
Generalized parity measurements

Radu Ionicioiu,1,* Anca E. Popescu,2,† William J. Munro,1 and Timothy P. Spiller1

1Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ, United Kingdom
2Bristol Robotics Laboratories, Coldharbour Lane, Bristol BS16 1QD, United Kingdom

�Received 10 June 2008; published 14 November 2008�

Measurements play an important role in quantum computing �QC�, either by providing the nonlinearity
required for two-qubit gates �linear optics QC�, or by implementing a quantum algorithm using single-qubit
measurements on a highly entangled initial state �cluster state QC�. Parity measurements can be used as
building blocks for preparing arbitrary stabilizer states, and, together with one-qubit gates, are universal for
quantum computing. Here we generalize parity gates by using a higher-dimensional �qudit� ancilla. This
enables us to go beyond the stabilizer or graph state formalism and prepare other types of multiparticle
entangled states. The generalized parity module introduced here can prepare in one shot, heralded by the
outcome of the ancilla, a large class of entangled states, including Greenberger-Home-Zeilinger states GHZn,
Wn, Dicke states Dn,k, and, more generally, certain sums of Dicke states, like Gn states used in secret sharing.
For Wn states it provides an exponential gain compared to linear-optics-based methods.
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I. INTRODUCTION

Quantum-information processing �QIP� and quantum
computation �QC� promise to be disruptive technologies: ap-
plications include quantum algorithms for fast factoring �1�,
database search �2�, and secure key distribution �3�. How-
ever, storing and processing information on quantum systems
is difficult due to decoherence, constraining state-of-the-art
quantum hardware to a few qubits. This limitation implies
that at present one of the best ways to use scarce quantum
resources is distributed QIP over several nodes. Useful dis-
tributed tasks may be achieved even if the total number of
qubits involved is less than that which can be simulated con-
ventionally.

Measurement-based quantum computing has recently at-
tracted considerable interest as a new paradigm for QIP. This
interest has been spearheaded by two different models which
complement the “standard model” of quantum computation,
the quantum network model �4�. The first one initiated the
field of linear optics QC �5,6�, whereas the second started the
cluster state QC �7�.

In this context the cluster state emerged as a quintessential
resource which can be constructed before, and consumed
during, computation �7�. A core primitive used in building
the cluster state is the parity gate �8,9�. As shown previously,
the parity gate �10,11� and the related photonic module �12�
can be used to prepare deterministically arbitrary stabilizer or
graph states, hence any cluster state used as a resource in the
one-way quantum computing model �7�.

A standard quantum network for the parity gate uses a
qubit ancilla �10�. Here we relax this constraint and instead
use a qudit ancilla.1 With this we show that we can prepare,
heralded by the outcome of the ancilla, a large class of en-

tangled states in one shot, i.e., with a single application of
the generalized parity module. By tuning the dimension d of
the ancilla with respect to the number of input qubits n we
obtain several known families of entangled states:
Greenberger-Home-Zeilinger states GHZn, Wn, Dicke Dn,k,
Gn, and their generalization Gn,k states. These states are an
important resource in several QIP protocols, including tele-
portation �14�, dense coding �15�, quantum key distribution
�3�, secret sharing �Gn ,Gn,k� �16�, 1→3 telecloning �17�, and
open destination teleportation �D4,2� �18�.

A very appealing feature of the generalized parity module
is that it can be implemented so as to prepare directly en-
tangled states of photons. Thus the module can be used as the
enabling building block in a distributed QIP network and for
small scale QIP applications. The entangled states can be
created with qubits that readily distribute, without any need
for interconversion.

The structure of the paper is the following. In Sec. II we
give a brief overview of the parity gate and its use in the
photonic module. In Sec. III we find the solution for the
generalized parity module, then construct examples of how
to prepare several classes of entangled states. We conclude in
Sec. IV.

II. PARITY MEASUREMENTS

A. The parity gate: An overview

Historically the parity gate has been used in linear optics
to construct a controlled-NOT �CNOT� gate �8�, but the out-
come was probabilistic. The importance of the parity gate
re-emerged in the context of fermionic quantum computation
with linear elements. Beenakker et al. have shown that uni-
versality can be achieved in fermionic QC if we supplement
linear gates with a single ingredient: charge parity measure-
ments �9�. This result changed the prevailing wisdom that
fermionic QC cannot be done with only linear elements and
�single-qubit� measurements �19,20�. In contrast, bosons
have no such limitations and universality can be achieved in
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photonic QC with linear gates, single-photon sources and
photon-number-discriminating detectors, as shown by Knill,
Laflamme, and Milburn �KLM� �5�. The difference between
bosons and fermions in terms of computational power comes
from the contrasting behavior at a beam splitter: bunching
�bosons� versus antibunching �fermions�. This produced a
flurry of activity in both theory and implementations, with
several proposals for parity measurements in various systems
�8,21–31�.

A parity �P� gate can be viewed—in an implementation-
independent manner—simply as a black box with two inputs
x and y and an ancilla initialized to �0�. The gate leaves
invariant the basis states �xy�, x ,y=0,1, and outputs the par-
ity p=x � yªx+y mod 2 of the inputs, i.e.:

�xy��0� → �xy��x � y� . �1�

Upon measurement, the ancilla gives a classical bit, the par-
ity of the input state. If the input state is a superposition
�i,jaij�ij�, the P gate projects it on a subspace of eigen-parity,
i.e., on a00�00�+a11�11� �for p=0� or on a01�01�+a10�10� �for
p=1�. Building on previous work from quantum optics �8�,
Beenakker et al. �9� constructed a deterministic quantum
CNOT gate out of two parity gates, an ancilla, and postpro-
cessing, thus proving the universality of parity measurements
�along with single-qubit gates�.

In effect the P gate is an oracle, answering the simplest
possible question when presented with two �classical� inputs
x ,y: Are the two inputs equal? In translation, p=0⇔yes and
p=1⇔no. It is surprising that such a simple gate can pro-
vide universality, where single-qubit measurement failed to
�19,20�. It confirms yet again how counterintuitive quantum
mechanics is, exemplifying how less is more in the quantum
world. This is to say, knowing less �the parity�, we can do
more �achieve universality�. The key is knowing less in a
quantum sense, i.e., maintaining superposition.

As can be inferred from the action �1�, a quantum network
for the P gate consists of two CNOT gates, coupling each
input qubit once to the ancilla, followed by a measurement of
the ancilla. We can extend the network to accommodate sev-
eral input qubits, each coupled once �via a CNOT gate� to a
common ancilla, which is then measured. In this case the
gate gives the parity of all n inputs

�x1x2 ¯ xn��0� → �x1x2 ¯ xn��p�, p = �
i

xi mod 2.

�2�

A very nice feature of this extension of the parity gate is
that each qubit interacts only once with the ancilla. The qu-
bits can therefore be naturally of travelling form; there is no
need for them to wait around and interact again with the
ancilla. For example, an extended parity gate therefore
proves to be a very useful tool for preparing photonic stabi-
lizer states and can function as a stand-alone photonic mod-
ule �12�. Suppose we have an N-photon pulse and that each
photon interacts �sequentially� with an ancilla qubit, e.g., an
atom in a cavity or an NV center in diamond �32�, via a
simple controlled interaction: the interaction flips the atom
state if the photon is �− polarized and does nothing if it is �+

polarized. For simplicity in the following we use �� �
= ��0�� �1�� /�2 states which differ from �� by a simple
phase shift, ��=diag�1, i��� �. Thus we assume the interac-
tion

� + ��0�a → � + ��0�a,

�− ��0�a → �− �X�0�a, �3�

where �i�a denotes the ancilla state; in the following we will
denote the Pauli operators for a qubit by X ,Y ,Z. This pho-
tonic module can prepare an arbitrary N-photon stabilizer
state using only parity measurements on the ancilla qubit �the
atom� and single qubit gates. Given an N-photon state ���N
interacting sequentially with the ancilla qubit �i�a, the action
of the photonic module is �12,33�

���N�i�a → �P0 � 1 + P1 � X����N�i�a �4�

where Pkª
1
2 �1+ �−1�kX�N� are even �odd� parity projectors

acting on the 2N-dimensional photon space.
Let us now start to go beyond simple parity gates made

from CNOT gates acting on the ancilla. The first question we
address is the following: apart from the NOT gate, are there
other unitary transformations U�U�2� acting on the ancilla,
such that the control-U gate �controlled by an input qubit�
can be used to construct a parity gate? At first sight, there are
two requirements for a good U. First, we need to have
����U���, for a suitable ancilla state ���. This is essential in
order to unambiguously distinguish odd and even parity
states. The second condition is U2=1, as we want the states
�00� and �11� of the qubits to be indistinguishable. In the next
section we will find the general solution of this problem and
we will show that the second requirement is not independent:
it is a simple consequence of the orthogonality condition,
which is the crucial one.

B. Ancilla as a qubit

In this section we answer the previous question and find
the general unitary U�U�2� that can be used to construct a
parity gate. The solution has practical consequences: it en-
ables to find the right interactions required to implement a P
gate.

We first consider the case where the ancilla is still a qubit,
so d=2. We are looking for the unitaries U�U�2� and the
states ��� such that ��� and �U��ªU��� are orthogonal,
namely,

	��U�� = 0. �5�

By diagonalizing U, U=VDV†, with V�U�2� and D
=ei�0diag�1,ei�1�, the previous problem is equivalent to find-
ing ���ªV†��� satisfying 	� �D��= 	� �U��=0. Clearly V is
just a change of basis, so the physics is in the eigenvalues.
Neglecting the overall phase ei�0, the solution follows imme-
diately:

D = 
1

− 1
� = Z ,
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��� = ��0� + ei��1��/�2. �6�

Now, although very simple, this solution has an intuitive
geometric interpretation which will provide inspiration for
the generalized solution that forms the main result of this
paper. Furthermore, the key features of the result can be ex-
pressed mathematically in a form that lends naturally to gen-
eralization.

First, we observe that the states ��� are on the equator of
the Bloch sphere and thus are perpendicular to the Oz axis
associated with D=Z. Now any unitary U can be viewed as a
rotation of the Bloch sphere through angle � around an axis
n� , U=exp�i��� ·n�� �with �� = �X ,Y ,Z��. Therefore, in general,
the states ��� satisfying 	� �U��=0 are on the great circle of
the Bloch sphere perpendicular to n� . Moreover, as the solu-
tion �6� satisfies D2=1, we obtain U2=1 rather than imposing
it, and so �=� /2. Hence U is of the form U= i�� ·n� .

Second, we observe that the equator of the Bloch sphere
is the orbit of �	� under the action of the group G
= �diag�1,ei��. Thus all the states ��� satisfying 	� �Z ���
=0 can be written as ���=g�+ �, with g�G. Note also that
the group G is nothing but the commutant of Z �up to a
global phase�, namely Z�ª �M �U�2� , �M ,Z�=0
= �diag�ei
0 ,ei
1�.

III. GENERALIZED PARITY

We are now ready to relax the constraint of the qubit
ancilla and explore the general case where we have at our
disposition a higher dimensional space, i.e., a qudit. Before
proving the general result it will be illuminating to see an
example.

A. A simple application: W states

In the simplest generalization of the P gate we have three
qubits coupled to a common qutrit ancilla, as in Fig. 1 with
d=n=3. In this case we are looking for a unitary U�U�3�
and a vector ��� such that the set ���� ,U��� ,U2��� is ortho-
normal. A particular solution is given by

U = diag�1,�,�2� ,

��� = ��0� + �1� + �2��/�3 �7�

with �=e2�i/3. Using the identities 1+�+�2=0 and U3=1, it
can be easily shown that the above solution �7� satisfies the
required orthogonality conditions.

A natural question arises: What is this useful for? We
show that the simple network in Fig. 1 for the case d=3 can
prepare �probabilistically� W states,

�W� = ��001� + �010� + �100��/�3. �8�

Suppose that the initial product state of the qubits is the
equal superposition of all basis states, i.e., �+ ��3

=2−3/2�i=0
7 �i�. The ancilla qutrit is prepared in the initial state

��� and, after interacting with the three qubits, is measured.
Since the three possible states of the ancilla are orthogonal,
they can be distinguish with certainty and upon the projec-
tive measurement, the qubit register is in one of the three
possible states:

�GHZ� = ��000� + �111��/�2, p = 1/4,

�W� = ��001� + �010� + �100��/�3, p = 3/8,

�W�� = ��110� + �101� + �011��/�3, p = 3/8 �9�

where p is the probability. As �W��=X�3�W�, this simple
quantum circuit prepares W states with probability p�W�
=3 /4. Postprocessing, i.e., locally bit flipping all qubits, can
be applied to transform �W�� to �W� if required; alternatively
this classical information can be supplied along with the W
state, dependent upon what it is to be used for. The best
method so far for producing W states using linear elements
and postselection has a probability of success of 3 /16 �34�,
hence four times lower.

It is worth emphasizing that W states are not stabilizer or
graph states, hence they cannot be described in the stabilizer
formalism. As such they cannot be prepared systematically,
in one-shot, using the photonic module or P gates �10,12� as
described above �they require extra resources or ancillas�. It
is known that W states belong to a different entanglement
class than GHZ states, and the two families cannot be inter-
converted through local operations and classical communica-
tions �35�; thus they represent different entanglement re-
sources. For example, W states are more robust under qubit
losses than GHZ states.

B. Ancilla as a qudit

We are now ready to prove the general result, addressing
the case where the ancilla is a qudit, so dim H=d. We let
��0� , . . . , �d−1� be the computational �or Z� basis in H. Let
Zd= �0,1 , . . . ,d−1. The generalized Pauli operators Xd and
Zd for qudits are

Xd�i� = �i � 1� ,

Zd�i� = �i�i� , �10�

with �ªe2�i/d and � now addition mod d. Thus Zd
ªdiag�1,� ,�2 , . . . ,�d−1� in this basis. We will also need the
Fourier �or X� basis, defined as the Fourier transform of the Z
basis:

�uk� = d−1/2�
j=0

d−1

�−kj�j� ,

...

2
x

x
1

x
n

|φ>
p

|φ>UU U U

FIG. 1. A generalized parity module. The generalized parity is
defined as p=�ixi mod d, with xi=0,1. The dimension of the an-
cilla �bold line� Hilbert space is dim H=d. If the ancilla is a qubit
d=2 and U=X, the network is equivalent to the photonic module
discussed in �12�.
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�j� = d−1/2�
k=0

d−1

� jk�uk� , �11�

from which follows the useful identity d−1� j�
jk=�0k. The

action of the Pauli operators on this basis is

Xd�uk� = �k�uk� ,

Zd�uk� = �uk−1� . �12�

Generalizing the problem of Sec. II B to the full problem,
we now want to find a unitary U�U�d� and a state ���
�H such that the set ���� ,U��� , . . . ,Ud−1��� is orthonor-
mal; this is necessary as we want to discriminate unambigu-
ously between states of different parity. The analogue of the
previous condition �5� is now

	��Ui�� = 0, ∀ i = 1, . . . ,d − 1. �13�

Following similar reasoning to that of Sec. II B, we need
only to consider diagonal unitaries. Let U=VDV†, with D
=diag�0 , . . . ,d−1� containing the eigenvalues iªei�i of U;
then 	� �U��= 	� �D��=0 with ���ªV†���. Therefore, we
can focus on diagonal unitaries D�U�d� satisfying

	��Di�� = �0i, ∀ i � Zd �14�

for some ����H. The objective is to find solutions analo-
gous to those given in �6�.

First, we observe that it is clear that not all U will have
solutions to the above equation. Indeed, suppose the unitary
is an infinitesimal rotation, U=exp�i�Z�, ��0, i.e., very
close to the identity. Then 	� �U���1+ i�	��Z����1 for all
����H.

Second, generalizing the properties of the states given in
�6�, we observe that if for a given D there is a vector satis-
fying 	�0 �Di�0�=0, then the orbit of ��0� under the action of
the commutant D�ª �g�U�d� , �g ,D�=0 will also be a so-
lution. Hence, if ����=g��0� with g�D�, then 	�� �Di���
= 	�0 �g†Dig�0�= 	�0 �Di�0�=0.

We decompose the state as ���=� j�Zd
aj�j�, so Eq. �14�

becomes

�
j=0

d−1

�aj�2 j
i = �0i, ∀ i � Zd. �15�

There are two possible cases to address, dependent upon the
nature of the eigenvalues of D.

Nondegenerate case. We assume all the eigenvalues of
D=diag�0 , . . . ,d−1� are distinct,  j�k, ∀j�k. Using the
expansion of the Vandermonde determinant, we obtain

1

�aj�2
= �

i�Zd,i�j

1 −

 j

i
�

= �
i�Zd,i�j

2�sin
� j − �i

2
�e��j−�i�/2−�/2+nij� �16�

with nij �Z; the last equation follows from the polar decom-
position of each term in the product. Requiring the right-
hand side to be real and positive, it follows that � j =�0
+ �2� /d�mj, for some integers mj. Since all the phases are

different �as the eigenvalues are nondegenerate�, we can take
� j =�0+ �2� /d�j, modulo a reordering of the eigenvalues.
The unitary transformation we are looking for is

D = ei�0 diag�1,�,�2, . . . ,�d−1� = ei�0Zd. �17�

Substituting these phases into Eq. �16� we get

1

�aj�2
= �

i�Zd,i�j

�1 − � j−i� = �
1�i�d−1

�1 − �i� = d . �18�

This shows that ��� is an equal superposition of all basis
states

��� = d−1/2�
i

e
i�i� . �19�

As before, there is an appealing geometric interpretation. The
entire manifold of solutions M= ���� can be generated by
acting with the commutant of Zd �in U�d�� on a single state,
say �u0�=d−1/2�i�i�; hence M=Zd��u0�, i.e., is the orbit
of �u0� under Zd�. The commutant is the set Zd�
= �diag�e
0 , . . . ,e
d−1�. Thus we have proved the following:

Proposition. Let ����H, dim H=d, and U�U�d� a uni-
tary acting on H such that the set ���� ,U��� , . . . ,Ud−1��� is
orthonormal. If U has nondegenerate eigenvalues, then

U = VZdV†

��� = Vg�u0� �20�

where V�U�d� is an arbitrary unitary and g�Zd� belongs to
the commutant of Zd.

Degenerate case. We assume that D has degenerate eigen-
values, D=diag�01k0

, . . . ,s−11ks−1
�, where the ki’s are the

degeneracies of the s distinct eigenvalues and �i�Zs
ki=d. In

this case the system �15� is singular and we have only s
independent equations with a Vandermonde discriminant. As
before, the eigenvalues are  j =ei�0� j, with �=e2�i/s a root of
unity of degree s. Since Ds=1, now we can have only s
orthonormal vectors ���� ,D��� , . . . ,Ds−1���. The absolute
value of the amplitudes �ai� are no longer fixed as in the
nondegenerate case from Eq. �18�; in this case we have only
s constraints for d variables �aj�2, namely,

�a0�2 + ¯ + �ak0−1�2 = 1/s ,

]

�ad−ks
�2 + ¯ + �ad−1�2 = 1/s , �21�

where now all the amplitudes �ai� belonging to a degenerate
eigenspace are on a hypersphere of radius s−1/2, generalizing
Eq. �18�.

C. A generalized parity module

Having determined the general solution for U, we can
now calculate the action of the generalized parity module
�Fig. 1� on an arbitrary state of the qubits. We discuss two
cases, namely, U=Zd and U=Xd. In order to make the con-
nection with the photonic module �12�, we assume the qubits
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are photons interacting with an atom in a cavity �the qudit
ancilla�. Of course, this is not the only possible implementa-
tion, but we use it here as an illustration of the application of
the generalized parity module.

We assume the action of the module on a single photon
qubit is

�0���� → �0���� ,

�1���� → �1�Zd��� . �22�

Now, if the atomic ancilla is in one of the Z-basis states �j�,
the transformation of an arbitrary photon state ���=a�0�
+b�1� is �33�

����j� → �a�0� + � jb�1���j� = �A1
j �����j� ,

where now the photon gets a phase shift A1
j =diag�1,� j� de-

pendent upon the basis state �j�. The action of the module on
a general N-photon state ���N follows straightforwardly, as
each photon interacts independently with the module:
���N�j�→ �AN

j ���N��j�; here ANªA1
�N is a tensor product of

identical single-qubit phase shifts acting on each photon. If,
alternatively, the ancilla is in one of the X-basis states �uk�,
we have

���N�uk� → �
i=0

d−1

Pi � Zd
i ���N�uk� . �23�

The projectors are defined as

Pi ª d−1�
k

�−ikAN
k �24�

It is easy to see that the operators �Pj have the following
properties: �i� Pj

†= Pj; �ii� PjPk=� jkPk; �iii� � jPj =1; hence
they form a complete set of orthogonal projectors.

For a state ���, the probability of projecting on the j
parity subspace is

p�j� = 	��Pj��� . �25�

The dimension of the jth parity subspace is dim Pj
=2N	+�NPj�+ �N, where �+ �N

ªH�N�0��N is the equal super-
position state of N qubits and H is the Hadamard gate. Since
the Pj’s are a complete set of projectors, we obviously have
� j dim Pj =2N.

The interaction �22� is suitable if the photon encodes a
dual-rail �or mode� qubit and the ancilla �e.g., an atom in a
cavity� is situated in rail 1, in which case a Zd gate is enacted
on the ancilla. However, as discussed in Sec. II, for some
systems a more natural interaction is with the �� polariza-
tion states of the photon. Neglecting a trivial phase, we
therefore also consider the following interaction:

� + ���� → � + ���� ,

�− ���� → �− �Xd��� . �26�

Then the action of the module is given by �with the ancilla in
the Z-basis state �j��

���N�j� → �
i=0

d−1

P̃i � Xd
i ���N�j� . �27�

The new projectors are P̃i=d−1�k�
−ikBN

k , with BNªB1
�N;

B1=Hdiag�1,��H=HA1H is a single-qubit x rotation on the
photon. Mathematically, this is nothing but a change of basis
compared to �22�–�24�, but this is relevant from a physical
perspective: given a quantum system, certain gates are easier
to implement experimentally than others. For example, at-
oms interact naturally with circularly polarized light and the
same holds for excitons created in quantum dots.

It is worth mentioning an interesting duality property be-
tween the two actions discussed above: Zd acts on �the an-
cilla prepared in� �u0�, which is the Fourier transform of the
Z-basis state vector �0�; similarly, Xd acts on the vector �0�,
which is the �inverse� Fourier transform of its own basis
eigenvector �u0�. In other words, Zd acts on the eigenvectors
of its Fourier transform Xd �and vice versa�.

D. Preparation of Dicke states

Having calculated the action of the generalized parity
module on arbitrary input states of qubits, we use these re-
sults to show how the module can prepare certain classes of
quantum states, interesting from the perspective of quantum
information and/or many-body physics. Our first example is
the class of Dicke states �36�. These are symmetric states of
n particles with k excitations �i.e., 1’s� and can be seen as
multiparticle generalizations of Wn states �36,37�:

Dn,k = 
n

k
�−1/2

�
j

S j
�n��0��n−k�1��k, �28�

where the sum is over all distinct permutations S j
�n� of n

particles. Examples of Dicke states are n-particle Wn states,
Wn=Dn,1=n−1/2��10. . .0�+ ¯ + �00. . .1��. They satisfy a
simple duality property

Dn,n−k = XnDn,k, �29�

where Xn
ªX�n is a bit flip on all qubits.

The generalized parity module can prepare Dicke states in
one shot, i.e., with a single application of the module. In any
one run, the exact state prepared is heralded by the measure-
ment outcome of the ancilla. Consider the case where the
dimension of the ancilla space is d=n, i.e., equal to the num-
ber of qubits. Assume the initial product state of the n qubits
is �+ ��n=2−n/2� j�Zn�j�, an equal superposition of all basis
states. Applying the parity module �Fig. 1� on this state will
project it to one of the following n states:

�GHZn,Dn,1 = Wn, . . . ,Dn,k, . . . ,Dn,n−1 = XnWn . �30�

Taking into account the duality property �29�, for n�2 there
are only �n /2�+1 distinct states �up to local bit flips�. If n
=2 there is only one distinct state, since �00�+ �11� and �01�
+ �10� are locally equivalent. The probability of obtaining
one of these states is

p�GHZn� = 2−n+1,
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p�Dn,k� = 2−n+1
n

k
� . �31�

The probability peaks for Dicke states having half the num-
ber of excitations Dn,n/2. For this specific example the prob-
ability scales extremely well, only damping with the root of
the qubit number, so �D2k,k��2 /��k.

How efficient is this method compared to other means of
preparing Wn states? From �31� we have p�Wn�=n21−n. In a
recent article �34� the success probability for producing Wn
states using linear elements and postselection was p�Wn�
=n22−2n �n odd� and n23−2n �n even�. This shows that our
method gives an exponential gain of at least 2n−2 compared
to the method in Ref. �34�.

Before going further, we will review briefly the impor-
tance of these states. From a theoretical point of view various
Dicke states have different entanglement properties and as
such it is important to understand and characterize them. A
recent study �38� showed that D4,2 states are more robust
under decoherence that W4, GHZ4, and linear cluster states
CL4. Also, Wn states lead to stronger nonclassicality than
GHZn states �39�. D4,2 can be used in 1→3 telecloning and
open destination teleportation �18�; it has another interesting
property: measuring one qubit, one can obtain either a W3 or
a GHZ3 state. As mentioned before, these two states belong
to different entanglement families and cannot be transformed
into each other by stochastic local operations and classical
communication.

Several of these states have been observed experimentally
in various systems. These include ion traps �W4, . . . ,W8 �40�
and GHZ6 �41�� and photons �D4,2 �18��.

E. The case n�d

In the previous section the number of qubits was equal to
the dimension of the ancilla. Another interesting case is n
�d. �n�d is trivial.�

Suppose we again prepare the qubits in the equal super-
position state �+ ��n. If after the measurement the ancilla is
found to be k, k=0, . . . ,d−1, then the qubits are projected to
�in the following we neglect normalizations�

�k = �
x:p�x�=kmodd

�x� = 
n

k
�1/2

Dn,k + 
 n

k + d
�1/2

Dn,k+d + ¯ ,

�32�

where Dn,0= �0��n. The sum is over all basis states of n qu-
bits �x�ª �x1x2¯xn� such that the number of 1’s is k mod d,
p�x�=� jxj =k mod d. Thus �k is a weighted sum of Dicke
states, and in general there is no simple way of characteriz-
ing such sums.

It is insightful to analyze a few examples and see how the
projected states vary, first, with the dimension d of the an-
cilla �at a fixed number of qubits n� and second, with increas-
ing number of qubits �when the ancilla has the same dimen-
sion�.

Example 1. n=4, d=3. Upon measurement of the ancilla,
we obtain one of the following states �the subscript indicates
the eigenvalue of the measured ancilla, i.e., the generalized
parity�:

�0 = 0000 + 1110 + 1101 + 1011 + 0111 = X4�1,

�1 = 0001 + 0010 + 0100 + 1000 + 1111 = 2W4 + 1111,

�2 = D4,2. �33�

Example 2. n=5, d=3. Increasing by 1 the number of
qubits but keeping the ancilla the same we obtain �again, up
to normalization�

�0 = 00000 + �10D5,3,

�1 = D5,1 + D5,4 = �1 + X5�W5,

�2 = �10D5,2 + 11111 = X5�0. �34�

Example 3. n=5, d=4. In this case the four projected
states are

�0 = 00000 + �5D5,4 = X5�1,

�1 = �5W5 + 11111,

�2 = D5,2,

�3 = D5,3 = X5�2. �35�

F. Generalized Gn states and secret sharing

An interesting family of states is the Gn introduced in �16�

Gn ª
1
�2

�Wn + XnWn� . �36�

Example 4. d=n−2. In this case one of the outcomes of
the parity module is the Gn states �we omit normalization�

�0 = 0�n + 
n

2
�1/2

Dn,n−2 = Xn�2,

�1 = Wn + Dn,n−1 = �1 + Xn�Wn = Gn,

�2 = 
n

2
�1/2

Dn,2 + 1�n,

]

�n−3 = Dn,n−3 = XnDn,3. �37�

As shown in Ref. �16�, the Gn states can be used for secret
sharing. In this protocol, Alice �the secret holder� wants to
distribute her secret among n−1 parties B1 , . . . ,Bn−1 �the
Bobs� such that all these Bobs have to cooperate to find out
the secret; hence, if at least one Bob is left outside, the re-
maining ones cannot recover Alice’s secret.

Define the following generalization of Gn states

Gn,k ª
1
�2

�Dn,k + XnDn,k�, n � 2k ,
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G2k,k ª D2k,k, �38�

since XnD2k,k=D2k,k; we obviously have Gn=Gn,1.
From Eq. �32� we notice that if k+d=n−k and k�d, the

n-qubit state corresponding to the kth value of the ancilla is
�k= �1 /�2��Dn,k+Dn,n−k�=Gn,k, so we have the following.

Example 5. d=n−2k, k�d. The parity module can natu-
rally prepare Gn,k states heralded by the kth value of the
ancilla.

A simple calculation shows that

	Gn,k�Xn�Gn,k� = 1,

	Gn,k�Yn�Gn,k� = �0, n = 2m + 1,

�− 1�m+k, n = 2m ,
� �39�

and obviously 	G2k,k�Yn�G2k,k�=1. The previous properties
are analogous to those of the Gn=Gn,1 states, which are es-
sential for secret sharing �16�. Using a similar argument as in
Ref. �16�, we conjecture that the G2m,k states can also be used
for secret sharing.

All these examples demonstrate the flexibility of the gen-
eralized parity module in preparing various forms of inter-
esting and potentially useful entangled states, by varying the
dimension of the ancilla and the number of qubits. Other
states can be obtained if we use an initial state different from
�+ ��n.

Although the success probability for some, but not for all,
of the states decreases exponentially with n, as in Eq. �31�,
the main advantage of the generalized parity module is that it
can prepare—heralded and in a single shot—a large spec-
trum of different families of entangled states: GHZn, Wn,
Dn,k, Gn, and generalized Gn,k, states. We are not aware of
any unified protocol or quantum gate that can prepare such a
diverse set of useful entangled states with relatively simple
resources: a qudit ancilla which interacts, sequentially and
homogeneously, with n qubits. Our method is certainly use-
ful to prepare various entangled states, using modest qubit
and ancilla resources. For relatively small numbers of
qubits—the likely experimental situation in the near future—
the exponential damping �with qubit number� of specific
preparation probabilities is not really an issue. Our approach
therefore offers a very flexible tool for the future laboratory
preparation of a wide range of entangled states.

IV. CONCLUSIONS

One of the major breakthroughs in quantum information
was the insight that measurements are not only useful as the

final step of a computation, but can be used during the com-
putation itself. The KLM model �5� initiated the field of lin-
ear optics QC by proving that photon-discriminating detec-
tors and active feedforward can provide the nonlinearity
required for a photonic two-qubit gate. On the other hand, in
cluster state QC �7� any quantum algorithm can be per-
formed using single-qubit measurements �plus feedforward�
performed on a highly entangled initial state; thus the cluster
state and single qubit measurements are universal resources
for QC.

Standard resources for preparing stabilizer and cluster
states are parity gates �10� and photonic modules �12,33�. In
this paper we introduced a generalized parity module and
studied its use in preparing several families of entangled
states. We have shown that using a qudit ancilla we can
produce in one-shot measurements a large class of multipar-
ticle entangled states, heralded by the measurement outcome
of the ancilla. It is some what surprising that such a simple
circuit can prepare a large class of entangled states, like
GHZn, Wn, Dicke Dn,k, and Gn,k states, with the number of
qubits n and the dimension of the ancilla d as the only free
parameters. For Wn states, our model provides an exponen-
tial gain compared to linear optics and postselection �34�.
The previous states are essential in several quantum-
information protocols; examples include teleportation, dense
coding, quantum key distribution, secret sharing �Gn ,Gn,k�,
1→3 telecloning, and open destination teleportation �D4,2�.

An important feature of the parity module is that all qubits
interact once only and in the same way with the ancilla. This
is particularly relevant in the case of the photonic module
�12,33�, for example. The qubits �photons� are sent sequen-
tially through a cavity containing an atom �or a quantum dot
in a photonic crystal�; the cavity is prepared in a known state
and subsequently measured after interacting with all photons.
This means that there is no need of extra pulses applied to
the cavity between the photons, resulting in a simplified de-
sign. Furthermore, the resultant entanglement is between
photons, which are naturally amenable to distribution. A
straightforward application of these highly entangled states is
therefore in a distributed QIP network. Such states could
enable useful quantum tasks, even with very modest numbers
of qubits.
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