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Cubelike graphs are the Cayley graphs of the elementary Abelian group Z2
n �e.g., the hypercube is a cubelike

graph�. We study perfect state transfer between two particles in quantum networks modeled by a large class of
cubelike graphs. This generalizes the results of Christandl et al. �Phys. Rev. Lett. 92, 187902 �2004�� and Facer
et al. �Phys. Rev. A 92, 187902 �2008��.
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I. INTRODUCTION

In view of applications like the distribution of crypto-
graphic keys �1,2� or communication between registers in
quantum devices �3,4�, the study of the natural evolution of
permanently coupled spin networks has become increasingly
important. A special case of interest consists of homogeneous
networks of particles coupled by constant and fixed �nearest-
neighbor� interactions.

An important feature of these networks is the possibility
of faithfully transferring a qubit between specific particles
without tuning the couplings or altering the network topol-
ogy. This phenomenon is usually called perfect state transfer
�PST�. Since quantum networks �and communication net-
works in general� are naturally associated with undirected or
directed graphs, there is a growing amount of literature on
the relation between graph-theoretic properties and proper-
ties that allow PST �see �5–9��.

In the present paper we will give necessary and sufficient
conditions for PST in quantum networks modeled by a rela-
tively large class of cubelike graphs. The vertices of a cube-
like graph are the binary n-vectors; two vertices u and v are
adjacent if and only if their symmetric difference belongs to
a chosen set. Equivalently, cubelike graphs on 2n vertices are
the Cayley graphs of the elementary Abelian group of order
2n �10,11�.

Among cubelike graphs, the hypercube is arguably the
most famous one, having many applications ranging from
switching theory to computer architecture, etc. �see, e.g.,
�12,13��. There are various and diverse results about quan-
tum dynamics on hypercubes. These are essentially em-
braced by two areas: continuous-time quantum walks �14�
and quantum communication in spin networks �15�. The
common ingredient is the use of a Hamiltonian representing
the adjacency structure of the graph.

Concerning state transfer, Christandl et al. �16� have
shown that networks modeled by hypercubes are capable of
transporting qubits between pairs of antipodal nodes, per-
fectly �i.e., with perfect fidelity� and in constant time. Facer
et al. �17� generalized this observation by considering a fam-

ily of cubelike graphs whose members have the hypercube as
a spanning subgraph �for this reason, these authors coined
the term dressed hypercubes�. Other questions related to
quantum dynamics on hypercubes have been addressed in
�18–22�.

The paper is organized as follows. Section II contains the
necessary definitions and the statements of our results. In
Theorem 1 we state that there is PST between vertices a and
b of a cubelike graph at a time t=� /2 if the binary strings
associated to these vertices satisfy a specific �easily testable�
condition. A proof will be given in Sec. III. This is obtained
by diagonalizing the Hamiltonians with simple tools from
Fourier analysis on Z2

n.

II. SETUP AND STATEMENTS OF THE RESULTS

Let Z2
n be the additive Abelian group �Z2��n. Each element

of Z2
n is represented as a binary vector of length n. The zero

vector 0 is made up of all 0’s. Let f :Z2
n→Z2 be a Boolean

function on n variables and let � f be the set of all binary
vectors w in Z2

n such that f�w�=1; i.e., � f = �w�Z2
n � f�w�

=1�. Let d= �� f� be the number of vectors w�Z2
n such that

f�w�=1. Finally, if w and v are two binary vectors of the
same length, then w � v denotes the vector obtained by com-
puting their elementwise addition modulo 2 and wTv their
scalar product.

The Cayley graph X�� ,T� of a group � with respect to the
set T�� �T=T−1� is the graph with vertex set V�X�= ��� and
an edge �g ,h��E�X� if there is s�T such that gs=h. In
other words, two nodes in the graph are connected by an
edge if the corresponding elements g and h are connected by
a member of the group �. The set T is also called a Cayley
set. The Cayley graphs of the form X�Z2

n ,� f� are called cube-
like graphs. Some cubelike graphs are illustrated in Fig. 1.

Notice that this definition embraces every possible set � f.
When f is the characteristic function of the standard gener-
ating set of Z2

n, the graph X�Z2
n ,� f� is called a hypercube—

for example, the leftmost graph in Fig. 1. Recall that the
standard generating set of Z2

n is composed of the n vectors
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�0…010…0�, where 1 is at position i, with 1� i�n. The
adjacency matrix of X�Z2

n ,� f� is the 2n�2n matrix

Af = �
w��f

�reg�w� , �1�

where �reg�x� is the regular permutation representation of w
�� f. In particular, if w=w1w2¯wn, then

�reg�w� = �
i=1

n

�x
wi,

where �x is a Pauli matrix. The regular permutation repre-
sentation of Z2

n is the homomorphism from Z2
n into the set of

permutation matrices of size 2n.
It is clear that Af commutes with the adjacency matrix of

any other cubelike graph, given that the group Z2
n is Abelian.

Now, let us choose a bijection between vertices of
X�Z2

n ,� f� and the elements of the standard basis
�1	 , �2	 , . . . , �N	 of a Hilbert space H
CN, where N=2n. This
is the usual space of n qubits. If we look at the single exci-
tation case in the XY model, the evolution of a network of
spin-1 /2 quantum mechanical particles on the vertices of
X�Z2

n ,� f� can be seen as induced by the adjacency matrix Af,
which then plays the role of a Hamiltonian �for details see
�16� or �17��. In light of this observation, given two vectors
a ,b�Z2

n, the �unnormalized� transition amplitude between a
and b induced by Af is the expression

T�a,b� = �b�e−iAft�a	

= �
w�Z2

n

�− 1�aTwe−i�wt�− 1�bTw

= �
w�Z2

n

�− 1��a � b�Twe−i�wt, �2�

where t�R+. This is written by diagonalizing Af �see Sec.
III�. The fidelity of state transfer between a and b is then
F�a ,b�= �T�a ,b��. By definition, the evolution under Af is
periodic if there is t�R+ such that F�a ,a�=1 for every a
�Z2

n. Graph-theoretic properties responsible for periodic
evolution �sometimes also called perfect revival� have been
considered in the literature �6,9,23–25�.

With the next proposition, we show that every network
modeled by a cubelike graph has a periodic evolution. The
period is � and it does not depend on the number of vertices
of the graph. Equivalently, it does not depend on the dimen-
sion of H.

Theorem 1. Let X�Z2
n ,� f� be a cubelike graph and let

a ,b�Z2
n.

�i� For t=�, we have F�a ,b�=1 if and only if a=b.

�ii� For t=� /2, we have F�a ,b�=1 if a � b=u and u=
�w��f

w�0.
As a simple consequence of this statement, we have vari-

ous ways to route information between any two nodes of a
network whose vertices correspond to the elements of Z2

n. Let
f be a Boolean function such that � f = �w1 , . . . ,wr� is a gen-
erating set of Z2

n. Let �wi��f
wi=w�0. Let us define C

= �w ,w1 , . . . ,wr� and Ci=C \wi. Since the sum of the ele-
ments of Ci is nonzero, the Cayley graph X�Z2

n ,Ci� has PST
between a and b such that a � b=wi at time � /2. The sim-
plest case arises when we chose r=n and take the vectors
w1 , . . . ,wr to be the standard generating set of Z2

n. Then
X�Z2

n ,C� is the folded d-cube and, by using a suitable se-
quence of the graphs X�Z2

n ,Ci�, we can arrange PST from the
zero vector to any desired element of Z2

n.
For example, consider the case d=3. We write w1

= �100�, w2= �010�, and w3= �001�. Then w= �111�. The
graph X�Z2

3 ,C� is illustrated in Fig. 1, left. Since w1=w2
� w3 � w, there is PST between 000 and w1=100 at time
� /2, given that 000 � 100=100 �see Fig. 2, right�. Also,
there is PST for the pairs �010, 110�, �001, 101�, and �011,
111�. Notice that X�Z2

n ,C1� is isomorphic to the three-
dimensional hypercube.

For generic dimension, the hypercube is X�Z2
n ,E�, where

E= ��10…0� , �010…0� , . . . , �0…01�� and Jn
� = �w�Ew, the all-

1st vector of length 2n. Since the Hamming distance between
two different elements a ,b�Z2

n is exactly their distance in
X�Z2

n ,E�, we have PST between any two antipodal vertices of
the hypercube, as was already observed in �16,17�. Recall
that the distance between two vertices in a graph is the length
of the geodesic �equivalently, the shortest path� connecting
the vertices. Two vertices are said to be antipodal if their
distance is the diameter of the graph—i.e., the longest
among all the geodesics. Antipodal vertices in Cayley graphs
are connected via a sequence of all elements of the Cayley
set. It remains as an open problem to verify that whenever
there is PST between two vertices of a cubelike graph, then
the vertices are antipodal.

FIG. 1. �Color online� Drawings of three nonisomorphic cube-
like graphs on eight vertices.

FIG. 2. �Color online� Left: The graph X�Z2
n ,C�, where C

= ��100� , �010� , �001� , �111��. This graph is isomorphic to the com-
plete bipartite graph K4,4. Right: the graph X�Z2

n ,C1�, where C1

= ��010� , �001� , �111��. This graph turns out to be isomorphic to the
hypercube of dimension 3. Since 100=010 � 001 � 111, there is
PST between 000 and 100 at time � /2, given that 000 � 100=100.
Also, there is PST for the pairs �010, 110�, �001, 101�, and �011,
111�.
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III. PROOF OF THE THEOREM

The abstract Fourier transform of a Boolean function f is

the rational valued function f̃ :Z2
n→Q which defines the co-

efficients of f with respect to the orthonormal basis of the
functions

Qw�x� = �− 1�wTx, �3�

that is,

f̃�w� = 2−n �
x�Z2

n

�− 1�wTxf�x� . �4�

Then

f�x� = �
w�Z2

n

�− 1�wTxf̃�w� �5�

is the Fourier expansion of f . Note that the zeroth-order Fou-
rier coefficient is equal to the probability that the function

takes the value 1—i.e., f̃�0�= d

2n —while the other Fourier co-
efficients measure the correlation between the function and
the parity of subsets of its arguments.

Using a vector representation for the functions f and f̃ ,
and considering the natural ordering of the binary vectors
w�Z2

n, one can derive a convenient matrix formulation for

the transform pair: f =Hnf̃ and f̃ = 1
2n Hnf , where Hn is the

Hadamard transform matrix. Given a function f :Z2
n→Z2, the

set � f defines the Cayley graph X�Z2
n ,� f�, whose spectrum

coincides, up to a factor 2n, with the Fourier spectrum of the
function 1

2n HnAfHn=Df, where Af is the adjacency matrix of
X�Z2

n ,� f� and Df is a 2n�2n diagonal matrix. In particular,

for w�Z2
n, we have �w=2n f̃�w�. Theorem 1 needs the fol-

lowing two technical lemmas.
Lemma 2. Let f be a Boolean function such that �w��f

w=0. Then, for all v�Z2
n,

�v = d − 4kv, �6�

where d= �� f� and kv�N, with 0�kv� �d /2�.
Proof. Let a�� f, a�0, and let � f�=� \ �a�. Since �w��f

w=0, we have that a= �w��f�
w. Now observe that, for any

v�Z2
n,

�v = �
w�Z2

n

�− 1�wTvf�w�

= �
w��f

�− 1�wTv

= �
w��f�

�− 1�wTv + �− 1�aTv

= �
w��f�

�− 1�wTv + �− 1���w�� f�
w�Tv

= �
w��f�

�− 1�wTv + �
w��f�

�− 1�wTv. �7�

Let

nv = ��w � ����− 1�wTv = − 1��

and

pv = ��w � ����− 1�wTv = 1�� .

Note that pv= �� f��−nv= �d−1�−nv. We have

�v = pv − nv + �− 1�nv = d − 1 − 2nv + �− 1�nv. �8�

Thus, if nv is an even number, nv=2kv, with kv�N, we get

�v = d − 1 − 4kv + 1 = d − 4kv. �9�

Otherwise, if nv=2kv−1 is odd, we get

�v = d − 1 − 2�2kv − 1� − 1 = d − 4kv. �10�

Since, for all v, −d��v�d, we finally get 0�kv� �d /2�. �
Lemma 3. Let f be a Boolean function such that �w��f

w=u�0.
�i� If u�� f, then, for all v�Z2

n,

�v = d − 4kv, if uTv is even,

d − 4kv + 2, if uTv is odd,
�

where d= �� f� and kv�N, 0�kv� � d+1
2 �.

�ii� If u�� f, then, for all v�Z2
n,

�v = d − 4kv, if uTv is even,

d − 4kv − 2, if uTv is odd,
�

where d= �� f� and kv�N, 0�kv� � d−1
2 �.

Proof. �i� Consider the function g such that �g=� f � �u�.
Let 	v denote the eigenvalues of the Cayley graph associated
to g. As �w��g

w=0, from Lemma 2, we get

	v = ��g� − 4kv = d + 1 − 4kv, �11�

with 0�kv� � d+1
2 �. Now, observe that

	v = �
w�Z2

n

�− 1�wTvg�w�

= �
w��g

�− 1�wTv

= �
w��f

�− 1�wTv + �− 1�uTv

= �v + �− 1�uTv. �12�

Thus,

�v = 	v − �− 1�uTv = d + 1 − 4kv − �− 1�uTv, �13�

and the thesis immediately follows.
�ii� Consider the function g such that �g=� f \ �u�. Let 	v

denote the eigenvalues of the Cayley graph associated to g.
As u= �w��f

w= �w��g
� u, we have �w��g

w=0. By ap-
plying Lemma 2, we obtain

	v = ��g� − 4kv = d − 1 − 4kv, �14�

with 0�kv� � d−1
2 �. Now, as in �i� observe that

QUANTUM NETWORKS ON CUBELIKE GRAPHS PHYSICAL REVIEW A 78, 052320 �2008�

052320-3



�v = �
w�Z2

n

�− 1�wTvf�w�

= �
w��f

�− 1�wTv

= �
w��g

�− 1�wTv + �− 1�uTv

= 	v + �− 1�uTv. �15�

So we get

�v = d − 1 − 4kv + �− 1�uTv, �16�

concluding the proof of the lemma. �
Proof of Theorem 1. �i� All eigenvalues �w are integers

with the same parity. In particular, they are all odd if d
= �� f� is odd, and all even, otherwise. Thus, by Eq. �2�, for
t=� we have

T�a,b� = �
w�Z2

n

�− 1��a � b�Twe−i�w�

= �
w�Z2

n

�− 1��a � b�Tw cos��w��

= �
w�Z2

n

�− 1��a � b�Tw�− 1��w

= �− 1�d �
w�Z2

n

�− 1��a � b�Tw. �17�

Thus the statement follows since

�
w�Z2

n

�− 1��a � b�Tw = 2n, a � b = 0, i.e., a = b ,

0, otherwise.
�

�ii� First, let us suppose that f is such that �w��f
w=0.

Then, applying Lemma 2, we can see that

T�a,b� = �
w�Z2

n

�− 1��a � b�Twe−i�w�/2

= �
w�Z2

n

�− 1��a � b�Twe−i�d−4kw��/2

= e−id�/2 �
w�Z2

n

�− 1��a � b�Twei2kw�

= e−id�/2 �
w�Z2

n

�− 1��a � b�Tw. �18�

The thesis is verified, since �w�Z2
n�−1��a � b�Tw=2n if and only

if a � b=0= �w��f
w, but here a�b. The remaining case is

when �w��f
w=u�0. Applying Lemma 3, we can write

T�a,b� = �
w�Z2

n

uTw even

�− 1��a � b�Twe−i�d−4kw��/2

+ �
w�Z2

n

uTw odd

�− 1��a � b�Twe−i�d−4kw
2��/2

= e−id�/2� �
w�Z2

n

uTw even

�− 1��a � b�Twei2kw� − �
w�Z2

n

uTw odd

�− 1��a � b�Twei2kw��
= e−id�/2 �

w�Z2
n

�− 1��a � b�Tw�− 1�uTw = e−id�/2 �
w�Z2

n

�− 1��a � b � u�Tw. �19�

The statement holds since �w�Z2
n�−1��a � b � u�Tw=2n if and

only if a � b � u=0; i.e., a � b=u= �w��f
w. �

IV. CONCLUSION

We have given a necessary and sufficient condition for
PST in quantum networks modeled by a large class of cube-
like graphs.

A special case is left open: when �w��f
w=0. Numerical

evidence suggests that cubelike graphs with this property do

not allow PST. In addition, it is natural to ask whether quan-
tum dynamics on cubelike graphs can help in getting useful
information about the corresponding Boolean functions
�26–30�.
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