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We have performed very accurate quantum-mechanical calculations for the two lowest S states of the lithium
atom in order to determine the transition energy. In the nonrelativistic part of the calculations performed using
the variational method, we explicitly included the nuclear motion. The nonrelativistic wave function was
expanded in terms of explicitly correlated Gaussian functions. Next, this wave function was used to calculate
the leading �2 relativistic correction �� is the fine-structure constant� and the �3 QED correction. We also
estimated the �4 QED correction by calculating its dominating component. The results obtained with Gaussians
are compared with the most accurate results obtained recently with the Hylleraas-type basis functions.
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I. INTRODUCTION

In this work we continue our very accurate quantum-
mechanical calculations of light atoms with an approach that
utilizes explicitly correlated Gaussian �ECG� basis functions
in expanding the nonrelativistic wave function. In our recent
works �1–5� we have shown that with these types of func-
tions we can calculate excitation energies for atoms with
three and four electrons that agree very well with accurate
spectroscopic data. To reach such accuracy the approach had
to include treating the motion of the electrons and the motion
of the nucleus on equal footing �the finite-nuclear-mass
�FNM� approach �6–11�� and had to account for the leading
relativistic and QED corrections. Since the explicitly corre-
lated Gaussians depend on the distances between the elec-
trons and the distances between the electrons and the
nucleus, they can very effectively describe the correlation
effects in the system. However, in general, Gaussians are less
effective than the Hylleraas-type or Slater-type functions in
this task because their cusp and long-range behaviors are not
as good as of those other types of functions. The use of
Gaussians, however, leads to much simpler integrals and,
unlike the Hylleraas functions, these functions can be applied
to systems with more than three electrons without an in-
crease in the complexity of the algorithms for calculating the
Hamiltonian matrix elements. In fact, the algorithms involv-
ing Gaussians can be derived and coded in a general form
allowing calculations of atomic systems with an arbitrary
number of electrons �the largest atomic systems we have
considered so far were the Be atom �3� and the Li anion �4��.
The only factor that limits the size of the calculated system is
the computer power available for the calculations. This is not
the case for the Hylleraas functions where the increase of the
number of electrons from three to four leads to such an in-
crease of the complexity of the calculations that a four-
electron atomic problem has not yet been attempted using
those functions. An additional advantage of using Gaussians
is that the Hamiltonian matrix elements calculated with those

functions can be easily analytically differentiated with re-
spect to the Gaussian exponential parameters and the energy
gradient can be determined. Since the optimization of these
parameters is key in obtaining high-accuracy results and the
use of the gradient can significantly accelerate this optimiza-
tion, this feature makes Gaussians very good basis functions
for atomic calculations.

Very precise quantum-mechanical atomic calculations of
bound ground and excited states of atoms can assist the in-
terpretation of high-resolution experiments and contribute to
refining fundamental physical constants. The modern experi-
ments concerning atomic electronic transitions are now
reaching the relative accuracy of 10−9. In order for the theo-
retical calculations to reproduce these results they need to
account for even the smallest effects that originate from the
electrostatic, relativistic, and QED interactions. For atoms
with more than one electron, the most successful approach to
perform very accurate calculations has been the method
based on an effective Hamiltonian derived in the framework
of the nonrelativistic QED method �NRQED� �12–14�. The
zeroth-order level in this approach is the nonrelativistic
Schrödinger equation, and the perturbation theory scheme is
used to determine corrections describing the relativistic and
QED effects. Those corrections are represented by quantities
dependent on the fine-structure constant � ��=1 /c�:

E��� = ENR + �2Erel + �3EQED + �4EHQED + ¯ . �1�

The accuracy of the NRQED approach strongly depends on
the accuracy of the solution of the nonrelativistic
Schrödinger equation.

The leading terms in the expansion �1�—i.e. the nonrela-
tivistic energy ENR, the relativistic correction �2 Erel, and the
leading-order radiative correction �3 EQED—are well known
since early works of Bethe and Salpeter �15�, Araki �16�, and
Sucher �17�. An effective scheme to account for the �3 QED
effects in light atoms was developed by Pachucki �18,19�. He
also recently presented formulas for calculating the radiative
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correction of the order of �4 ��4 EHQED� �19�.
The purpose of this work is to study the performance of

the Gaussians in comparison with the Hylleraas-type func-
tions in the calculations of the two lowest S states of the
lithium atom. This is a good model case to study this ques-
tion because very accurate calculations were done for this
system with the Hylleraas basis functions �20–27�. The the-
oretical framework for the calculations performed in this
work is provided by the expansion �1�. The relativistic cor-
rections are calculated using the nonrelativistic wave func-
tions obtained in the FNM variational calculations with ex-
plicitly correlated Gaussian basis functions �1–3�. The QED
correction of the order of �3 is calculated using the proce-
dure developed by Pachucki and Komasa �28–31� also for
the wave functions expanded in terms of explicitly correlated
Gaussians, but obtained in infinite-nuclear-mass �INM� cal-
culations. The �4 was estimated using the procedure also
developed in those works of Pachucki and Komasa.

II. METHOD USED IN THE CALCULATIONS

In the first stage of the calculations we computed the non-
relativistic wave functions for the lowest two S states of Li.
In the calculations we used the Hamiltonian obtained by
separating the center-of-mass motion from the nonrelativistic
laboratory-frame Hamiltonian. This separation reduces the
four-particle Li problem to a three-pseudoparticle problem

with a Hamiltonian that we call internal �ĤINT�. HINT has the
following form:

ĤINT = −
1
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where in atomic units q0=3 �the charge of the nucleus�, q1
=q2=q3=−1 �the charges of the electrons�, m0=12 786.393
�the mass of the nucleus� for the 7Li nucleus and m0
=10 961.898 for the 6Li nucleus, �i are the reduced electron
masses, and �i=m0mi / �m0+mi�, where m1=m2=m3=1. ri,
i=1,2 ,3, are the position vectors of the electrons with re-
spect to the nucleus, ri are their lengths, and rij = �r j −ri� are
the distances between the electrons. The calculations with

the ĤINT Hamiltonian have been carried out for finite and
infinite masses of the Li nucleus. They yielded the nonrela-
tivistic energies ENR and the corresponding wave functions.

To describe the relativistic effects in the calculations we
use the Dirac-Breit Hamiltonian in the Pauli approximation

�Ĥrel� �15,32� transformed to the internal coordinate system.

For states with the S symmetry Ĥrel includes the mass-
velocity �MV�, Darwin �D�, orbit-orbit �OO�, and spin-spin
�SS� terms:

Ĥrel = ĤMV + ĤD + ĤOO + ĤSS. �3�

The explicit form of these operators in the internal coordi-
nates is
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In the present calculations we have not included the mag-
netic anomaly factors for the electrons and the nucleus in the
Darwin and spin-spin corrections. This was done to make the
comparison with the results obtained with the Hylleraas
functions by Puchalski and Pachucki �20,23� more direct,
since they also did not include the electronic and nuclear
magnetic anomaly in their calculations. For the same reason
we did not include a very small additional term proportional
to the inverse square of the nucleus mass in the Darwin
Hamiltonian that arises due to the interaction between the
nucleus and the electrons �we included this term in one of
our previous works �4��.

The calculations of the �2 relativistic corrections in this
work have been performed by computing the expectation
value of the Hrel operator with the nonrelativistic FNM wave
function—i.e., the wave functions obtained in the calcula-
tions with the finite masses of the 6Li and 7Li nuclei ��FNM�.
We also performed the calculations of the relativistic correc-
tions with the wave function obtained in the infinite-mass
calculation ��INM�. Since the procedure used in this work for
calculating the �3 and �4 QED corrections was only devel-
oped for the infinite-mass wave function, only this type of
calculations have been performed.

A nonrelativistic wave function that describes a stationary
state of the Li atom �either �FNM or �INM� is an antisymme-
trized product of a function of the internal spatial coordinates
r and of the spin coordinates �:

��r,�� = Â�	�r�
S,MS
���� . �8�

The antisymmetrization operator Â acts only on the elec-
tronic coordinates. The spin function 
S,MS

��� is a product
of an electronic spin function and a nuclear spin function,

S,MS

=
e
N. For the two states of Li considered here we
used the following electronic spin function: 
e

= �1 /�6��2��1���2���3�−��1���2���3�−��1���2���3��.
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In calculating the QED corrections we used the following
approach. As was described in the work of Pachucki and
Komasa �29�, the leading QED correction for the Li atom
that accounts for the two-photon exchange, the vacuum po-
larization, and the electron self-energy effects has the follow-
ing form:
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The above equation excludes the recoil contributions which
are usually much smaller than the main contributions. The
last term in braces in expression �9� is the so called Araki-
Sucher distribution �16,17,25,33�, which is defined as the
following limit:

��P� 1

r3����� = lim
a→0

� �*�r����r�	 1

r3��r − a�

+ 4��3�r�� + ln a�
dr , �10�

where � is the step function and  is the Euler constant. In
calculating the distribution we employed the so-called expec-
tation value identity approach �34�, which allowed us to
overcome the slow convergence of the highly singular
P�1 /rij

3 � term. There is another term in expression �9� that is
more difficult to calculate for an atom with more than one
electron. It involves the so-called Bethe logarithm ln k0, de-
fined as

ln k0 = −
1

D
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High-precision calculations of ln k0 have been done for some
one- and two-electron atoms �see, e.g., �35,36��. Recently
Yan and Drake �26� and Pachucki and Komasa �29� also
reported high-quality QED results including ln k0 for the
ground and first excited states of the lithium atom. Later
Pachucki and Komasa also calculated the Bethe logarithm
for the ground state of Be+ and Li− and the ground and first
excited states of Be �28,30�. The evaluation of ln k0 in those
works was based on the integral representation of ln k0 pro-
posed by Schwartz �37� and reformulated in a more concise

form by Pachucki and Komasa �30�. The calculation of ln k0
in the present work was done with the procedure developed
by Pachucki and Komasa �30�.

In the present work the calculations of the �4 QED cor-
rection have been done with an approximate procedure that
includes only the dominant component of the correction.
This component typically accounts for about 80% of the total
value of the correction, and it is obtained from the following
equation �30�:

EHQED � 4�q0
2�139

128
+

5

192
−

ln 2

2
��INM��

i=1

3

�3�ri���INM� .

�14�

The remaining �4 contributions involve some singular terms
that are more difficult to calculate �38,39�. These contribu-
tions were neglected in the present calculations.

The nonrelativistic wave functions for the two S states of
Li considered in this work have been expanded using the
following ECG basis functions:

�k = exp�− r��Ak � I3�r� = exp�− r��LkLk� � I3�r� , �15�

where � is the Kronecker product symbol, r is a vector of
the internal Cartesian coordinates, r1, r2, and r3, of the three
pseudoelectrons �r is a 9�1 vector�, Lk is a 3�3 lower
triangular matrix of nonlinear variational parameters, and I3
is the 3�3 identity matrix. The permutational symmetry of
the wave function was implemented by applying symmetry

projector Â to each basis function.
The reason for representing the nonlinear parameters of

the Gaussians �15� in the Cholesky factored form LkLk� is to
avoid dealing with constrains that would otherwise need to
be imposed if the parameters were represented by a single
matrix Ak. Those constraints result from requiring that each
basis function be square integrable, and this can only happen
if Ak is a positive-definite matrix. If Ak=LkLk� and Lk is a
lower triangular matrix, the square-integrability condition is
automatically satisfied and no restrictions need to imposed
on the elements of the Lk matrix �they can vary in the range
of �−� , +���. This allows us to perform unrestricted optimi-
zation of Lk’s, which is much simpler and more efficient than
the optimization with constrains.

In the nonrelativistic calculations in this work we used the
variational method. For a given basis set with size K and the
corresponding set of matrices of the nonlinear parameters
�Lk ,k=1, . . . ,K�, the nonrelativistic energy of the ith state,
Ei, and its wave function were obtained by solving the secu-
lar equation

Hci = EiSci, �16�

where H and S are the K�K Hamiltonian and overlap ma-
trices, respectively �their elements depend on Lk’s� and ci is
the vector of the linear expansion coefficients ck

i . In order to
obtain highly accurate energies and wave functions, it is nec-
essary to perform an extensive minimization of the energy
with respect to the elements of the Lk’s matrices. In this
minimization we employed the analytic gradient of the en-
ergy with respect to those elements. To calculate the gradient
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one needs to determine the analytic derivatives of the
H��Lk�� and S��Lk�� matrix elements. The formulas for these
derivatives are implemented in our computer code. The use
of the analytic gradient significantly accelerates the optimi-
zation process and allows us to achieve high accuracy at a
relatively low computational cost.

In the present calculations, the variational optimization of
the Lk parameters was performed independently for each
state. This was only done for the 7Li isotop. In the calcula-
tions of the 6Li isotop and in the �Li calculations, only the
linear coefficients in the wave function were changed and the
basis set used was the same as the one generated for the 7Li
isotop. Our previous atomic calculations have showed that, if
the mass of the isotope changes, it is sufficient to only adjust
the linear expansion coefficients of the wave function to ac-
count for the mass difference.

The numerical values of the fine-structure constant and
the hartree-MHz conversion factor used in this work were
taken from �40�:

� = 1/137.035999679,

1 hartree = 6579683920.722 MHz.

III. RESULTS

In the first step of the calculations we determined the
nonrelativistic FNM variational wave functions and the total
energy for the two lowest S states of the Li atom considered
in this work. In the calculations the basis set for each state
has been grown to the size of 10 000 functions. Nearly that
many Hylleraas functions were used by Pachucki et al. and
Yan et al. in their calculations on the two states of Li
�20,23,24,27�. The growing of the basis set involved gradu-
ally adding subsets of 20 functions to the basis set and opti-
mizing each function of the subset, one function at a time.
After the addition of each 20 functions the entire basis set
was reoptimized in a cyclic optimization where again the
parameters of one function at a time were reoptimized using
the gradient-based minimization procedure. A stochastic pro-
cedure was used to select the initial values of the nonlinear
parameters of the added functions. The distribution of these
values was chosen based on the parameters of the functions
already included in the basis set. When the level of 10 000
functions was reached for each state, several additional cy-
clic optimizations were performed of all the functions to get
the final basis set. The calculations of the nonrelativistic en-
ergies and the corresponding wave functions constituted by
far the most time-consuming step of this work. Even with the

TABLE I. Total nonrelativistic energies ENR, relativistic corrections, and total relativistic energies �the sum of ENR and the relativistic

corrections� for the 2 2S1/2 and 3 2S1/2 states of �Li, 7Li, and 6Li. The ĤMV+ ĤD+ ĤSS� and ĤOO� corrections are divided by �2. All
quantities are in a.u.

System State Basis ENR ĤMV+ ĤD+ ĤSS� ĤOO� �2 Erel ENR+�2 Erel

�Li 2 2S1/2 7000 −7.47806032324 −11.6134382 −0.4355980 −6.4162749�10−4 −7.47870195073

8000 −7.47806032354 −11.6135228 −0.4355979 −6.4163200�10−4 −7.47870195553

9000 −7.47806032371 −11.6136752 −0.4355979 −6.4164011�10−4 −7.47870196382

10000 −7.47806032381 −11.6137653 −0.4355979 −6.4164490�10−4 −7.47870196872

3 2S1/2 7000 −7.35409842020 −11.4407368 −0.4299087 −6.3212795�10−4 −7.35473054815

8000 −7.35409842073 −11.4407120 −0.4299087 −6.3212662�10−4 −7.35473054735

9000 −7.35409842095 −11.4408337 −0.4299087 −6.3213310�10−4 −7.35473055406

10000 −7.35409842113 −11.4408183 −0.4299087 −6.3213229�10−4 −7.35473055342
7Li 2 2S1/2 7000 −7.47745193011 −11.6051358 −0.4454912 −6.4171221�10−4 −7.47809364232

8000 −7.47745193041 −11.6052204 −0.4454912 −6.4171671�10−4 −7.47809364711

9000 −7.47745193058 −11.6053727 −0.4454911 −6.4172481�10−4 −7.47809365540

10000 −7.47745193068 −11.6054627 −0.4454911 −6.4172961�10−4 −7.47809366029

3 2S1/2 7000 −7.35350048700 −11.4325631 −0.4396995 −6.3221406�10−4 −7.35413270106

8000 −7.35350048752 −11.4325384 −0.4396995 −6.3221274�10−4 −7.35413270027

9000 −7.35350048775 −11.4326600 −0.4396995 −6.3221922�10−4 −7.35413270697

10000 −7.35350048793 −11.4326447 −0.4396995 −6.3221840�10−4 −7.35413270633
6Li 2 2S1/2 7000 −7.47735068068 −11.6034405 −0.4471373 −6.4170959�10−4 −7.47799239026

8000 −7.47735068097 −11.6035250 −0.4471373 −6.4171409�10−4 −7.47799239506

9000 −7.47735068115 −11.6036773 −0.4471372 −6.4172219�10−4 −7.47799240334

10000 −7.47735068125 −11.6037673 −0.4471372 −6.4172699�10−4 −7.47799240823

3 2S1/2 7000 −7.35340097820 −11.4308790 −0.4413286 −6.3221113�10−4 −7.35403318934

8000 −7.35340097873 −11.4308543 −0.4413286 −6.3220982�10−4 −7.35403318854

9000 −7.35340097895 −11.4309759 −0.4413286 −6.3221629�10−4 −7.35403319525

10000 −7.35340097913 −11.4309606 −0.4413286 −6.3221547�10−4 −7.35403319461
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use of a parallel supercomputer system �in most calculations
we either used 8 or 16 processors� they lasted several months
of continuous computing. In Table I we show how the total
nonrelativistic FNM energies for each of the two states vary
when the basis set size changes from 7000 to 10 000 in in-
crements of 1000. We also show the energies obtained with
setting the mass of the Li nucleus to infinity �the INM cal-
culations�. As one can see, for both states with 10 000 func-
tions the nonrelativistic energy is converged to the relative
accuracy of 10−10, if not higher.

In the next step the nonrelativistic FNM wave functions
generated with the procedure described above were used to
calculate the �2 relativistic corrections—i.e., the MV, Dar-
win, spin-spin interaction, and orbit-orbit corrections. The
expectation values of the sum of the MV, Darwin, and spin-

spin interaction Hamiltonians �ĤMV+ ĤD+ ĤSS��, as well as

the orbit-orbit interaction Hamiltonian �ĤOO��, are shown in
Table I. The values shown were obtained for �Li, 6Li, and
7Li with the 7000-term, 8000-term, 9000-term, and 10 000-
term wave functions. We also show the total relativistic cor-
rection multiplied by �2 and the total energy that includes the
nonrelativistic part and the �2 relativistic correction. These
results allow one to assess the level of convergence of the
two components of the energy with the basis set size.

As one can see upon examining the results in Table I,
while the ninth to tenth digit after the decimal point in the
nonrelativistic energy is essentially converged, the conver-
gence level of the relativistic correction is somewhat lower.
This is clearly related to the presence of highly singular op-

erators, such as the fourth powers of the linear momentum
operator �in the MV correction� and three-dimensional Dirac
� functions dependent on the interparticle distances �in the D
and SS corrections�, in the relativistic corrections. This is
also related to the less efficient representation of the cusp
conditions by the Gaussian basis functions in comparison
with, for example, the Hylleraas functions. However, the ab-
solute convergence of about 10−8 a.u. of the relativistic cor-
rection for the two states considered in this work should be
sufficient to determine the 3 2S1/2→2 2S1/2 transition energy
with adequate accuracy.

The results for �Li shown in Table I allow a direct com-
parison with the results obtained by Puchalski and Pachucki
�23,24� and by Yan et al. �25,27�. This comparison is shown
in Table II. Our best nonrelativistic energy for the ground
state of −7.478 060 323 81 a.u. obtained with 10 000 basis
functions is only 8�10−11 a.u. higher than the best energy of
−7.478 060 323 892 4 a.u. obtained by Yan et al. and the best
energy of −7.478 060 323 889 7 a.u. obtained by Puchalski
and Pachucki with 9577 and 9576 Hylleraas functions, re-
spectively. For the first excited state our lowest energy ob-
tained with 10 000 basis functions of −7.354 098 421 12 a.u.
is also slightly higher than the best energy of Puchalski and
Pachucki of −7.354 098 421 379 9 a.u. We estimate that it
would take 12 000–14 000 Gaussians to converge our non-
relativistic calculations to the results obtained in �23,24,27�.
Even though we could have continued to increase the basis
set size for each state beyond 10 000 functions—there were
no software or hardware limits preventing this—we decided
to stop at 10 000 because that was about the same number of

TABLE II. Literature values of nonrelativistic energies and relativistic corrections for 2 2S1/2 and 3 2S1/2 states of �Li computed with
Hylleraas-type basis functions.

State Basis ENR ĤMV+ ĤD+ ĤSS� ĤOO� �2 Erel ENR+�2 Erel Ref.

2 2S1/2 9576 −7.4780603238897 −11.6143159 −0.4355979 −6.4167422�10−4 −7.47870199811 �23�
2 2S1/2 � �extrap.� −7.4780603239041 −11.6143001 −0.4355978 −6.4167338�10−4 −7.47870199728 �23�
2 2S1/2 � �extrap.� −7.4780603236503 −11.6143119 −0.4355980 −6.4167402�10−4 −7.47870199767 �25�
2 2S1/2 9577 −7.4780603238924 �27�
3 2S1/2 9576 −7.3540984213799 −11.4412626 −0.4299088 −6.3215596�10−4 −7.35473057734 �24�
3 2S1/2 � �extrap.� −7.354098421407 −11.4412596 −0.4299087 −6.3215579�10−4 −7.35473057719 �24�

TABLE III. 3 2S1/2→2 2S1/2 transition energies for �Li, 7Li, and 6Li calculated with Gaussians using only
nonrelativistic total energies ENR �denoted as nr� and relativistic total energies ENR+�2 :Erel �denoted as rel�.
For comparison we show the results obtained with the Hylleraas-type basis functions by extrapolating to the
limit of infinite basis set �the value is mainly derived from the data reported in �24�, while relativistic recoil
corrections are taken from �26��. All energies are in MHz.

Basis

�Li 7Li 6Li

nr rel nr rel nr rel

7000 815630140.23 815692644.24 815561317.22 815623812.02 815549864.35 815612361.18

8000 815630138.71 815692681.06 815561315.71 815623848.77 815549862.84 815612397.92

9000 815630138.36 815692691.46 815561315.36 815623859.17 815549862.48 815612408.33

10000 815630137.85 815692727.86 815561314.84 815623895.56 815549861.97 815612444.71

Literature 815630136.73 815692763.23 815561313.73 815623939.10 815549860.86 815612486.04
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functions used by Pachucki et al. and Yan et al. in their
calculations �20,23,24,27�. Having the results obtained with
about the same number of Gaussians as they had Hylleraas
functions enabled a direct comparison of the efficiency of the
two types of functions in describing the two lowest S states
of the Li atom.

The comparison of the �2 relativistic corrections obtained
in the present calculations and those obtained by Yan and
Drake �25� and Puchalski and Pachucki �23,24� shows that
even with 10 000 Gaussians our results are not as tightly

converged as theirs. This particularly applies to the ĤMV

+ ĤD+ ĤSS� expectation value. For the ground state we get
−11.613 765 3�2 a.u. for this quantity with 10 000 Gauss-
ians, while the Yan-Drake and Puchalski-Pachucki values are
−11.614 311 9�2 a.u. and −11.614 315 9�2 a.u., respectively.
At 10 000 Gaussians our value is still changing in the fourth
digit after the decimal point and moving towards the value of
−11.614 300 1�2 a.u. that Puchalski and Pachucki obtained
by extrapolating their results to the infinite-basis-size limit.
However, the convergence is slow. Much better converged is

the orbit-orbit interaction correction ĤOO�. With 10 000
functions for the ground state we get −0.435 597 912�2 a.u.,
while the Puchalski-Pachucki value is −0.435 597 911�2 a.u.
and the Yan-Drake value is −0.435 598 001�2 a.u.

The comparison that most clearly reveals the quality of
the calculations with Gaussians versus the calculations with
the Hylleraas functions concerns the 3 2S1/2→2 2S1/2 transi-
tion energy. This comparison is shown in Table III. The en-
ergy unit used is MHz. At the nonrelativistic level our tran-
sition energies obtained with 10 000 Gaussians for �Li, 7Li,
and 6Li are only about 1 MHz higher than the result of Pu-
chalski and Pachucki obtained with 9576 Hylleraas func-
tions. We should mention that, while in our approach the
finite-mass effect is directly included in the variational non-
relativistic calculations, in their approach it is determined as
a sum of the first- and second-order recoil corrections �i.e.,
corrections due to the finite electron to nucleus mass ratio�.

With the relativistic corrections included in the energy our
transition energy calculated for �Li starts to differ from the
results of Puchalski and Pachucki by about 33 MHz. The
difference increases to 44−41 MHz for 7Li and 6Li. This
effect is likely related to the ĤMV+ ĤD+ ĤSS� expectation
value not being as well converged in our calculations with
Gaussians as it was with the Hylleraas functions. The slow
convergence of ĤMV+ ĤD+ ĤSS� at present time remains the
most significant limiting factor in our calculations.

The present FNM and IFM calculations allow an analysis
of the mass effect on the nonrelativistic and relativistic con-
tributions to the 3 2S1/2→2 2S1/2 transition energy. These ef-
fects can be calculated as the differences of the respective
FNM and IFM transition energy contributions. By explicitly
including in the calculations of the nonrelativistic energy and
the relativistic correction the finite nuclear mass, we can di-
rectly determine the FNM effects. The results obtained for
the basis set sizes ranging from 7000 to 10 000 are shown in
Table IV. As one can see, for both Li isotops the mass non-
relativistic and relativistic contributions to the transition en-
ergies appear to be sufficiently converged with the number of
the basis functions. The much larger of the two contributions,
the nonrelativistic contribution, is, as expected, higher for
6Li than for 7Li �−80 275.88 MHz vs −68 823.00 MHz�. The
opposite is the case for the much smaller relativistic contri-
bution, which is slightly higher for 7Li than for 6Li
�9.30 MHz vs 7.28 MHz�. It is interesting that the FNM cor-
rection to the relativistic contribution to the transition energy
for each Li isotope determined here is more than 10 times
higher than the corresponding correction—i.e., recoil
correction—determined by Puchalski �24� using the pertur-
bation approach �we should mention that the result reported
by Puchalski includes recoil corrections to the relativistic
and QED contributions�. At present we do not have an ex-
planation for this discrepancy.

The next step of the calculations involved determination
of the leading �3 and �4 QED corrections. Apart from the
values of the corrections we also show in Table V the values

TABLE IV. Shifts of the nonrelativistic and relativistic contributions to the transition energy due to the
finite nuclear mass effect. All values are in MHz.

Basis �ENR�7Li-�Li� �ENR�6Li-�Li� �2�Erel�
7Li-�Li� �2�Erel�

6Li-�Li�

7000 −68823.00 −80275.88 9.22 7.19

8000 −68823.00 −80275.88 9.29 7.26

9000 −68823.00 −80275.88 9.28 7.25

10000 −68823.00 −80275.88 9.30 7.28

TABLE V. �3 and �4 QED corrections ��3 EQED and �4 EHQED� for the two lowest doublet S states of Li
obtained in the infinite-mass calculations. The Araki-Sucher term, Eq. �10�, and the Bethe logarithm, Eq. �11�,
are also shown. All values are in a.u.

State P�1 /rij
3 �� / �4�� ln k0 �3 EQED �4 EHQED Ref.

2 2S1/2 0.021767 5.17816 1.1136114�10−4 3.39800�10−6 This work

3 2S1/2 0.015770 5.17935 1.1051117�10−4 3.37195�10−6 This work

2 2S1/2 5.17828�1� �27�
3 2S1/2 5.17958�6� �27�
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of P�1 /rij
3 � and ln k0, which are the most difficult to compute.

For the discussion on the accuracy of the procedure to cal-
culate the QED corrections, we refer the reader to the work
where the approach employed here was used in the calcula-
tions of the lowest excitation energy in the Be atom �31�. As
one can see from the results presented in Table V, the �3 and
�4 corrections are by a factor of 6 and by a factor 200,
respectively, smaller than the �2 relativistic correction.

In the last step of this work we compare our transition
energies obtained for 7Li and 6Li using the total energies of
the two lowest S states of these systems that include both the
relativistic and QED corrections with the results obtained
with the Hylleraas functions and with the experimental re-
sults. The results of this comparison are presented in Table
VI. The difference between our transition energies and those
by Puchalski and Pachucki �24� is only around 1 MHz. It
should be said that such an excellent agreement is probably
somewhat accidental. As was discussed previously, the dis-
crepancy due to the relativistic corrections alone is 40 times
larger than the value of 1 MHz. The reason why our value is
so close to that one of Puchalski and Pachucki is that the
discrepancy due to the relativistic corrections is almost en-
tirely compensated by the discrepancy due to the QED cor-
rections.

Even without taking into consideration the cancellation of
the discrepancies in the final transition energy value, we can
say that the level of accuracy that can be reached in calcula-
tions of small atoms, such as Li atoms, using Gaussian basis
functions is quite satisfactory. These discrepancies are com-
parable in magnitude to the finite-nuclear-size effects and to
the remaining difference between today’s most accurate the-
oretical and experimental values of the 3 2S1/2→2 2S1/2 tran-
sition energy. Further improvement in the calculations
achieved by increasing the number Gaussian basis functions
and more accurate determination of the expectation values of
the singular operators can further reduce the discrepancies.

IV. SUMMARY

In this work we have presented a series of calculations
aimed to test the performance of explicitly correlated Gauss-

ian functions in very accurate atomic calculations. The test
concerned the lowest S-S transition energy of the 7Li and 6Li
isotops of the Li atom. The energies of the two S states were
obtained by adding the relativistic and QED corrections cal-
culated using the first-order perturbation theory to the non-
relativistic energies obtained in variational calculations. The
nonrelativistic calculations have been performed using the
nonrelativistic Schrödinger equation, which explicitly in-
cludes the nuclear motion. This is different from the tradi-
tional approach where the nonrelativistic infinite-nuclear-
mass energy is calculated first and then corrections due to the
finite nucleus mass are added. The sum of the nonrelativistic
FNM energy and the relativistic and QED corrections con-
stituted the final total energy for each state that were used to
calculate the 3 2S1/2→2 2S1/2 transition energy.

The 3 2S1/2→2 2S1/2 transition energies obtained in the
calculations employing Gaussians are in a good agreement
with those obtained with the Hylleraas functions. This is
quite encouraging, considering that our goal is to use Gaus-
sians and the approach presented here to perform very accu-
rate calculations on atomic systems with more than three
electrons. At present, Gaussians are the only choice of the
basis functions for such calculations because the Hylleraas-
type and Slater-type functions have not yet been imple-
mented for atomic systems with more than three electrons.
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TABLE VI. 3 2S1/2→2 2S1/2 transition energy for 7Li and 6Li computed in this work with 10 000 Gaus-
sians after including relativistic �rel�, �3 QED �QED�, and �4 QED �HQED� corrections. For comparison we
show the same quantity computed with Hylleraas-type basis functions by Puchalski and Pachucki �24�, the
transition energy for 7Li computed with Hylleraas-type basis functions by Yan et al. �27�, which also includes
finite-nuclear-size correction �NUC�, and the experimental transition energies by Bushaw et al. �41�. All
values are in MHz.

7Li 6Li

NR+rel+QED+HQED, this work 815618131.62 815606680.77

NR+rel+QED+HQED �24� 815618132.53 815606679.66

NR+rel+QED+HQED+NUC �27� 815618149.30

Experiment �41� 815618185.3�3.0� 815606731.4�3.0�
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�4� M. Stanke, D. Kȩdziera, S. Bubin, and L. Adamowicz, J.
Chem. Phys. 127, 134107 �2007�.

�5� M. Stanke, J. Komasa, D. Kȩdziera, S. Bubin, and L. Ad-
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