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We study the entangling power and perfect entangler nature of SWAP1/m for m�1 and controlled-unitary
�CU� gates. It is shown that SWAP1/2 is the only perfect entangler in the SWAP1/m family. On the other hand, a
subset of CU gates which is locally equivalent to controlled-NOT is identified. It is shown that the subset, which
is a perfect entangler, must necessarily possess the maximum entangling power.
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I. INTRODUCTION

Entanglement �1�, a fascinating quantum mechanical fea-
ture, has been recognized as a valuable resource for quantum
information and computation �2�. Much effort has been made
to know the production, quantification, and manipulation of
entangled states �3�. Required information processing can be
achieved by the application of appropriate quantum operators
�gates� on qubits prepared in a definite state. As two-qubit
gates have the ability to create entanglement, many research
works focus on characterizing the entangling properties of
them. The entangling capabilities of a quantum gate are
quantified by the entangling power �4� which describes the
average entanglement produced by the gate when it is acting
on a given distribution of product states. In this description,
linear entropy is used to measure the entanglement of a state.

It is well known that the entanglement is a nonlocal prop-
erty which is unaffected by local operations. Makhlin intro-
duced local invariants to describe the nonlocal properties of
quantum gates �5�. Two gates are said to be locally equiva-
lent, possessing the same local invariants, if they differ only
by local operations. Hence, local invariants are convenient
measures to identify the local equivalence class of quantum
operators. In �6�, Zhang et al. showed that the geometric
structure of nonlocal two-qubit operations is a 3-torus. To be
precise, every nonlocal gate is associated with the coordi-
nates of a 3-torus. In terms of the coordinates, it is easy to
check whether a gate has the ability to produce maximal
entanglement when it acts on some separable states. If the
gate produces maximal entanglement, then it is known as a
perfect entangler �5,6�. As the maximally entangled states are
known to play a central role in quantum information process-
ing, it is of fundamental importance to identify the perfect
entanglers among the nonlocal gates.

It is known that one controlled-NOT �CNOT� gate can be
constructed using two SWAP1/2 gates �7�. Since the SWAP1/m

family of gates is recognized as the building blocks of uni-
versal two-qubit gates �8�, a detailed understanding of this
family is of fundamental importance. In particular, we focus
on the entangling characterization, complimenting it with a
geometrical representation, of the above family with �
=1 /m for m�1. Further, we investigate the entangling char-
acter of another important class of two-qubit gates—namely,
controlled-unitary �CU� gates.

Using a geometrical representation, it is shown that
SWAP1/2 is the only perfect entangler in the SWAP1/m family.

On the other hand, we present a simplified expression for the
entangling power and hence obtain conditions for the mini-
mum and maximum entangling power of an arbitrary two-
qubit gate. The simplification led to the identification of a
subset of CU gates which is locally equivalent to CNOT. It is
shown that the subset, which is a perfect entangler, must
necessarily possess the maximum entangling power as well.
In the end, some possible problems emerging from this work
are pointed out.

II. PRELIMINARIES

A. Entangling power

The entangling capability of a unitary quantum gate U can
be quantified by entangling power �EP�, which was intro-
duced by Zanardi et al. �4�. For a unitary operator U
�U�4� the entangling power is defined as

ep�U� = �E�U��1� � ��2�����1�� ��2� �1�

where the overbar denotes the average that is over all product
states distributed uniformly in the state space. In the above
formula E is the linear entropy of entanglement measure de-
fined as

E����AB� = 1 − tr��A�B�
2 � �2�

where �A�B�=trB�A�����AB���� is the reduced density matrix of
system A�B�. We may note that 0�ep�U��

2
9 �8,9�. It is to be

noted that the linear entropy is related to the well-known
measure of entanglement—namely, concurrence �10,11�—
through the expression

E��� =
1

2
C2��� ,

where the concurrence of a two-qubit state ���AB=��00�
+��01�+��10�+��11� is defined as

C��� = 2��� − ��� . �3�

While C=0 for the product state, it takes the maximum value
of 1 for the maximally entangled state.

B. Perfect entangler

Two unitary transformations U ,U1�SU�4� are called lo-
cally equivalent if they differ only by local operations: U
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=k1U1k2 where k1 ,k2�SU�2� � SU�2� �5�. The local equiva-
lent class of U can be associated with local invariants which
are calculated as follows. Any two-qubit gates U�SU�4�
can be written in the form �6,12,13�

U = k1 exp� i

2
�c1	x

1	x
2 + c2	y

1	y
2 + c3	z

1	z
2�	k2. �4�

Representing U in the Bell basis,

�
+� =
1

2

��00� + �11��, �
−� =
i


2
��01� − �10�� ,

��+� =
1

2

��01� − �10��, ��−� =
i


2
��00� − �11�� ,

as UB=Q†UQ, with

Q =
1

2�

1 0 0 i

0 i 1 0

0 i − 1 0

1 0 0 − i
� ,

the local invariants of the given two-qubit gate can be calcu-
lated using the formula �6�

G1 =
tr2�M�U��
16 det�U�

, �5a�

G2 =
tr2�M�U�� − tr�M2�U��

4 det�U�
, �5b�

where M�U�=UB
TUB. The relations connecting the local in-

variants G1 and G2 and a point �c1 ,c2 ,c3� on a 3-torus geo-
metric structure of nonlocal two-qubit gates are �6�

G1 = cos2 c1 cos2 c2 cos2 c3 − sin2 c1 sin2 c2 sin2 c3

+
i

4
sin 2c1 sin 2c2 sin 2c3, �6a�

G2 = 4 cos2 c1 cos2 c2 cos2 c3 − 4 sin2 c1 sin2 c2 sin2 c3

− cos 2c1 cos 2c2 cos 2c3. �6b�

Therefore from the values of G1 and G2 it is possible to find
the point on the 3-torus corresponding to a local equivalence
class of two-qubit gates. Employing Weyl group theory to
remove the symmetry on the 3-torus, Zhang et al. �6� have
obtained a tetrahedron representation �Weyl chamber� of
nonlocal two-qubit gates �Fig. 1�.

A two-qubit gate is called a perfect entangler if it can
produce a maximally entangled state for some initially sepa-
rable input state. The theorem for a perfect entangler is the
following: two-qubit gate U is a perfect entangler if and only
if the convex hull of the eigenvalues of M�U� contains zero
�5,6�. Alternatively, if the coordinates satisfy the condition

�

2
� ci + ck � ci + cj +

�

2
� �

or

3�

2
� ci + ck � ci + cj +

�

2
� 2� , �7�

where �i , j ,k� is a permutation of �1,2,3�, then the corre-
sponding two-qubit gate is a perfect entangler. Thus the per-
fect entangler nature of a given two-qubit gate U can be
ascertained from the corresponding geometric representation.

III. SWAP1Õm FAMILY OF GATES

It is well known that a SWAP gate simply interchanges the
input states—i.e., SWAP����
�= �
����. Defining

SWAP� =�
1 0 0 0

0
1 + exp�i���

2

1 − exp�i���
2

0

0
1 − exp�i���

2

1 + exp�i���
2

0

0 0 0 1

� , �8�

it is shown that three such gates with different values of �
are the building blocks for the construction of an arbitrary
two-qubit operation �8�. In such a scheme, SWAP�can be re-
alized by a Heisenberg exchange interaction where � is con-
trolled by adjusting the strength and duration of the interac-
tion. In this section, it is aimed at introducing a family of
gates with �=1 /m for m�1 and exploring their entangling
character.

FIG. 1. Tetrahedron OA1A2A3, the geometrical representation of
nonlocal two-qubit gates, is referred as the Weyl chamber. Polyhe-
dron LMNPQA2 �shown as dotted lines� corresponds to the perfect
entanglers. The thick line OA3, one edge of the Weyl chamber,
corresponds to SWAP1/m gates. The points L= �� /2,0 ,0�, A3

= �� /2,� /2,� /2�, and P= �� /4,� /4,� /4� correspond to CNOT,
SWAP, and SWAP1/2, respectively. The CNOT class of CU gates lies at
the point L and they are all perfect entanglers.
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A. Entangling power

We use the following expression to calculate the entan-
gling power of a two-qubit gate U �4,8,9�:

ep�U� =
5

9
−

1

36

�U�2,T1,3U�2T1,3�

+ ��SWAP � U��2,T1,3�SWAP � U��2T1,3�� , �9�

where �A ,B�=tr�A†B�, referred to as a Hilbert-Schmidt sca-
lar product, and T1,3 is the transposition operator defined as
T1,3�a ,b ,c ,d�= �c ,b ,a ,d� on a four-qubit system. The entan-
gling power of SWAP� is given by �8�

ep�SWAP�� =
1

12
−

1

12
cos�2��� . �10�

For �=1 /m,

ep�SWAP1/m� =
1

12
�1 − cos�2�

m
�� . �11�

It is worth mentioning that ep�SWAP1/2�=1 /6, which is the
maximum value in the above family. By equating the above
entangling power to that of CNOT, it is then possible to esti-
mate the number of SWAP1/m gates �n� required to simulate
CNOT for a given value of m. Since ep�CNOT�=2 /9, the maxi-
mum value, we have the inequality

n
ep�SWAP1/m�� �
2

9
. �12�

Alternatively, the number of gates, n, for a given m is such
that

n�1 − cos�2�

m
�	 �

8

3
. �13�

Table I shows some integer values of m and the correspond-
ing n that satisfies the above inequality.

Loss and DiVincenzo �7� have shown that CNOT can be
constructed using two SWAP1/2 gates along with single-qubit
gates, which is understandable from the point of entangling
power. Moreover, since CNOT and SWAP1/2 possess different
local invariants, at least two SWAP1/2 gates are needed to
simulate CNOT. On the other hand, Table I makes it tempting
to conjecture that CNOT can also be constructed using two
SWAP1/3 gates. Note that the local invariants of SWAP1/3 are
G1=0.4063−0.1624i and G2=1.5, which are different from
that of CNOT. Hence, the later conjecture is well supported by
Makhlin’s concept of local equivalence �5�. We conclude this
part by pointing out that as m increases, the entangling power
reaches a maximum of 1 /6 at m=2 and decreases for a fur-
ther increase of m.

B. Perfect entangler

Expressing SWAP1/m in the Bell basis as SB=Q†�SWAP1/m

�Q, one can find M�SWAP1/m�=SB
TSB. Using Eqs. �5a� and

�5b� the local invariants are obtained as

G1 =
1

16
�9 exp�−

i�

m
� + exp� i3�

m
� + 6 exp� i�

m
�� ,

�14a�

G2 = 3 cos��

m
� . �14b�

Subsequently the geometrical points corresponding to
SWAP1/m can be evaluated from Eqs. �6a� and �6b� as

�c1,c2,c3� = � �

2m
,

�

2m
,

�

2m
� , �15�

which lie along the line OA3 in the Weyl chamber �see Fig.
1�. For these points, the inequality �7� can be rewritten as

1 �
2m

2 + m
� m � 2 or 2 �

2m

2 + m
� m �

2

3
.

It is easy to convince oneself that the first inequality is sat-
isfied only for m=2 and the second inequality is not satisfied
for any values of m. Hence it is inferred that SWAP1/2 is the
only perfect entangler and the corresponding geometrical
point is P= �� /4,� /4,� /4�. This is also evident from the
Fig. 1 that the only point P of the line OA3 belongs to the
polyhedron of the perfect entanglers. In Appendix A, this
result is well justified with an explicit calculation of concur-
rence.

IV. CONTROLLED-UNITARY GATES

In this section we dwell upon the entangling character of
another important class of two-qubit gate-namely, the CU
operation

CU =�
1 0 0 0

0 1 0 0

0 0 ei��+�/2+�/2� cos��/2� ei��+�/2−�/2� sin��/2�
0 0 − ei��−�/2+�/2� sin��/2� ei��−�/2−�/2� cos��/2�

� ,

�16�

where �, �, �, and � are real.

A. Entangling power

Before calculating the entangling power of CU gates, we
make some useful simplification in expression �9�. In what
follows, we use the definitions A=CU�2, S=SWAP�2, B
= �SWAP�CU��2, and T=T1,3. Exploiting the property of
tensor products �14� �A1A2� � �B1B2�= �A1 � B1��A2 � B2�, we
can write B=SA. With this, we have �B ,TBT�
=tr�A†S†TSAT� and the entangling power can be rewritten as

TABLE I. Number of SWAP1/m gates �n� required for the con-
struction of CNOT is shown for a few integer values of m. The
number n is shown to increase with m.

m 2 3 4 5 6 7

No. of gates n 2 2 3 4 6 8
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ep�CU� =
5

9
−

1

36
�tr�A†TAT� + tr�A†S†TSAT��

=
5

9
−

1

36
�tr�A†TAT + A†S†TSAT�� .

In the last step we use the fact that tr�A�+tr�B�=tr�A+B�. It
is convenient to rewrite the above expression as

ep�CU� =
5

9
−

1

36
�tr�A†RAT�� , �17�

where R=T+S†TS. From this expression we arrive at the
conditions for the minimum and maximum entangling power
of CU gates. The entangling power is minimum—i.e.,
ep�CU�=0—if and only if tr�A†RAT�=20. Since tr�RT�=20,
ep�CU�=0 if RA=AR. It is easy to check that the later com-
mutation relation is valid if A commutes with S and T. That
is, if A commutes with S and T, the corresponding entangling
power is zero. On the other hand, the entangling power is
maximum—i.e., ep�CU�=2 /9—if and only if tr�A†RAT�
=12. In terms of the parameters �, �, �, and � the conditions
for the minimum and maximum entangling power for CU
gates can be expressed as follows. Since

tr�A†RAT� = 4 cos2��

2
��1 + cos�� + ��� + 12, �18�

ep�CU�=0 if cos2�� /2��1+cos��+���=2. That is, if the pa-
rameters are such that �=0�2�� and �+�=0�2��, the entan-
gling power is zero. Similarly, for the maximum value of the
entangling power the angles must satisfy the expression

cos2��

2
��1 + cos�� + ��� = 0. �19�

The above expression gives two distinct cases—namely, �i�
�=� for any values of � and � and �ii� ��� and �+�=�,
for which the CU gate possesses the entangling power 2 /9.

B. Perfect entangler

In order to calculate the local invariants, it is convenient
to transform CU gates in the Bell basis as CUB=Q†�CU
�Q and hence we calculate M�CU�= �CUB�T�CUB�. Then
using Eqs. �5a� and �5b� the invariants are found to be

G1 = cos2��

2
�cos2�� + �

2
� , �20a�

G2 = 2 cos2��

2
�cos2�� + �

2
� + 1. �20b�

It may be noted that the local invariants of CNOT are G1=0
and G2=1, which correspond to the geometrical point L
= �� /2,0 ,0�. Since this point satisfies Eq. �7�, CNOT is a
perfect entangler �6�. By equating the above expressions to
the local invariants of CNOT, we have

cos2��

2
��1 + cos�� + ��� = 0. �21�

That is, CU gates satisfying the above condition are locally

equivalent to CNOT, and they correspond to the same point L.
In other words, the CU gates satisfying Eq. �21� are a locally
equivalent class of CNOT and hence they are also perfect
entanglers, as shown in Appendix B.

It is interesting to note that Eqs. �19� and �21� are identi-
cal, implying that CU gates which are locally equivalent to
CNOT must necessarily possess the maximum entangling
power.

V. DISCUSSION

In this paper we have studied the entangling character of
two-qubit gates—namely, SWAP1/m and CU—using entan-
gling power and perfect entanglers as tools. The first part of
the investigation shows that the SWAP1/m family lies along
one edge �OA3� of the geometrical representation of nonlocal
two-qubit gates. It is also observed that SWAP1/2 possesses the
maximal entangling power as well as the only perfect entan-
gler in the family. Further, from the entangling power point
of view, it is conjectured that CNOT can also be constructed
using two SWAP1/3 gates. The possibility of such a construc-
tion is left for future investigation.

In the later part of the paper, we have addressed the en-
tangling properties of CU, which is an important class of
two-qubit gates. In particular, without loss of generality, a
simplified expression for the entangling power of a two-qubit
gate is presented. This simplification facilitates to obtain
conditions on CU gates to possess the minimum and maxi-
mum entangling power. Further, a subset of CU gates which
is locally equivalent to CNOT is explicitly identified. We refer
to the subset as a CNOT class. Interestingly, the CNOT class is
shown to possess the entangling power of CNOT, which is the
maximum value. This result provokes one to conjecture that
locally equivalent gates will have the same entangling power,
which warrants a detailed study. We also note that, since
CNOT is a perfect entangler, all its locally equivalent gates are
also perfect entanglers.

It is well known that an arbitrary CU gate can be con-
structed using two CNOT and single-qubit gates �15�. Since
the subsets CU and CNOT are locally equivalent, in principle
it is possible to construct an element of the subset with a
single CNOT gate. Such a construction would be of funda-
mental importance in circuit complexity.

APPENDIX A: CONCURRENCE OF SWAP1Õm GATES

Here we present a simple technique to explicitly show
that SWAP1/2 is the only perfect entangler. Consider two
single-qubit states as ��1�=a�0�+b�1� and ��2�=e�0�+ f �1�
and denoting ���=SWAP1/m��1� � ��2�, the concurrence can be
calculated using Eq. �3� as

C��� = 2�−
1

4
�1 − exp�2�i

m
���af − be�2� .

From the above expression, we observe that C���=1 only for
m=2 with appropriate choices of input states like �A� a=0,
b=1, e=1, and f =0 and �B� a=e= 1


2
, b= �

1

2

, f = �
1

2

.
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APPENDIX B: CONCURRENCE OF CU GATES

As seen from Eq. �19�, CU is a perfect entangler for �i�
�=� for any values of � and � and �ii� ��� and �+�=�.
Following the earlier technique, here we show that the CU
can generate a maximally entangled state for some input
states.

�i� �=� for any values of � and �. Adopting the notations
used in Appendix A, we denote ���=CU��1� � ��2� and the
concurrence is

C��� = 2�ab�e2 exp�− i�� − �

2
�� − f2 exp�i�� − �

2
��	� .

It is easy to verify that C���=1 for the following choices of
input states:

�A� a =
1

2

, b = �
1

2

, e = 1, f = 0,

�B� a =
1

2

, b = �
1

2

, e = 0, f = 1.

�ii� ���, �+�=�. In this case the concurrence can be
obtained as

C��� = 2�− 2iabef cos��

2
� − iab sin��

2
�

��e2 exp�− i�� − f2 exp�i���� .

As an example, we can easily verify that for an arbitrary
value of � and �=0, the application of CU on the input state
a=b=e= 1


2
, f = �

1

2

produces a maximally entangled state.
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