real part of a complex number. But

���0��s����1��s�� = i��
n=1

Jn0�s�

is purely imaginary since Jn0�s� is real �cf. Eq. �52��. There-
fore,

N1 = 1/�1 + v2���1��s����1��s�� , �110�

where, without loss of generality, we have set N1 real. Cal-
culating the scalar product in Eq. �110� with the aid of �81�
we get

���1��s����1��s�� = �2��
n=1

Jn0�s�2
+ �2�

n=1
�Mn0�s�

�n0�s�

− e−�i/v��n0�s�ei�n0�s� Mn0�0�
�n0�0�

�2

, �111�

and assuming that v is small,

N1 = 1 − v2���1��s����1��s��/2 + O�v4� , �112�

which leads to

N1 = 1 −
v2�2

2 ���
n=1

Jn0�s�2
+ �

n=1
�Mn0�s�

�n0�s�

− e−�i/v��n0�s�ei�n0�s� Mn0�0�
�n0�0�

�2� + O�v4� . �113�

Notice that N1 depends on time although we have not written
N1�s�, as we have been doing with all other quantities that
depend explicitly on s. Also, we have kept terms up to sec-
ond order because they give corrections to first order for the
dynamical phase. This can be seen looking at Eq. �103�,
where there exists a factor 1 /v multiplying ��j��s�.

1. Determination of the total phase

Inserting Eq. �109� into �104� we get

��1��s� = Im ln��0�0����0��s�� + v�0�0����1��s��� ,

where we have used ImlnN1=0 since N1 is real. When s
=�s we know that �0�0� �n��s��=�n0. Thus,

�0�0����0���s�� = ei�0��s�e−�i/v��0��s�,

�0�0����1���s�� = i�ei�0��s�e−�i/v��0��s��
n=1

Jn0��s� ,

and the total phase reads

��1���s� = −
�0��s�

v
+ �0��s� + Im ln�1 + iv��

n=1
Jn0��s� .

�114�

However, the last term of Eq. �114� can be written as

Im ln�1 + iv��
n=1

Jn0��s� = arctan�v��
n=1

Jn0��s�
= v��

n=1
Jn0��s� + O�v3� ,

which implies that to first order

��1���s� = − �0��s�/v + �0��s� + v��
n=1

Jn0��s�

= ��0���s� + v��
n=1

Jn0��s� . �115�

If we use Eq. �52�, we can rewrite the total phase as

��1���s� = ��0���s� + v��
n=1
�

0

s

ds�
�Mn0�s���2

�n0�s��
. �116�

We should note that the last term above is the first-order
correction to the Berry phase obtained by Garrison �2� and
also in Ref. �3�. However, this conclusion is unsatisfactory
for our purposes. Indeed, we are interested in the phase de-
fined by Aharonov and Anandan �5� �see Eq. �102��, which
has a clear geometrical meaning when the state returns to
itself �even when the adiabatic approximation fails� and is a
natural generalization to the Berry phase �5�. We resolve this
state of affairs in the following.

2. Determination of the geometric phase

In order to determine the AA geometric phase we need to
calculate, up to first order, the dynamical phase defined in
Eq. �103�. Then, subtracting it from the total phase computed
above, we arrive at the desired AA geometric phase. It is this
first order term that we herein call correction to the Berry
phase.

Looking at Eq. �105� we see that the first quantity we
need to obtain is

N1
���s��H�s����s��N1

= N1
2�E0�s� + v2���1��s��H�s����1��s��� ,

�117�

where we have used that Re���0��s� ���1��s��=0. The last
term of Eq. �117� can be explicitly calculated using Eq. �81�,

���1��s��H�s����1��s��

= �2E0�s���
n=1

Jn0�s�2

+ �2�
n=1

En�s��Mn0�s�
�n0�s�

− e−�i/v��n0�s�ei�n0�s� Mn0�0�
�n0�0�

�2

.

�118�

Inserting Eq. �118� into �117�, using Eq. �113�, and keeping
terms up to second order we get
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N1
���s��H�s����s��N1

= E0�s� + v2�2�
n=1

�n0�s��Mn0�s�
�n0�s�

− e−�i/v��n0�s�ei�n0�s� Mn0�0�
�n0�0�

�2

,

�119�

which, after insertion into �103�, leads to

��1��s� = ��0��s� − v��
n=1

Jn0�s� − v�2�
n=1

�Mn0�0��2

�n0
2 �0�

�n0�s�

+ 2v��
n=1

Re�Mn0�0�
�n0�0� �0

s

ds�e−�i/v��n0�s��

	ei�n0�s��M
n0
* �s�� , �120�

where we have used Eqs. �52� and �106�. Notice that the last
term has an integral of the form given by Eq. �15�:

I = �
0

s

ds�Bn0�s��exp�1

v
�

0

s�
ds�Cn0�s�� ,

with Bn0�s�=ei�n0�s�M
n0
* �s� and Cn0�s�=−i�n0�s� /�. But we

have shown that this integral is at least order v �see Eq. �18��.
Therefore, the overall order of this term is at least v2. Thus,
at s=�s, the first-order correction to the dynamical phase is

��1���s� = ��0���s� − v��
n=1

Jn0��s� − v�2�
n=1

�Mn0�0��2

�n0
2 �0�

�n0��s� .

�121�

Finally, the desired geometric phase is obtained by subtract-
ing Eq. �121� from the total phase �115�,

��1���s� = ��0���s� + 2v��
n=1

Jn0��s� + v�2�
n=1

�Mn0�0��2

�n0
2 �0�

�n0��s� .

�122�

It is worth noting that the zeroth-order term above is the
Berry phase; i.e., when v→0 we have ��0���s�=�0��s� as our
geometric phase. As mentioned before, this is a property any
correction to the Berry phase should satisfy. Remembering
that �n0��s�= 1

��0
�s�n0�s�ds and using the definition for Jn0�s�

we can rewrite Eq. �122� as follows:

��1���s� = �0��s� + 2v��
n=1
�

0

�s �Mn0�s��2

�n0�s�
ds

+ v��
n=1

�Mn0�0��2

�n0
2 �0�

�
0

�s

�n0�s�ds . �123�

In Sec. VII we discuss how we can measure this new
phase in general and also propose an experiment to probe it
for the particular example of that section.

VI. COMPARISON BETWEEN METHODS

In previous sections we have presented four methods that
aim to find corrections to the Berry phase and improvements

to the adiabatic approximation. The first one, which we
called standard approach, gives different results when com-
pared to the multivariable expansion method of Garrison �2�
and the APT presented in Sec. IV. However, as we have
shown, to first order the last two methods agree.

In the next section we show that the standard approach
fails to properly correct the adiabatic approximation to first
order in the small parameter v. Indeed, we show that the
missing term in the standard approach and which is present
in the APT is crucial if we want to have the right first-order
approximation. In other words, the APT developed in Sec. IV
gives the following state for the time evolution of a nonde-
generate time-dependent system that starts at the g.s.:

���s�� = e−�i/v��0�s�ei�0�s���1 + iv��
n=1

Jn0�s��0�s��

+ iv��
n=1

�Mn0�s�
�n0�s�

− e−�i/v��n0�s�ei�n0�s� Mn0�0�
�n0�0� 

	�n�s��� + O�v2� . �124�

This is the state that, to first order in v, properly corrects the
adiabatic approximation. Note that it is already normalized to
first order since the normalization constant, Eq. �113�, is sec-
ond order in v. Furthermore, as we will show in the follow-
ing sections, by including the state ���2��s��, as derived in
Sec. IV, we obtain the right second-order correction.

We have also discussed the iterative method of Berry �3�,
who called it adiabatic renormalization �19� because each
iteration can be seen as a renormalization map that generates
a new Hamiltonian from the previous one. This method,
which is also related to other similar approaches �12–14�,
cannot be considered a perturbative correction to the adia-
batic approximation. This is because at each step of the it-
eration process v enters to all orders. Of course, if we stop
the iteration procedure at a certain point, we can use any
method at our disposal to solve the transformed problem,
including the APT here developed. In other words, we could
build a hybrid approach, where we employ both the APT
technique and the renormalization method of Berry. This
might be an interesting topic to study but its full develop-
ment is beyond the goal of this paper.

Another method, the usual time-dependent perturbation
theory �TDPT�, largely used to solve time-dependent prob-
lems, was not discussed here. The main assumption behind
the TDPT is the existence of a time-independent Hamiltonian
H0 and a small time-dependent part �V�t�, where ��1. The
total Hamiltonian is H�t�=H0+�V�t�. One then builds a se-
ries expansion in � by using the eigenvectors and eigenval-
ues of H0 �not of the snapshot H�t��, with the zeroth-order
term being the time-independent solution to the problem. It
is now clear what the main difference between the TDPT and
the approaches presented in this paper is: we have never
assumed the existence of a small time-dependent Hamil-
tonian �V�t�. Actually, the Hamiltonian H�t� can be seen as
a particular choice of H�t�, the general time-dependent
Hamiltonian used, for instance, in APT.
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We want to finish this section explaining why seemingly
different approaches such as the multivariable expansion
method and the APT of Sec. IV give the same first-order
correction to the adiabatic approximation. As we show be-
low, there is a discrete linear transformation that connects
both approaches. This transformation can be written as fol-
lows:

cn
�p���,s� = �

m=0
e−�i/v��mnei�m�s�bnm

�p��s� , �125�

where �n�s� and �mn=�m−�n are given by Eqs. �5� and �6�,
respectively. Note that we will consider in the remaining of
this section �n as an independent variable ��n�s�→�n� when
working with expressions coming from Sec. III A 2. In order
to prove that Eq. �125� connects both methods we need to
show that we can go from Eq. �27� to �67� and also from Eq.
�29� to �72� using Eq. �125�.

Let us start with the first part of the proof. Inserting Eq.
�125� into �27� we get

���s�� = �
n=0

�
p=0




vpe−�i/v��n 	 �
m=0

e−�i/v��mnei�m�s�bnm
�p��s��n�s��

= �
n,m=0

�
p=0




vpe−�i/v��mei�m�s�bnm
�p��s��n�s�� ,

which is exactly Eq. �67� when �m is no longer considered
an independent variable.

The second part requires a little more mathematical steps,
but is nevertheless as straightforward as the previous one.
Looking at Eq. �29� we see that it has four terms. We will
analyze each one separately. After inserting Eq. �125� into
the first term of �29� it results in

D�cn
�p+1���,s� =

i

�
�
m=0

e−�i/v��mnei�m�s��nm�s�bnm
�p+1��s� ,

where we used D��e−�i/v��mn�=−i�nm�s�e−�i/v��mn /� and
�mn�s�=−�nm�s�. As is easily seen, the fourth term is also
given by the previous expression when we set p=−1. The
second term gives the following two new terms when we
insert Eq. �125� and use that i�̇m�s�=−Mmm�s�:

�scn
�p���,s� = �

m=0
e−�i/v��mnei�m�s��ḃnm

�p��s� − Mmm�s�bnm
�p��s�� .

Finally, after employing Eq. �125� the third term can be writ-
ten as

�
m=0

e−�i/v��mnMnm�s�cm
�p���,s�

= �
k,m=0

e−�i/v��mnei�m�s�Mnk�s�bkm
�p��s� .

Putting everything back into Eq. �29�, dividing by v, noting
that �mn+�n=�m, and considering again �n→�n�s�, we get
exactly Eq. �72�. Therefore, Eq. �125� transforms the multi-
variable expansion method into the APT of Sec. IV.

Furthermore, we can also go from the APT to the multi-
variable expansion method using the transformation

bnm
�p��s� = e−i�m�s��nmcn

�p���,s� , �126�

where �nm=1 if n=m and is zero otherwise. Again the proof
is divided into two steps. First we need to show that inserting
Eq. �126� into Eq. �67� we get �27�,

���s�� = �
n,m=0

�
p=0




vpe−�i/v��m�s�ei�m�s� 	 e−i�m�s��nmcn
�p���,s�

	�n�s�� = �
n=0

�
p=0




vpe−�i/v��n�s�cn
�p���,s��n�s�� ,

which is exactly Eq. �27� when we consider �n�s� as an
independent variable. To complete the proof we need to
show that Eq. �72�, with the aid of �126�, leads to �29�. As
before, we analyze separately each of the five terms in Eq.
�72�. The first and last terms are zero after we insert Eq.
�126�. This is the case since n=m implies �nn=0. The second
term should be handled with care since in Eq. �67� the de-
pendence of the variables �n�s� on s must be taken into
account. This is important when we take the derivative with
respect to s, which, according to the chain rule, is given by

d

ds
= �

n=0

d�n

ds
��n

+ �s = �
n=0

En�s�
�

��n
+ �s.

With this in mind and remembering that −i�̇m�s�=Mmm�s� we
have for the second term

�
p=0




vpe−�i/v��n�s��D�cn
�p+1���,s� + �scn

�p���,s�

+ Mnn�s�cn
�p���,s�� + v−1e−�i/v��n�s�D�cn

�0���,s� ,

where we have used the definition of D� given in Sec.
III A 2 and written out of the sum the term for p=0. The
third and fourth terms can easily be written as

− �
p=0




vpe−�i/v��n�s�Mnn�s�cn
�p���,s�

and

�
p=0




vpe−�i/v��n�s��
m=0

e−�i/v��mn�s�Mnm�s�cm
�p���,s�

after using Eq. �126�. In the last expression, we have also
used that �m�s�=�n�s�+�mn�s�. Finally, adding all the terms
above, multiplying the result by v, and considering �n�s� as
an independent variable, we end up with Eq. �29�.

VII. ANALYTICALLY SOLVABLE PROBLEM

So far, we have presented the general APT formalism. It is
time to show some examples that can tell us why the APT of
Sec. IV provides the right correction to the adiabatic approxi-
mation. For that purpose, it is desirable to start with a non-
trivial time-dependent problem that is exactly solved in
closed form. The exact solution of this problem can then be
expanded in terms of the small parameter v and compared
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with the results given by the APT. As we will see, the miss-
ing term in the standard approach of Sec. III A 1, which ap-
pears in the APT, also appears in the first-order expansion of
the exact solution. We also give the second-order correction
via the APT and show that it is identical to the second-order
expansion of the exact solution. We end this section compar-
ing the correction to the Berry phase calculated in Sec. V
with the first-order expansion of the exact geometric phase
that can be computed for this problem. As will be shown,
both results are identical.

A. Statement of the problem

Let us consider a spin-1 /2 �a qubit� with magnetic mo-
ment m subjected to a rotating classical magnetic field B
�20�. The magnitude of the field is fixed and given by B
= �B�. Here m=eg / �2mc�S, with e the electric charge of the
particle, g its Landé factor, m its mass, c the speed of light in
vacuum, and S its angular momentum operator. Since we
have a qubit, S= �� /2��, where �= ��x ,�y ,�z� are the usual
Pauli matrices. The rotating magnetic field can be written as
B�t�=Br�t�, with unit vector written in spherical coordinates
r�t�= (sin � cos ��t� , sin � sin ��t� , cos �), in which 0��
�� and 0���2� are the polar and azimuthal angles, re-
spectively. With this notation the Hamiltonian describing the
system is �20�

H�t� = − m · B = br�t� · S , �127�

where b=−Bge / �2mc� and we set e�0. The snapshot eigen-
vectors for this problem are

�0�t�� = cos��/2��↑� + ei��t� sin��/2��↓� , �128�

�1�t�� = sin��/2��↑� − ei��t� cos��/2��↓� , �129�

where �z�↑ �= �↑ � and �z�↓ �=−�↓ �. The eigenvalues are, re-
spectively,

E0 = ��/2�b and E1 = − ��/2�b . �130�

Note that the eigenvalues are time independent and we al-
ways have a gap of magnitude �b.

B. Exact solution

If ��t�=wt, where w�0 is the frequency of the rotating
magnetic field, the Hamiltonian �127� can be exactly solved
�20,21�. Physically, the component of the field projected onto
the xy plane is rotating counterclockwise around the z axes
with constant angular frequency w and period �=2� /w. This
suggests that if we rotate clockwise the state ���t��, which

satisfies the SE �1�, we could get a new Hamiltonian H̄ that
is time independent. Let us define the rotated state as

��̄�t�� = U†�t����t�� , �131�

with

U�t� = e−�iwt/��Sz = e−�iwt/2��z, �132�

where Sz= �� /2��z. Inserting Eq. �131� into the SE �1� we see

that ��̄�t�� satisfies a Schrödinger-like equation with Hamil-
tonian

H̄ = U†�t�H�t�U�t� − i�U†�t�
dU�t�

dt
. �133�

H̄ resembles the transformed Hamiltonians of Berry’s itera-
tive approach developed in Sec. III B. Using Eq. �132� and
the mathematical identity �20�

Sx cos�wt� + Sy sin�wt� = e−iwtSz/�Sxe
iwtSz/�,

where Sx,y = �� /2��x,y, it is not difficult to show that Eq.
�133� can be written as

H̄ =
�

2
�b cos � − w��z +

�

2
�b sin ���x = Z�z + X�x.

�134�

The important result here is that H̄ is time independent,

meaning that the SE for ��̄�t�� can be readily integrated,

��̄�t��=e−iH̄t/���̄�0��. Therefore, inverting Eq. �131� and re-

membering that ��̄�0��= ���0��, we have the solution to the
original problem:

���t�� = e−�iwt/2��ze−iH̄t/����0�� . �135�

Although Eq. �135� is the general solution to the problem,
we still need to write it in a more practical way. In order to
do so, we first note that

H̄2n = �X2 + Z2�n�0 and H̄2n+1 = �X2 + Z2�nH̄ ,

where �0 is the identity matrix and n is a non-negative inte-
ger. Also,

e−iH̄t/� = 1 − � t

�
2H̄2

2!
+ � t

�
4H̄4

4!
− � t

�
6H̄6

6!
+ ¯

− i�� t

�
H̄ − � t

�
3H̄3

3!
+ � t

�
5H̄5

5!
− ¯ � .

Combining both results we arrive at

e−iH̄t/� = cos��X2 + Z2 t

�
�0

−
i

�X2 + Z2
sin��X2 + Z2 t

�
H̄ . �136�

We now define three vectors that will be used later on to
rewrite previous expressions in a more compact way:

w = wz , �137�

b = br�t� , �138�

� = w − b , �139�

where z is the unity vector pointing along the z direction.
Since the angle between w and b is �, the magnitude of � is
simply

�2 = w2 + �b�2 − 2w�b�cos � . �140�

With this new notation Eq. �136� can be recast as
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e−iH̄t/� = cos��t

2
�0 −

2i

��
sin��t

2
H̄ . �141�

With the aid of Eqs. �134�, �135�, and �141� and remem-
bering that �x � ↑ �↓��= �↓ �↑��, we can calculate the evolution
of a system that starts either at �↑� or �↓�:

��↑�t�� = �cos��t

2
 −

i

�
�b cos � − w�sin��t

2
�e−iwt/2�↑�

−
ib

�
sin � sin��t

2
eiwt/2�↓� , �142�

��↓�t�� = −
ib

�
sin � sin��t

2
e−iwt/2�↑� + �cos��t

2


+
i

�
�b cos � − w�sin��t

2
�eiwt/2�↓� . �143�

The most general initial state is written as c↑�↑ �+c↓�↓ �,
which implies that its time evolution is simply c↑��↑�t��
+c↓ ��↓�t��. When the system starts at the g.s. �0�0�� of Eq.
�128� the time-evolved state is

���t�� = cos��/2���↑�t�� + sin��/2���↓�t��

or, equivalently,

���t�� = �cos��t

2
 + i

w − b

�
sin��t

2
�cos��/2�e−iwt/2�↑�

+ �cos��t

2
 − i

w + b

�
sin��t

2
�sin��/2�eiwt/2�↓�

�144�

=e−iwt/2��cos��t

2
 +

i

�
�w cos � − b�sin��t

2
�

	�0�t�� +
iw

�
sin � sin��t

2
�1�t��� , �145�

where, after Eqs. �128� and �129�, we have

�↑� = cos��/2��0�t�� + sin��/2��1�t�� , �146�

�↓� = sin��/2�e−iwt�0�t�� − cos��/2�e−iwt�1�t�� . �147�

In order to avoid writing all the time �b� instead of just b, we
will consider b�0 in the rest of the paper. The final out-
comes for all relevant quantities, nevertheless, are the same
had we considered b�0, which is the reason why we will
continue calling �0�s�� the g.s.

C. Expansion of the exact solution

Since we are looking for corrections to the adiabatic ap-
proximation, the frequency w=v of the rotating magnetic
field should be small. An important point is the way we need
to deal with terms of the form wt and w2t. If we remember
the definition of the rescaled time, s=vt, we see that t
�1 /v in the formalism developed for the APT in Sec. IV.

Therefore, the order of magnitude of, for example, w2t is the
same as that of w. In general, we have

O�wn+1t� = O�wn� ,

with n being an integer. This fact should be taken into ac-
count when expanding the exact solution.

Let us write Eq. �145� as

���t�� = �0�0�t�� + �1�1�t�� . �148�

Using the definition of � �Eq. �140��, one can show that

w cos � − b

�
= − 1 +

w2 sin2 �

2b2 + O�w3� ,

which implies that

�0 = e−i�w+��t/2�1 −
w2 sin2 �

4b2 �1 − ei�t� + O�w3� .

In the previous expression, we have to expand the term �t.
But since we now have the time t we need � up to third
order in w,

� = b − w cos � +
w2

2b
sin2 � +

w3

2b2 cos � sin2 � + O�w4� .

Using the expansion for � above and the Taylor expansion
for the exponential, we get

e−i�w+��t/2 = e−ibt/2e−iwt sin2��/2��1 − i
w2t

4b
sin2 �

− i
w3t

4b2 cos � sin2 � −
w4t2

32b2 sin4 � + O�w3� .

We also have the term ei�t to expand in the expression for
�0. But since it is multiplied by a second-order term
w2sin2 � / �4b2�, we only need its expansion up to zeroth or-
der:

ei�t = eibte−iwt cos � + O�w� .

Putting all the pieces together we finally obtain

�0 = e−ibt/2e−iwt sin2��/2��1 − i
w2t

4b
sin2 � −

w2

4b2 sin2 �

	 �G−�t� +
w2t2

8
sin2 � + iwt cos �� + O�w3� ,

where

G��t� = 1 � eibte−iwt cos �. �149�

Turning our attention to �1, we see that it has an overall w
multiplying all its other terms. Therefore, we need to expand
1 /� up to first order,

�−1 = b−1 +
w cos �

b2 + O�w2� ,

which results in
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�1 = e−i�w+��t/2�−
w

2b
sin ��1 − ei�t�

−
w2

4b2 sin�2���1 − ei�t�� + O�w3� .

The second term inside the curly brackets has a w2 factor,
which means that the zeroth-order expansion of ei�t is
enough. However, the first term is multiplied by w, implying
that we need the first-order expansion of ei�t,

ei�t = eibte−iwt cos ��1 + i
w2t

2b
sin2 � + O�w2� .

Using the previous expression and the expansion of
e−i�w+��t/2 up to first order, we get after some algebra

�1 = − e−ibt/2e−iwt sin2��/2�� w

2b
G−�t�sin � +

w2

4b2 sin�2��

	 �G−�t� − i
wt

4
G+�t�sin � tan �� + O�w3� .

Finally, inserting �0 and �1 into Eq. �148� and writing it as

���t�� = ���0��t�� + v���1��t�� + v2���2��t�� + O�v3� ,

we obtain

���0��t�� = e−ibt/2e−iwt sin2��/2��0�t�� , �150�

���1��t�� = e−ibt/2e−iwt sin2��/2��− i
w2t

4vb
sin2 ��0�t��

−
w

2vb
G−�t�sin ��1�t�� , �151�

and

���2��t�� = e−ibt/2e−iwt sin2��/2��−
w2

4v2b2 sin2 ��G−�t�

+
w2t2

8
sin2 � + iwt cos ��0�t�� −

w2

4v2b2 sin�2��

	�G−�t� − i
wt

4
G+�t�sin � tan ��1�t��� , �152�

with G��t� given by Eq. �149�. Equations �150�–�152� rep-
resent the expansions up to second order of the exact solu-
tion given by Eq. �145�.

D. First- and second-order corrections via the APT

Before determining the first- and second-order correc-
tions, we want to calculate explicitly the zeroth-order term—
namely, the adiabatic approximation given by Eq. �11�. After
Eq. �11� one needs to evaluate two quantities: �0�s� and
�0�s�. The last one is easily obtained employing Eqs. �6� and
�130�:

�0�s� = bs/2 = bvt/2.

To determine �0�s� we need M00�s� as given by Eq. �8�.
Using Eq. �128� for the snapshot eigenvector �0�s��, we get

�0̇�s�� = i
w

v
sin��/2�eiws/v�↓� , �153�

which implies

M00�s� = i
w

v
sin2��/2� . �154�

Thus, inserting Eq. �154� into �5� we get

�0�s� = −
w

v
s sin2��/2� = − wt sin2��/2� , �155�

and Eq. �11� reads

���0��t�� = e−ibt/2e−iwt sin2��/2��0�t�� . �156�

The first-order correction obtained via the APT in Sec. IV
is given by Eq. �81�. Since we deal with a two-level system,
there is no sum and we can set n=1 in all terms of Eq. �81�.
In addition to �0�s� and �0�s�, we need to compute �1�s�,
�1�s�, M10�s�, �10�s�, and J10�s� to determine ���1��s��. We
start with the gap, which is easily computed using Eq. �130�:

�10�s� = − �b . �157�

Using Eqs. �6� and �130� we immediately get

�1�s� = − �0�s� = − bvt/2.

The term �1�s� is obtained after calculating M11�s�. Using
Eq. �129� we get

�1̇�s�� = − i
w

v
cos��/2�eiws/v�↓� . �158�

Inserting Eq. �158� into �8� we find that

M11�s� = i
w

v
cos2��/2� , �159�

which leads to

�1�s� = − wt cos2��/2� . �160�

Using Eqs. �8�, �129�, and �153� we arrive at

M10�s� = − i
w

2v
sin � . �161�

Finally, with the aid of Eqs. �52�, �157�, and �161� we obtain

J10�s� = −
w2t

4vb�
sin2 � . �162�

Therefore, returning to Eq. �81� using that

M10�s�
�10�s�

= i
w

2vb�
sin � , �163�

we get

���1��t�� = e−ibt/2e−iwt sin2��/2��− i
w2t

4vb
sin2 ��0�t��

−
w

2vb
G−�t�sin ��1�t�� , �164�

where G−�t� is given by Eq. �149�.
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Moving on to the second-order term, Eq. �88�, whose co-
efficients are obtained from Eqs. �89�–�92�, we see that al-
most everything we need to explicitly write ���2��t�� is al-
ready calculated. We are left with only two quantities to
compute, which are

d

ds
�M10�s�

�10�s�
 = 0,

as can be seen from Eq. �163�, and

W10�s� = i
w

v
cos � , �165�

where we have employed Eqs. �74�, �154�, and �159�. We are
now able to write down explicitly the values of the four
coefficients. The first one, Eq. �89�, is easily calculated by
noting that M01�s�=M01�0�=−M

10
* �0�. Thus,

b01
�2��s� =

w2

4v2b2 sin2 � . �166�

The second one, Eq. �90�, is obtained inserting the values of
W10�s�, M10�s�, �10�s�, and J10�s�:

b10
�2��s� = −

w2 sin�2��
4v2b2 �1 − i

wt

4
sin � tan � . �167�

The evaluation of the third coefficient, Eq. �91�, is just a little
more involved. The integrations are easily done since the
first integrand is time independent and the second one is a
linear polynomial of the rescaled time s. Putting the results
of the integration back into Eq. �91� we can rearrange it as
follows:

b00
�2��s� = −

w2 sin2 �

4v2b2 �1 +
w2t2 sin2 �

8
+ iwt cos � .

�168�

The fourth and last coefficient, Eq. �92�, is calculated in the
same manner as we did for b10

�2��s�. After some algebra we get

b11
�2��s� =

w2 sin�2��
4v2b2 �1 + i

wt

4
sin � tan � . �169�

Inserting all the coefficients above into Eq. �88� we get after
some algebraic manipulations

���2��t�� = e−ibt/2e−iwt sin2��/2��−
w2

4v2b2 sin2 ��G−�t�

+
w2t2

8
sin2 � + iwt cos ��0�t�� −

w2

4v2b2 sin�2��

	�G−�t� − i
wt

4
G+�t�sin � tan ��1�t��� , �170�

with G��t� given by Eq. �149�.
We are now in position to reach interesting and important

conclusions. First of all, comparing Eqs. �150�–�152� with
Eqs. �156�, �164�, and �170� we easily realize that they are
the same. In other words, the expansion of the exact solution
up to second order is identical to the correction to the adia-

batic approximation up to second order obtained from the
APT of Sec. IV. Second, since Eq. �151� and �164� agree, we
can rule out the standard approach of Sec. III A 1 as the right
way of correcting the adiabatic approximation. Indeed, the
term proportional to

− i
w2t

4vb
sin2 ��0�t��

is absent in the standard-approach first-order correction. Al-
though not shown here, we also obtain different second-order
terms whether we use the standard approach or the APT. And
evidently, the correct term comes from the APT, as Eqs.
�152� and �170� demonstrate.

E. Geometric phase

We have demonstrated in the previous paragraphs that the
APT gives the right first- and second-order correction terms
to the adiabatic approximation. In this section our goal is to
prove that the formalism developed in Sec. V, and which
rests on the APT, is also the appropriate one when one is
interested in corrections to the Berry phase. We first need to
calculate the exact geometric phase for the state given by Eq.
�145�. We then expand this phase in terms of the small pa-
rameter v=w, allowing us to compare it with the first-order
correction obtained via the formalism of Sec. V.

1. Exact geometric phase

We are interested in the geometric phase that the state in
Eq. �145� acquires after the Hamiltonian H�t� returns to it-
self. Looking at Eq. �127� we see that the period of the
Hamiltonian is �=2� /w, or �s=2�v /w if we work with the
rescaled time. The geometric phase we want to calculate is
given by Eq. �97�. Therefore, we need first the total phase
���� and the dynamical phase ����.

The total phase, Eq. �98�, is obtained using Eq. �145�,
which gives the state of the system at t=�. At t=0, on the
other hand, we have ���0��= �0�0��. Hence, remembering
that �n�0� �m����=�nm we get

���0������� = e−iw�/2�cos���

2
 + i

w cos � − b

�
sin���

2
�

= e−iw�/2Rei�,

with R= ����0� ������� and �=arctan
�Im���0� ������ /Re���0� �������. Therefore, using Eq. �98�
we get for the total phase ����=−w� /2+�, or more explicitly

���� = −
w�

2
+ arctan�w cos � − b

�
tan���

2
� . �171�

The dynamical phase is given by Eq. �96�, which in terms
of t is

���� = −
1

�
�

0

�

dt���t��H�t����t�� .

Using the definition of �, Eq. �140�, we get
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���t��H�t����t�� =
�b

2
�1 −

2w2

�2 sin2 � sin2��t/2� ,

which results in

���� = −
b�

2
+

w2b� sin2 �

2�2 −
w2b sin����sin2 �

2�3 .

�172�

The exact geometric phase, Eq. �97�, is calculated sub-
tracting from the total phase the dynamical phase. Thus, us-
ing Eqs. �171� and �172� we get

���� = −
w�

2
+ arctan�w cos � − b

�
tan���

2
� +

b�

2

−
w2b� sin2 �

2�2 +
w2b sin����sin2 �

2�3 . �173�

2. Expansion of the exact geometric phase

We now proceed with the expansion of the exact results
obtained above up to first order in the small parameter v
=w. Again, we should be careful when doing such an expan-
sion since we are always assuming to be near the adiabatic
regime. This implies that the period � of the Hamiltonian is a
large number of order 1 /w. Therefore, terms like w2� are
actually O�w�, which means that we need to expand all ex-
pressions up to second order in w and then look after terms
of this type.

Let us begin with the total phase. Using the definition of
� and expanding the inverse of the tangent given in Eq.
�171� we obtain, up to second order in w,

� � −
b�

2
+

w� cos �

2
−

w2� sin2 �

4b
+

w2 sin2 � sin�b��
4b2 .

The last term is second order in v since �sin�b����1, even
for large �. The other term containing w2 is, nevertheless,
O�w� because it is multiplied by �. Hence, the total phase
expanded up to first order is

���� = −
b�

2
− w� sin2��/2� −

w2� sin2 �

4b
+ O�w2� .

�174�

The dynamical phase up to first order is obtained noting
that the last term of Eq. �172� is O�w2� since

w2

�3 sin���� =
w2

b3 sin�b�� + O�w3� .

Then, using that w2 /�2=w2 /b2+O�w3� we get

���� = −
b�

2
+

w2� sin2 �

2b
+ O�w2� , �175�

which leads to the first-order expansion of the geometric
phase below:

���� = − w� sin2��/2� −
3w2� sin2 �

4b
+ O�w2� . �176�

3. Perturbative correction to the geometric phase

As shown in Sec. V, the zeroth-order term of the geomet-
ric phase defined in Eq. �102� is simply the Berry phase. For
the particular problem of this section it can be easily calcu-
lated using Eqs. �5� and �154�,

��0���s� = − w� sin2��/2� = − w��1 − cos ��/2, �177�

where we have used that �s=v�. Using the value for � we get
��0���s�=−��1−cos ��. This phase can be interpreted as half
of the solid angle subtended by a curve traced on a sphere by
the direction of the magnetic field while it goes back and
forth to its initial value �4�.

The first-order correction to the Berry phase is calculated
by using directly Eq. �122�:

��1���s� = ��0���s� + 2v�J10��s� + v�2 �M10�0��2

�10
2 �0�

�10��s� .

Inserting Eqs. �162� and �163�, and noting that �10��s�
=−b�s=−bv�, we get

��1���s� = − w� sin2��/2� −
3w2� sin2 �

4b
. �178�

Comparing Eq. �178� with the expansion of the exact geo-
metric phase given in Eq. �176� we see that they are identi-
cal. In other words, the previous result shows that we get the
same answer for the correction to the Berry phase either if
we expand the exact AA geometric phase or if we calculate
the AA geometric phase for the correction to the adiabatic
approximation given by the APT. However, and it is here that
the usefulness of a perturbative method becomes evident, for
the vast majority of problems we do not know their exact
geometric phases and we must rely, therefore, on the APT
and the methods of Sec. V to go beyond the Berry phase.

4. Measuring �(1)(�s)

The correction to the Berry phase ��1���s� can be mea-
sured as follows. We prepare a beam of particles in the g.s.
�0�0�� of the Hamiltonian H�0� and split it into two equal
parts. Half of it is subjected to the time-dependent Hamil-
tonian H�s� and the other half to a time-independent one

H̃�0�. In the first beam H�s� is changed with time in a man-
ner that makes the first-order correction to the adiabatic ap-
proximation relevant. This is done by adjusting the fre-

quency w of the rotating field. For the other beam, H̃�0� is
such that it gives the state ����s��N1

=ei���s�����s��N1
at s

=�s; i.e., the state ����s��N1
as given by Eq. �109� with an

additional phase equals to the dynamical phase of ����s��N1
.

This is achieved by ����s��N1
being an eigenvector of H̃�0�

with an eigenvalue set in a manner that provides the phase
���s� at �s. Then, recombining the two beams we measure its
intensity for several orientations of the magnetic field �the
angle ��. An interference pattern emerges whose intensity
contrast is proportional to cos2���1�����, which can be com-
pared with the contrast predicted by Eq. �178�. It is worth
noticing that it may not be easy to build experimentally the

Hamiltonian H̃�0�.
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We want to end this section analyzing the case where �s
=�c—i.e., where the periodicity of the Hamiltonian �s
=2�v /w equals the time that it takes for the initial state to
return to itself up to an overall phase �5�. In Sec. V we
emphasized that those two periods are in general different. If
one looks at Eq. �145�, it is straightforward to see that the
exact solution returns to itself �up to an overall phase� after a
time �c=v�̃=2�v /�. However, in general we do not know
the exact solution and we must rely on the period for the
corrected state to return to itself. To first order the system
comes back to the initial state when the term multiplying the
state �1�s�� is zero at s=�s=v�. From Eq. �164� this is the
case when G−���=0, i.e.,

w =
b

1 + cos �
=

− Bge

2mc�1 + cos ��
, �179�

after using the values for � and b. Since w�1, this condition
can be achieved by choosing a small field. If possible, we
can also choose a particle with either a small charge or a
large mass, or change the orientation of the field. But assum-
ing this condition is fulfilled, the geometric phases defined in
Sec. V acquire the geometrical meaning that is inherent to
the AA geometric phase �5�.

Indeed, using Eq. �179� and �=2� /w, the first-order cor-
rection to the Berry phase given by Eq. �178� becomes

��1���s� = − 2� sin2��/2� −
3� sin2 �

2�1 + cos ��
, �180�

which only depends on the angle �—i.e., the angle of the
magnetic field with the z axis �there is no other dynamical
component here such as the small parameter v=w�. Employ-
ing Berry’s phase definition we can write Eq. �180� as

��1���s� = �0��s� +
3

2
�0��s� =

5

2
�0��s� . �181�

This is the geometric phase when the first-order correction to
the adiabatic approximation is relevant, and it can be probed
by using an experimental setup similar to the one developed
to test Berry’s phase �4� with the following slight modifica-
tion.

First, a polarized beam of spin-1 /2 particles prepared in
the g.s. �0�0�� is split into two beams that are sent to regions
with magnetic fields pointing initially in the same direction
�see Fig. 2�. In one path the direction of the magnetic field is
kept constant and its magnitude �B2� is tuned such that at s
=�s the phase of the particles is given by the dynamical
phase ��1���s� �Eq. �175�� with w satisfying Eq. �179�. Note
that the g.s. is independent of the field strength �Eq. �128��.
Along the other beam the field �B1� is slowly rotated with
frequency w back and forth around the z axes. The frequency
should be consistent with �179� and chosen in a way that
makes the first-order correction to the adiabatic approxima-
tion relevant. Then the beams are recombined and the inten-
sity measured. Repeating this experiment for several values
of � we should see the intensity changing as cos2���1�����,
where ��1���� should agree with Eq. �181�.

VIII. NUMERICAL EXAMPLES

In this section we want to consider three more examples
and compare their exact time evolution with the first- and
second-order corrections to the adiabatic approximation
given by the APT. One of the examples can be seen as a
particular case of the analytic problem in Sec. VII, and an-
other one can also be solved analytically in terms of a special
function �see the Appendix�. However, here we solve them
all numerically.

We again restrict ourselves to a two-level system de-
scribed by the following Hamiltonian:

H j�s� = � 0 Eei�j�s�

Ee−i�j�s� 0
 , �182�

where 2E is the time-independent gap of the system and � j�s�
is the time-dependent part of the Hamiltonian. We choose
three polynomials for � j�s�, j=1,2 ,3, which define our ex-
amples:

� j�s� = � j
0 + wjs

j . �183�

The parameter � j
0 represents the initial condition for � j�s� and

wj �0. For j=1 we recover the example of Sec. VII when
the angle of the magnetic field with the z axes is � /2. Note
that we are already working with the rescaled time �22�.

The snapshot eigenvectors and eigenvalues of H j�s� are

�0�s�� =
1
�2

�ei�j�s��↑� + �↓�� with E0 = E , �184�

�1�s�� =
1
�2

�ei�j�s��↑� − �↓�� with E1 = − E . �185�

An arbitrary state at s can be represented as

���s�� = c↑�s��↑� + c↓�s��↓� , �186�

with coefficients satisfying ��=E / �v���

ċ↑�s� = − i�ei�j�s�c↓�s� , �187�

ċ↓�s� = − i�e−i�j�s�c↑�s� . �188�

FIG. 2. �Color online� A beam of particles prepared in the g.s. is
split into two equal parts. One �upper beam� goes through a region
of constant magnetic field whose strength B2 is such that at the end
it acquires the dynamical phase ��1���s� of the lower beam. The
latter beam goes through a region where the magnetic field B1 ro-
tates around the z axes until it returns to itself. �In the original
proposal �4�, the field strengths are the same, B1=B2.� Finally, the
beams are recombined and the intensity measured, allowing us to
determine the geometric phase ��1���s�. See text for more details.
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The comparison between the exact time evolution of
���s�� and the approximate results of the APT simplifies if
we rewrite Eq. �186� in terms of the snapshot eigenvectors of
H�s�. Using Eqs. �184� and �185� one gets

�↑� = e−i�j�s���0�s�� + �1�s���/�2, �189�

�↓� = ��0�s�� − �1�s���/�2, �190�

so that �186� becomes

���s�� = c0�s��0�s�� + c1�s��1�s�� , �191�

where

c0�s� = �e−i�j�s�c↑�s� + c↓�s��/�2, �192�

c1�s� = �e−i�j�s�c↑�s� − c↓�s��/�2. �193�

If the system starts at the eigenvector �0�0��—i.e., c0�0�=1
and c1�0�=0—then

c↑�0� = ei�j
0
/�2 and c↓�0� = 1/�2. �194�

To have a quantitative measure of the closeness of the
corrections to the adiabatic approximation to the exact state
�191� we compute a quantity called fidelity,

Fk�s� = ����s����s��Nk
�2, �195�

where ���s��Nk
is the normalized state containing corrections

up to order k �Eq. �99��. When the states are the same Fk
=1 and Fk=0 when they are orthogonal.

Using the snapshot eigenvectors given by Eqs. �184� and
�185�, Eqs. �99� and �101�, and repeating the same steps of
Sec. VII we get

���s��N0
= ���0��s�� = e−i�se−i��j�s�/2�0�s�� , �196�

with �� j�s�=� j�s�−� j
0,

���s��N1
= N1����0��s�� + v���1��s��� , �197�

where

���1��s�� = e−i�se−i��j�s�/2�−
i�

8E
�

0

s

�̇ j
2�s��ds��0�s��

+
�

4E
��̇ j�s� − ei2�s�̇ j�0���1�s��� �198�

and

���s��N2
= N2����0��s�� + v���1��s�� + v2���2��s��� ,

�199�

in which ���2��s�� is given by Eq. �88�. The coefficients of
���2��s��, where �0�s�=−�1�s�=Es /� and �0�s�=�1�s�
=−�� j�s� /2, are

b00
�2��s� =

− �2

32E2��̇ j
2�0� + �̇ j

2�s� +
1

4��0

s

�̇ j
2�s��ds�2� ,

b01
�2��s� =

�2

16E2 �̇ j�0��̇ j�s� ,

b10
�2��s� =

− i�2

8E2 ��̈ j�s� +
�̇ j�s�

4
�

0

s

�̇ j
2�s��ds� ,

b11
�2��s� =

i�2

8E2��̈ j�0� −
�̇ j�0�

4
�

0

s

�̇ j
2�s��ds� .

By inspection of Eqs. �196�, �197�, and �199� and their coef-
ficients, and using the definition for � j�s�, we realize that
from one order to the next we have a smaller contribution to
the overall state if �−1=v� /E�1. The previous condition is
related to the existence of a gap �E�0� and the near adiaba-
ticity approximation �v=wj �1�. When those conditions are
satisfied, we should expect the APT to work.

There is one more interesting fact. If we factor out the
highly oscillatory dynamical term e−i�s, the other oscillatory
terms are always multiplied by the first- or second-order de-
rivatives of � j at s=0. This can be seen by looking at Eq.

�198�, where we have the term ei2�s�̇ j�0�. A similar exponen-

tial appears in ���2��s��, multiplying either �̇ j�0� or �̈ j�0� �see
coefficients b01

�2��s� and b11
�2��s��. Therefore, by properly choos-

ing the functional form of � j we can eliminate those oscilla-
tory terms. It remains only a global oscillatory phase e−i�s

that has no influence on the fidelity or on the probability to
find the system out of the g.s.

Let us start presenting the results of the numerical calcu-
lations. In Fig. 3 we show the value of the infidelity, �1
−Fk�s��, when �−1�1. For the three cases, as we increase the
order of the APT, we get closer and closer to the exact solu-
tion �small infidelity�. In Fig. 4 we show the behavior of the
APT as we increase �−1. We computed how much the
second-order correction differs from the exact solution for all
� j�s�. It is clear that for �−1�1 we almost see no difference
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FIG. 3. �Color online� Here � j
0=1, E=2, and v=wj =0.5, which

gives �−1=0.25 ��=1�. At the top we have � j�s�, j=1,2, and at the
bottom j=3. The black dotted curves represent the infidelity be-
tween the zeroth-order correction, Eq. �196�, and the exact solution,
Eq. �191�, as a function of the rescaled time s. Both quantities are
adimensional. The blue dashed curves are the infidelity when we go
up to first order �Eq. �197�� and the red solid ones when we include
the second-order term �Eq. �199��. For j=1, the first- and second-
order curves are indistinguishable and the solid and dotted curves
go as high as 0.004.
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from the exact solution. For �−1�1, however, the perturba-
tion theory fails as can be seen from the last panel of Fig. 4.

In all previous calculations it was implicit that � j�s� was a
smooth function. It may happen that its first- or second- �or
nth-� order derivative with respect to time becomes discon-
tinuous. This is related to the way we can experimentally
control the Hamiltonian �11�. Under those circumstances we
can continue using APT to predict the behavior of the exact
solution to the SE. The way to circumvent this problem is
relatively simple. Let us assume we have the following func-
tional form for � j�s�:

� j�s� = �� j
0 + wjs

j if s  0,

� j
0 if s � 0.

� �200�

When s�0, and starting, let us say, at s=−0.2, and using the
initial condition at that time, we compute the perturbative
terms given by the APT using � j�s�=� j

0. All terms but the
zeroth order vanish since the Hamiltonian is time indepen-
dent for s�0. Then, at s=0 we start computing the pertur-
bative terms using � j�s�=� j

0+wjs
j and as initial state we use

the final state from the previous computation; i.e., we impose
the continuity of the wave function at s=0: lims→0−���s��
=lims→0+���s��. This procedure allows us to obtain in a per-
turbative way the right time evolution for the whole range of
rescaled time s. We exemplify this approach in Fig. 5. It is
clear that this approach �third panel� is the best option. To
second order, we see no appreciable difference between the
exact solution and the perturbative solution. In Fig. 5 we
worked with �2�s�, but the same feature shows up with �1�s�,
where in this case it is the first-order correction that is prob-
lematic. The same feature is true if we work with another
time-dependent Hamiltonian. In general, a discontinuous de-
rivative of order k+1 in the quantity Mnm�s� /�mn�s� affects

the kth order in perturbation theory. The remedy, neverthe-
less, is the same as before.

IX. DISCUSSION AND CONCLUSIONS

In this paper we presented a useful and practical way to
find corrections to the adiabatic approximation named, after
Garrison �2�, adiabatic perturbation theory. Considering the
adiabatic approximation as the zeroth-order term, we have
developed a power series expansion that gives the time evo-
lution of the system. The only assumption made was the
existence of a nondegenerate Hamiltonian throughout the
time evolution. We have explicitly calculated corrections up
to second order in the small parameter v, which is related to
the inverse of the relevant time scale of the problem—
namely, the time required to change the system’s Hamil-
tonian from its initial value to the desired final one.

We have checked the validity of this approach comparing
the exact solution of several time-dependent problems with
the approximate results given by the APT. One of the prob-
lems had an exact analytical solution which allowed a de-
tailed comparison with the approximate one given by the
APT. We got a perfect agreement between both ways of solv-
ing the problem. The other time-dependent problems were
solved numerically. The APT passed all tests for those nu-
merical cases too: the more terms one adds to the approxi-
mate solution, the closer one gets to the exact solution. We
should note, however, that a rigorous general proof of con-
vergence of the APT series expansion was not given, al-
though we believe that it will work in general at least in an
asymptotic sense.

In addition, we have compared the APT to other methods
that also try to go beyond the adiabatic approximation. The
first method we dealt with was what we called the standard
approach, since it is based on the straightforward manipula-
tions of the integral equations that one gets when writing
formally the exact solution to the time-dependent
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FIG. 4. �Color online� The same parameters of Fig. 3, but with
different gaps. Top: �−1=0.125 and 0.25. Bottom: 0.5 and 5. All
curves represent the infidelity between the exact solution and the
adiabatic approximation corrected up to second order �Eq. �199��.
The solid curve represents �3�s�, the dashed one �2�s�, and the
dotted one �1�s�. In the first panel all curves coincide, while at the
next two the dashed and dotted curves are indistinguishable. Note
the difference of scale at the bottom panels. For the first three, the
APT works beautifully and the results are better the lower �−1. At
the last panel we see the three curves and the break down of the
APT since �−1�1.
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FIG. 5. �Color online� The same parameters and notation of Fig.
3 for the case �2�s�. At the top panels we used, for expressions

coming from the APT and throughout the whole range of s, �̈�0�
=0 for the first panel and �̈�0�=2w2 for the second one. At the

bottom panel we used �̈�0�=0 for s�0 and �̈�0�=2w2 for s0 plus
the continuity of the wave function at s=0.

RIGOLIN, ORTIZ, AND PONCE PHYSICAL REVIEW A 78, 052508 �2008�

052508-22



Schrödinger equation �Sec. III A 1�. We have shown that the
naive expansion of the integral equations in terms of the
small parameter v fails to give an accurate correction to the
adiabatic approximation. We then studied the iterative
rotating-basis method developed in Ref. �3� and which is
related to the ones in Refs. �12–14�. As can be seen in the
analysis of Sec. III B, this approach is not a perturbative
method in the small parameter v. Rather, it is built on an-
other premise that, loosely speaking, has the goal of finding
by an iterative process a new frame of reference where the
modified Hamiltonian becomes time independent. We have
emphasized that at each iteration step one can in principle
use our APT as a way of approximating the solution within
that frame.

Most importantly, we have proven that the APT here in-
troduced, and which was inspired by the work of Ganduglia,
Goldberg, and Ponce �11�, is connected to the multivariable
expansion method developed by Garrison �2�. Indeed, we
have shown the formal mathematical equivalence between
both methods. Starting with the APT we can obtain the mul-
tivariable expansion method and vice versa. However, the
equations obtained from the APT to order p are simple alge-
braic recursive relations involving the terms of order p−1.
On the other hand, the multivariable expansion method re-
quires not only manipulating recursive relations, but also
solving partial differential equations.

We have also shown how to calculate corrections to the
Berry phase �4� to an arbitrary order in the small parameter
v. The strategy we adopted had two basic ingredients, one of
which was the normalized pth-order correction to the adia-
batic approximation. The other one was the Aharonov-
Anandan phase, a natural generalization of the Berry phase
�5�, suited to the calculation of geometric phases away from
the adiabatic regime. Moreover, we have explicitly computed
the first-order correction in a spin-1 /2 �qubit� problem and
proposed a specific quantum interference experiment to mea-
sure it. We showed that when the first-order correction to the
adiabatic approximation is relevant, the geometric phase
should be two and a half times the Berry phase.

Finally, our results lead naturally to new questions. First,
can we build an APT similar in spirit to the one presented
here, but for open quantum systems where we have nonuni-
tary dynamics �23�? Second, can we employ this open dy-
namics APT to calculate corrections to all sorts of geometric

phases �24�? And third, can we extend our ideas to the case
where the Hamiltonian spectrum is degenerate?
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APPENDIX: SOLUTION TO THE �2(S) CASE

For �2�s�=�2
0+w2s2 Eqs. �187� and �188� are a particular

case of the following ones:

ċ↑�s� = Veiw2s2
c↓�s� ,

ċ↓�s� = − V*e−iw2s2
c↑�s� .

Decoupling, we get

c̈↑�s� − i2w2sċ↑�s� − �V�2c↑�s� = 0.

Making the change of variable c↑�s�= f�s�z�s� and imposing
that in the new equation the coefficient multiplying ż�s�
be zero, we obtain z̈�s�+ �iw2+w2

2s2+ �V�2�z�s�=0, with
f�s�= f�0�eiw2s2/2. Making another change of variable,
x=�2�w2�s, we get d2z /dx2+ �x2 /4−a�z�x�=0, where
a=−�V�2− i /2. The solution to the previous equation are the
Weber functions �25�

z1�x� = �
n=0




a2nx2n/�2n�!,

z2�x� = �
n=0




a2n+1x2n+1/�2n + 1�!,

in which a0=a1=1, a2=a3=a, and an+2=aan−n�n
−1�an−2 /4. Finally, returning to the original variable we get
the solution to the original problem,

c↑�s� = eiw2s2/2�c1
0z1�2��w2�s� + c2

0z2�2��w2�s�� ,

with c1
0 and c2

0 being fixed by the initial conditions.
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