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We exactly construct one- and two-qubit holonomic quantum gates in terms of isospectral deformations of
an Ising model Hamiltonian. A single logical qubit is constructed out of two spin-1

2 particles; the qubit is a
dimer. We find that the holonomic gates obtained are discrete but dense in the unitary group. Therefore an
approximate gate for a desired one can be constructed with arbitrary accuracy.
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I. INTRODUCTION

A reliable implementation of a quantum gate is required
to realize quantum computing. A quantum gate is often real-
ized by manipulating the parameters in the Hamiltonian of a
system so that the time-evolution operator results in a desired
unitary gate. On the other hand, when the system has a de-
generate energy eigenvalue, adiabatic parameter control al-
lows us to construct a quantum gate employing non-Abelian
holonomy �1�. Holonomy corresponds to the difference be-
tween the initial and the final quantum states under an adia-
batic change of parameters along a closed path �loop� in the
parameter manifold M �2�. Therefore, a desired quantum
gate can be implemented by choosing a proper closed loop in
M. This scheme is called the holonomic quantum computing
�HQC�. The idea was suggested first in Ref. �3� and has been
developed subsequently by many authors �4–9�. Holonomy
is geometrical by nature, and hence it is independent of how
fast the loop in the parameter manifold is traversed. In addi-
tion, if the lowest eigenspace of the spectra is employed as a
computational subspace, it is free from errors caused by
spontaneous decay. Thus, HQC is expected to be robust
against noise and decoherence �10�.

In spite of its mathematical beauty, physical implementa-
tion of HQC is far from trivial. The difficulties are �i� to find
a quantum system in which the lowest energy eigenvalue is
degenerate and �ii� to design a control which leaves the
ground state degenerate as the loop is traversed. Several the-
oretical ideas have been proposed in linear optics �11�,
trapped ions �12–14�, and Josephson junction qubits �15�.
Recently, an experiment following the proposals made in
Refs. �12,13�, where the coding space is not the lowest
eigenspace, has been reported �16�.

Karimipour and Majd �17� proposed HQC with a spin
chain model. A single logical qubit is represented by two
spin-1

2 physical spins; the qubit is a dimer. In the dimer, the
spins interact with each other through a Heisenberg-type in-
teraction and its lowest eigenvalue is doubly degenerate for a

particular set of the coupling constant and the Zeeman ener-
gies. The spin chain model may be applicable to various
physical systems, such as solid state systems. However, there
is room to reconsider and improve their proposal. In particu-
lar, we want to investigate whether the Heisenberg-type in-
teraction is essential for HQC in a spin chain model. Such
consideration is necessary for clarifying the applicability of
their proposal. In this paper, we closely follow the discussion
given in Ref. �17� and construct holonomic quantum gates
using isospectral deformations of an Ising model, instead of
a Heisenberg model. In addition, we explicitly require that a
path in the parameter manifold M be closed for a holonomy
to be well defined.

The paper is organized as follows. We briefly review ho-
lonomy associated with adiabatic time evolution of a quan-
tum system in Sec. II. We show how to construct one- and
two-qubit gates as holonomies in Secs. III and IV. Section V
is devoted to summary.

II. HOLONOMY

Let us consider a Hamiltonian H acting on a Hilbert space
H �dim H=N�, whose lth eigenvalue is denoted as El. In
particular, l=0 refers to the lowest eigenvalue. The lth eigen-
value is gl-fold degenerate and its eigenvectors are written as
�l , i� �i=1,2 , . . . ,gl�. We assume �l , i �m , j�=�lm�ij. Note that
N=�lgl.

An isospectral deformation of H is accomplished by

H��� = g���Hg†��� �0 � � � 1� , �1�

where g����U�N�. As a result, no level crossing takes place
during the Hamiltonian deformation. We normalize �
� �0,1� so that H�0�=H�1�=H. This condition implies that
the curve in M be closed. The symbol � in Eq. �1� is the
normalized dimensionless time �= t /T �0� t�T�, where T is
the total time to traverse the loop. Note that T is long enough
so that the adiabatic approximation may be justified �18�.

We consider the particular isospectral deformation

H��� = eX�He−X�, �2�

following Refs. �8,17�, where X is a constant anti-Hermitian
matrix. We require �H ,X��0 and

*Current address: Department of Physics, Graduate School of Sci-
ence, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka
560-0043, Japan.

PHYSICAL REVIEW A 78, 052315 �2008�

1050-2947/2008/78�5�/052315�5� ©2008 The American Physical Society052315-1

http://dx.doi.org/10.1103/PhysRevA.78.052315


eX = 1 , �3�

where 1 is the unit matrix. The first condition is required to
implement nontrivial gates while Eq. �3� ensures that H�1�
=H�0�=H.

We readily obtain the instantaneous eigenvalues El��� and
eigenvectors �l , i ;�� of H��� as follows �8,17�:

El��� = El, �l,i;�� = eX��l,i� , �4�

which implies that no level crossing occurs during the defor-
mation: El����El���� �l� l� , ∀�� �0,1��. We will exclu-
sively work with the ground state �l=0� from now on and
drop the index l=0 whenever it causes no confusion.

We use the unit in which �=1 throughout the paper. Ac-
cording to the adiabatic theorem, when the initial state ����
=0�� is in the lowest eigenspace, the final state ����=1��
remains within this subspace. Then, we find

���� = 1�� = e−iE0T����� = 0�� , �5�

where e−iE0T is the dynamical phase and ��U�g0�. Equation
�5� can be regarded as a gate operation connecting the initial
and final states. The unitary matrix � in Eq. �5� is the ho-
lonomy associated with the cyclic deformation Eq. �2� of the
Hamiltonian and we write it as

� = e−A. �6�

The anti-Hermitian connection A in Eq. �6� is given, in terms
of X, as

A = �
i,j=1

g0

�i�X�j��i��j� . �7�

In order to calculate A, the instantaneous eigenvector �0, i ;��
in Eq. �4� is substituted into

Aij��� = �i;��
d

d�
�j ;�� , �8�

which is the definition of the ij component of the connection
A.

III. ONE-QUBIT GATES

A. Hamiltonian

We introduce a Hamiltonian

H1D = − ��1z − ��2z + J1�1z�2z �9�

as H in Eq. �2�, where �ka is the a component of Pauli
matrices of the kth spin �k=1,2 and a=x ,y ,z�. Equation �9�
corresponds to the Hamiltonian of two homogeneous spin-1

2
particles interacting with each other via an Ising-type inter-
action as depicted in Fig. 1. The strength of the interaction is
parameterized by J1, while that of the field by �. We assume
�	0 and J1	0 without loss of generality.

We denote the eigenvectors of �z as follows: �z�+ �= �+ �
and �z�−�=−�−�. Furthermore, we introduce the following
vectors which are eigenvectors of H1D: �T+�= �+ + �, �T0�
= 1

	2
��+−�+ �−+ ��, �T−�= �−−�, and �S0�= 1

	2
��+−�− �−+ ��,

where �

� denotes �+ � � �+ �, and so on. The eigenvalues of

�T+�, �T0�, �T−�, and �S0� are −2�+J1, −J1, 2�+J1 and −J1,
respectively.

In the case �=J1, there exists threefold degenerate lowest
energy eigenvalue −J1. The lowest eigenspace is spanned by
the three eigenvectors �T+�, �T0�, and �S0�. The unique excited
state is �T−� and the energy difference between �T−� and the
ground state is 4J1.

In this paper, we choose �0�L= �T+� and �1�L= �T0� as basis
vectors of the logical qubit. Namely, the coding space for a
single qubit is C1=Span
�T+� , �T0��. We note here that a qutrit
may be implemented by using the three ground state eigen-
vectors. Although this coding is potentially interesting, it is
beyond the scope of this paper.

B. Implementation of one-qubit gates

One-qubit gates are implemented by choosing X in Eq. �2�
as �17�

X = in���1 + �2� , �10�

where n is a unit vector in R3, while � is a positive real
number. It should be emphasized that undesired transitions
into the irrelevant subspace Span
�S0�� do not occur for this
choice of X. This is easily seen from the identity ��1a
+�2a��S0�=0. We obtain the anti-Hermitian connection re-
stricted to the coding space C1 as follows:

�A�C1
= i��nz�IL + �Lz� + 	2�nx�Lx + ny�Ly�� , �11�

where �Lx= �T+��T0�+ �T0��T+�, �Ly =−i��T+��T0�− �T0��T+��,
�Lz= �T+��T+�− �T0��T0�, and IL= �T+��T+�+ �T0��T0�. Note that
the presence of a closed loop in M is essential to obtain Eq.
�11�.

Using Eqs. �6� and �11�, we find the unitary operator
�=e−i�nze−i��nz�Lz+	2�nx�Lx+ny�Ly��. The condition H1D�1�
=H1D�0� is necessary for the closure of a loop in M �19�. As
for Eq. �10�, this condition is obviously satisfied by taking
�=� ���N�, where � is interpreted as the winding num-
ber of a loop in M.

Summarizing the above arguments, we find that X given
in Eq. �10� implements a single qubit holonomic gate

�m
�1���� = e−i�nze−i��m·�L, �12�

where m=
1

	2−nz
2
�	2nx ,	2ny ,nz� and ��=�	2−nz

2. In order

that the holonomic quantum gate is nontrivial, the condition
�H1D ,X��0 must be satisfied. This condition is equivalent to
�nz��1.

Note that the set of the rotation angles �� is discrete when
nz is fixed, and hence it is impossible to vary �� continuously
in Eq. �12�. Nevertheless, we can find a quantum gate that
approximates the desired one with arbitrary accuracy pro-
vided that 	2−nz

2 is an irrational number �20,21�.

FIG. 1. Dimer consists of two spin-1
2 particles.
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C. Examples

1. Hadamard gate

The Hadamard gate, up to an irrelevant overall phase, is
implemented by taking both �sin ���=1 and m= �1,0 ,1� /	2
in �m

�1����. Note that nz=	2 /3 and ��=2� /	3 for the choice
of m and �sin ���=1 cannot be satisfied exactly for any �.
However, we show that the Hadamard gate may be imple-
mented with good accuracy for some �. Figure 2 shows
sin �� as a function of �, from which we find that �sin ���
�1 for �=3, 10, and 16. It can be proved easily that the
Hadamard gate can be implemented with arbitrary accuracy
by choosing a proper �.

2. Arbitrary elements of SU(2)

The holonomy ��1,0,0�
�1� ��� is a quantum gate generating a

rotation around the x axis by an angle ��=	2�. Although
the set of �� is discrete, we can find � which satisfies
���−��� mod 2��� for arbitrary � and � �20�. Figure 3
shows the points �cos �� , sin ��� for �=0,1 , . . . ,10. The
point �1, 0� corresponds to �=0 �i.e., X=0�, in which no gate
operation is performed. Similarly, we obtain an approximate
rotation around the y axis with arbitrary accuracy by taking
m= �0,1 ,0�. Consequently, it is possible to implement an
arbitrary element of SU�2�.

IV. TWO-QUBIT GATES

A. Hamiltonian

A logical two-qubit system consists of two dimers. The
Hamiltonian is

H2D = H1 + H2, �13�

where H1=−J1�1z−J1�2z+J1�1z�2z and H2=−J2�3z−J2�4z
+J2�3z�4z. Equation �13� is used as H in Eq. �2�. Here H1

�H2� is the Hamiltonian of a single dimer to which the first
and the second �the third and the fourth� spins belong. We
easily find the ninefold degenerate lowest eigenvalue −J1
−J2.

We take the following coding space C2 for the logical
two-qubit system:

C2 = Span
�T+�1�T+�2, �T+�1�T0�2, �T0�1�T+�2, �T0�1�T0�2� .

The vector �T+�1 denotes the eigenvector �

� associated
with H1, for example.

B. Controlled-ei�Z gate

We choose the following generator of the isospectral de-
formation in Eq. �2�:

X = X1 + X2 + X1–2, �14�

where X1= in1�1 · ��1+�2�, X2= in2�2 · ��3+�4�, and X1−2

= iJ��1z�3z+�1z�4z+�2z�3z+�2z�4z�. Here, n1 and n2 are
unit vectors in R3, while �1, �2, and J are positive real
numbers. No undesired transitions into the noncoding space
take place for this choice of X. We elaborate this point in
Appendix B.

Let us find the corresponding anti-Hermitian connection
with the following unit vectors n1 and n2:

n1 = �0,0,1� , �15�

n2 = �	1 − n2z
2 ,0,n2z� , �16�

n2z = −
J

�2
. �17�

We assume �2	J, which guarantees �H2D ,X��0. Then, we
obtain the following anti-Hermitian connection:

�A�C2
= i��1IL � IL + ��1 + J��Lz � IL

+ 	2�2n2xIL � �Lx + J�Lz � �Lz� . �18�

Note here that �2n2x=	�2
2−J2.

The condition eX=1 restricts the parameters as

�2 = �+ ��+ � N� , �19�

	�2
2 + 8J2 = �− ��− � N� , �20�

�1 = �� ��� � N� . �21�

Their derivation is given in Appendix B. It follows from Eqs.
�19� and �20� that �−	�+ and J= 

2	2
	�−

2 −�+
2. Note that the

assumption �2	J is equivalent to 3�+	�−.
As a result, we obtain a two-qubit gate

��2���,��� = �− 1����LU��,����C��� , �22�
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FIG. 2. sin �� as a function of �.
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FIG. 3. Rotation angles ��=2� /	3 in ��1,0,0�
�1� ��� are plotted as

points �cos �� , sin ��� on the unit circle. The numbers in the figure
indicate the values of �.
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where �= ��+ ,�−�. The local unitary gate �LU�� ,��� is de-
fined as

�LU��,��� = e−i���+J��Lz � e−i�k·�L, �23�

where �=	2�1
22−J2 and �k= �	2�1

22−2J2 ,0 ,J�. The es-
sential nonlocal operation is �C���, which is a controlled-ei�Z

gate and is given by

�C��� = �0�L�0�L � IL + �1�L�1�L � ei2J�Lz. �24�

Thus, ��2��� ,��� followed by the local unitary gate
�LU�� ,���† implements the controlled-ei�Z gate with �=2J.

The rotation angle 2J in �C��� is characterized by �+ and
�−. We can, however, find �+ and �− which satisfy
���−2J� mod 2 � �� for arbitrary � and � �22�. We show the
attainable values of 2J for the various sets of ��+ ,�−� in Fig.
4�a�. Note that ��+ ,�−� have to be chosen such that �+��−
�3�+ is satisfied. We calculate �cos 2J , sin 2J� as in Fig.
4�b�. Thus, a tunable coupling control scheme, in which J is
controllable, is necessary to achieve various rotation angles
in �C���.

Alternatively, by repeating the above gate n times, we can
implement the controlled-ei2nJ�z gate. For an irrational J and
a given �, it is possible to find n such that ��2nJ
−�� mod 2 � �� for an arbitrary �. In this way, one may
implement the controlled-ei��z gate with arbitrary precision.
In particular, we can implement the controlled-Z gate, which
is a constituent of the universal set of quantum gates, by
taking �= /2.

V. SUMMARY

We have constructed holonomic quantum gates using
isospectral deformations of an Ising model Hamiltonian.
These gates are the Hadamard gate, rotations around x- and
y-axes, and the controlled-ei�Z gate. The closure of the loop
in the parameter manifold leads to a discrete set of gates.
These gates are, however, dense in SU�2� and SU�4� and any
one- and two-qubit gates can be implemented with arbitrary
accuracy. A spin-chain model is a good candidate to imple-
ment holonomic quantum gates with the ground state eigens-
pace. We will propose a more feasible scheme based on the
present analyses in our future work.
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APPENDIX A: EMULATION OF HOLONOMIC
QUANTUM GATES

An exact solution of the Schrödinger equation is obtained
when the Hamiltonian is deformed according to Eq. �2�. Let
us consider the Schrödinger equation in term of the dimen-
sionless time �:

i
d

d�
������ = TH��������� , �A1�

where H���=eX�He−X�. Introducing ������=e−X�������, we
obtain the following equation for ������:

i
d

d�
������ = �− iX + H������� . �A2�

Accordingly, the time evolution operator at �=1 is

U�� = 1� = eXe−i�−iX+HT�. �A3�

When the adiabatic approximation is valid and the initial
state is in the lowest eigenspace, we obtain

U�� = 1�P0 = e−iE0T�P0, �A4�

where P0 is the projection operator on the lowest eigenspace.
From Eqs. �A3� and �A4�, we obtain

eXe−i�−iX+HT�P0 = e−iE0T�P0. �A5�

The right-hand side of Eq. �A5� amounts to a holonomic
quantum gate, up to the dynamical phase e−iE0T. The left-
hand side of Eq. �A5� may be interpreted as implementation
of the quantum dynamics by a pulse sequence. Equation
�A5� provides a way how to emulate a holonomic gate �
with a series of pulses of e−i�−iX+HT� and eX, although it may
not be a genuine realization.

APPENDIX B: GENERATOR OF ISOSPECTRAL
DEFORMATION FOR TWO-QUBIT GATES

Let us analyze the generator of the isospectral deforma-
tion for two-qubit gates in Sec. IV B. In this appendix, we
denote the eigenvector �T+�1�T+�2 simply as �T+T+�, for
example.

First, we focus on X1 and X2 in Eq. �14�. We obtain

X1 = i�1 2n1z 	2�n1x − in1y� 0

	2�n1x + in1y� 0 0

0 0 0
� , �B1�

(a)
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FIG. 4. Rotation angle 2J in the controlled-ei�Z, �C���. �a� The
value of 2J with the unit of  is plotted with respect to �−, when the
fixed values of �+ are given. �b� The values of cos 2J and sin 2J are
plotted as the points on the unit circle. The plotting marks are the
same meaning as in �a�.
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X2 = i�2 2n2z 	2�n2x − in2y� 0

	2�n2x + in2y� 0 0

0 0 0
� .

The matrix element �Xi�kl corresponds to i�k�Xi�l�i, where
�1�i= �T+�i, �2�i= �T0�i, and �3�i= �S0�i �i=1,2�. One can easily
find that �T+S0�X1�T+T0�=0, for example. This means that
undesired transitions into the subspace irrelevant to quantum
computation never occur under X1 and X2.

Next, let us consider X1−2 in Eq. �14�. The following ob-
servations are useful to calculate the matrix elements:

�kz�T+�i = �T+�i, �B2�

�kz�T0�i = �− 1�k+1�S0�i, �B3�

where k=1,2 for i=1 and k=3,4 for i=2.
Thus, we only have to consider five elements

�T+T+�X1−2�T+T+�, �T+S0�X1−2�T+T0�, �S0T+�X1−2�T0T+�,
�S0S0�X1−2�T0S0�, and �S0T0�X1−2�T0S0�. Note that one can
easily calculate the other nontrivial elements �e.g.,
�T0T+�X1−2�S0T+�� from the anti-Hermitian property of X1−2.
The other elements which are related to the lowest eigens-
pace of H2D trivially vanish. As a result, we obtain the results

�T+T+�X1−2�T+T+� = i4J

and

�T+S0�X1−2�T+T0� = �S0T+�X1−2�T0T+� = �S0S0�X1−2�T0S0�

= �S0T0�X1−2�T0S0� = 0.

As a result, all the matrix elements corresponding to the
undesired transition to the irrelevant subspace vanish.

Finally, we calculate eX when the unit vectors n1 and n2
are given by Eqs. �15� and �16�, respectively. We obtain

eX = �T+�11�T+� � eiY+ + �T−�11�T−� � eiY−

+ ��T0�11�T0� + �S0�11�S0�� � eiY0, �B4�

Y0 = �2n2 · ��3 + �4� , �B5�

Y� = � 2�12 + ��k� · ��3 + �4� , �B6�

where �+=�2, �−=	�2
2+8J2, and 12= �T+�22�T+�+ �T0�22�T0�

+ �T−�22�T−�+ �S0�22�S0�. In particular, the values of �� are im-
portant for imposing the condition eX=1. The unit vector k�

is given by ��k�= ��2n2x ,0 ,�2n2z�2J�. The condition eX

=1 implies eiY0 =12 and eiY� =12. The condition eiY0 =12 im-
plies there is �+�N such that �2=�+; this requirement is
equivalent to Eq. �19�. Similarly, if Eqs. �20� and �21� are
satisfied, then we obtain eiY� =12.
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