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We present an analysis of squeezed single photon states as a resource for teleportation of coherent state
qubits and propose proof-of-principle experiments for the demonstration of coherent state teleportation and
entanglement swapping. We include an analysis of the squeezed vacuum as a simpler approximation to small-
amplitude cat states. We also investigate the effects of imperfect sources and inefficient detection on the

proposed experiments.
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I. INTRODUCTION

Coherent state quantum computing (CSQC) [1,2] is an
optical approach to quantum computing which relies solely
on linear optics, state preparation, and measurement, rather
than in-line optical nonlinearities. Unlike in single photon
linear optical quantum computing (LOQC) [3,4]—where qu-
bits are encoded in the polarization, path, frequency, etc. of
single photons—in CSQC, qubits are encoded in the phase
and amplitude of coherent states. The qubit basis is defined
as |0)=|@) and |1)=|-a). The basis is only approximately
orthogonal where (a|-a)=e=2", however, for |a|>2, the
overlap is practically zero (<4 X 107%).

In both CSQC and LOQC, teleportation is used to imple-
ment gates [5]. A key practical difference between the two
schemes is that a simple teleportation scheme, with a high
probability of success, exists for CSQC [6,7], whilst simple
LOQC teleportation only works with a 50% success rate [8].
More generally, in the Knill-Laflamme-Milburn scheme the
probability of teleportation scales as n/(n+ 1), where n is the
number of photons in the entangled state used as a resource
and the complexity of the circuit increases with n [3]. This
leads to a significant saving in the overheads for computa-
tion.

It was thought that =2 was needed in order to imple-
ment the required gates for quantum computing, due to the
nonorthogonality of coherent state qubits [9]. More recently,
however, Lund er al. [2] presented a universal set of gates for
quantum computing which work even for small «. In this
scheme, the size of the coherent state has no effect on the
fidelity of the gate—only on the probability of success of the
gate. Indeed, below a certain «, these gates could not be used
for scalable quantum computing, as the probability of suc-
cess would be too low, nevertheless the probability of suc-
cess can still be significantly greater than the LOQC bound
of 50%. Such heralded gates open the door to a range of
exciting possibilities for proof-of-principle experimental
implementation of coherent state quantum computing.

The difficulty in performing these (and previous) gates
does not arise from our inability to create large-amplitude
coherent states—these are very well approximated by the
output of a laser. The difficulty arises from our inability to
create superpositions of coherent states with large a. Such
coherent state superpositions, known in the literature as cat
states, have not yet been experimentally realized.
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However, small-amplitude cat states can be
approximated—in some cases, very well—using photon-
subtracted squeezed vacuum states [10]. Such states have
already been experimentally demonstrated [11,12]. We note
that a photon-subtracted squeezed vacuum state is math-
ematically equivalent to a squeezed single photon state.
These terms will be used interchangeably depending on con-
text throughout this paper. In this paper, we will also exam-
ine the squeezed vacuum state as a less complicated way of
generating cat state approximations. We will not discuss ap-
proximations to small-amplitude cat states via homodyne
postselection [13].

This paper is organized as follows. In Sec. II we revisit
the coherent state teleportation protocol introduced in [6,7].
In Sec. III we discuss approximations to cat states, in par-
ticular, the squeezed single photon state. We then analyze
how well these squeezed single photon states perform as re-
source states for the teleportation of arbitrary coherent state
qubits in Sec. IV. In Sec. V, we propose experimentally real-
izable demonstrations of coherent state teleportation using
squeezed single photons. In Sec. VI, we analyze the effect of
imperfect state preparation and inefficient detection on the
teleportation scheme before we conclude and discuss our re-
sults in Sec. VIIL.

II. TELEPORTATION

The gates presented in [2] are all variations of the quan-
tum teleportation scheme [6,7,14] shown in Fig. 1. We will
use this teleportation scheme as the basis for our proof-of-
principle experiments. Refer to the caption in Fig. 1 for a
brief review of teleportation using cat-states.

A cat state is an equal coherent superposition of two co-
herent states |3) and |-8), where

o

B=c ey )y, (1)

n=0 \n!

Using an odd cat |B),—|-8), as the resource state, the com-
bined input state can be written as follows (ignoring normal-
izations):

[ = (@ + 1= @))(|B)s = |- BHI0)..  (2)

In this paper, we will use the convention that « refers to the
initial amplitude of the input states in mode a and S refers to
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FIG. 1. (Color online) Teleportation scheme for teleporting the
state | ), = u| @), +v|-a),. A resource state, =|B)y = |-B)ps in-
cident on a 50:50 beam splitter, creates a coherent-state Bell pair in
modes b and c. After the second beam splitter, photon-number mea-
surements of modes a and b project the state in mode ¢ into |¢'),
=|¢), (up to local unitaries). Depending on the measurement re-
sults, the remaining qubit may need to be corrected. The corrections
(for an odd cat resource state) are as follows: n=o0dd, m=0, U—1I;
n=0, m=odd, U—X; n=even, m=0, U—Z; n=0, m=even, U
— XZ, where X and Z are Pauli operators and / is the identity
operation. For experimental realisation of this scheme, |res),
=S|1), and |¢),=|a),. §,r|1>aﬁor 8,40, where r=ro(B), r
=rop(@), "=ropy(a@) and B=12a. The squiggly line emphasizes
entanglement between qubits.

the initial amplitude of the resource states in mode b and 8
=\2a. The first beam splitter turns the resource state in mode
b into a coherent-state Bell pair in modes b and c:

|¢BS>a,b,c = (M|a>a + V|_ a)a)(|a>b|a>c - |_ a>b|_ OZ>C)
3)

Just before the photon number measurement, the three-mode
state is

|lr/f>abc ,LL|ﬂ O a’>abc T a>a,b,c

ab,c ™ V|_ B’Ov_ a)a,b,C' (4)

From Eq. (4), it can be seen that photon-number measure-
ments of modes a and b will project the state in mode ¢ into
ula).+v|-a)., or some known variation which can be cor-
rected with single qubit Pauli operations (see Fig. 1). In prac-
tice, only the X correction (which is simply implemented
using a phase shifter) needs to be performed for gate appli-
cations [15]. Here we assume corrections are done after de-
tection of the output state. This is called working in the
“Pauli frame” [16].

Ideally, it is not possible to detect a nonzero number of
photons in both detectors simultaneously. The teleportation
fails when both detectors get the result 0. As « increases, the
probability of there being a |0) component in a coherent state
decreases, therefore the probability of getting the result m
=n=0 also decreases, resulting in an increased probability of
success. This happens at different rates depending on the
input state. In the unique case of the input state being an odd
cat state, there are never any m=n=0 components and there-
fore the success probability is always 1. The solid curves in
Fig. 2 show the success probabilities for a selection of input
states which range between two extremities. When the gate
succeeds, it does so with unity fidelity.
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FIG. 2. (Color online) Success probabilities of the teleportation

scheme shown in Fig. 1 using |res)=|B8)—|-B) (solid) and |res)
=$,/1) (dashed). The input states are (from top to bottom) \L—|a>
—\L-|a) (red), %|a>—§ a) (blue), |@) or |-a) (green), and 3|a)
+3|a) (yellow). Notice that the success probability is always larger
than that of the LOQC scheme which cannot succeed more than
half of the time.

III. APPROXIMATING CAT STATES

In this section, we will discuss experimentally realizable
approximations to cat states. We will use the fidelity

and therefore as a measure of how well these states approxi-
mate cat states. The fidelity ranges between 0, where the
states are orthogonal, and 1, where the states are equal.

Consider even and odd cat states of amplitude B [17] as
follows:

leven cat) = N,(|8) + |- B)) = -'B‘“E |2n> (5)
n=0 \’
lodd cat)=N_(|8) - |- B))
a2 *° 2’32n+1
N S P
N_e go anﬂ)!pm 1), (6)

where N.=1/V2(1 * e‘z‘/}'z). By writing the cat states in the
Fock basis, we see that the even (odd) cat state contains only
even (odd) photon number terms.

The squeezed vacuum state

A (tanh r)" \an‘
S,/0y= E ———2n), (7
»=0 \coshr 2"n!

where r is the squeezing parameter, also contains only even
photon number terms. The squeezed single photon is a
Gaussian state, but nevertheless it is a high-fidelity (F
>0.99) approximation to the small-amplitude (B50.75)
even cat state. Optimizing over r, we find that the fidelity

between |B)+|-B) and .§'l:|0> is at a maximum when
Fopiv(B) =In( 28%+\1+48%). Figure 3(a) shows how this
fidelity and the optimum amount of squeezing r vary as a
function of . If one photon is subtracted from the squeezed

vacuum state, the resulting state contains only odd photon-
number terms and is a high-fidelity (F>0.99) approximation
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FIG. 3. (Color online) (a) The fidelity between an even cat state
and a squeezed vacuum state (solid) and the optimal squeezing
parameter, r (dashed), as a function of «. (b) The fidelity between
an odd cat state and a squeezed single photon (solid) and the opti-
mal squeezing parameter, r (dashed), as a function of a. Notice
different scales for the fidelities and the optimum squeezing param-
eters between (a) and (b).

to the small-amplitude (B 1.2) odd cat state [18]. We re-
mind the reader that this is also the squeezed single photon
state:

(tanh r)" V(2n+1)!
coshr)¥? 2"l

as,|0y=5,1y=> 2n+1). (8)
n=0

Figure 4 shows the Wigner functions for odd cat states of
amplitudes 8=2 and B=1, as well as for a squeezed single
photon. Optimizing over r, we find that the fidelity between

18- |- ) _and S/1) is at a maximum when Fopr(B)
=In(\V%E+1\9+48%).

Figure 3(b) shows how this fidelity and the optimum
amount of squeezing r vary as a function of B. One can
continue to subtract more photons, each time creating a bet-
ter approximation to either an even or an odd cat state, how-
ever, this very quickly becomes extraordinarily challenging
to implement experimentally. A theoretical analysis of this
method was performed in Refs. [18,19].

In this paper, we focus on the squeezed single photon, as
it is a better cat-state approximation than the squeezed
vacuum state, and has already been experimentally demon-
strated [11,12]. However, we will include results for the
squeezed vacuum state for comparison and to see just how
well one can do with a Gaussian state. In the next section, we
will investigate the eligibility of the squeezed single photon
state as an approximation to an odd cat state, for the pur-
poses of proof-of-principle implementation of the quantum
teleportation described in [2].

We emphasize that it should not be taken for granted that
a high-fidelity approximation to a cat state will necessarily

PHYSICAL REVIEW A 78, 052304 (2008)

FIG. 4. (Color online) The Wigner function W, where x and p
are the in-phase and out-of-phase quadratures, respectively, for an
odd cat state |8)—|B) where 8=2 (a), an odd cat state where 8=1
(b), and a squeezed single photon S,|1) where r=ro(1)=0.31 (c).
Notice that at 8=1, the Wigner functions for the cat state looks very
much like for the squeezed single photon. This becomes more pro-
nounced at even lower B. In the limit of 8—0, the odd cat state
becomes an unsqueezed single photon.

perform well in CSQC protocols. Take the example of the cat
breeding protocol introduced by Lund et al. and Jeong et al.
[10,20]. Using this scheme, it is possible to create larger cat
states by interferring two smaller cat states on a beam split-
ter, then performing a measurement on one of the output
modes. When a squeezed vacuum state is used as an approxi-
mation to an even cat state in this protocol, the resultant state
is not the expected approximation to a larger cat state, but
rather the same sized squeezed vacuum state that was input
into the scheme. This is in spite of the high fidelity between
the squeezed vacuum and the even cat state at small «.

IV. SQUEEZED SINGLE PHOTON
AS A RESOURCE

In this section, we will examine how well coherent state
(CS) teleportation can be implemented using a squeezed
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FIG. 5. (Color online) (a) Fidelities for the teleportation of
|py,=|a)—|-c) using |res),=S,|1) given different photon-number
measurement results (from top to bottom) m=1, 2, 3, 4, and 5. (b)
Fidelities for the teleportation scheme using |res)b=$',|1) and a va-
riety of input states (from top to bottom): |a)—|a) (red); %|a)
+§|a) (blue); |a)+|a) (yellow); and |a) or |-a) (green). The input
state has only a minor effect on the fidelity.

single photon as a resource. In Sec. III, we showed that the
squeezed single photon is a very good approximation to a
small-amplitude odd cat state (and that the squeezed vacuum
is also a good approximation to an even cat state, but at
smaller amplitudes).

To characterize how well the 3',|1> theoretically performs
as a resource for teleportation, we will calculate the fidelity
F(|$)a.|®").) between the input state |¢p), and the output
state |¢'),. Since our resource state is only approximate, we
will not have perfect interference at the beam splitters. This
will have three consequences. The first will be variations in
the output state depending on the photon-number measure-
ment results, as demonstrated in Fig. 5(a). By taking into
account the different possible output states and the probabil-
ity with which we expect for them to occur, we can calculate
the average fidelity. One reason for this variation in fideli-
ties, given different photon-number measurement results, is
due to r being optimized to maximize the fidelity between
|res),=S,|1) and [res),=|B)—|-B). This will maximize the
average fidelity for the teleporter, but not the individual fi-
delities for each different photon-number result. The second
consequence of the imperfect interference will result in an
input-state-dependent fidelity as demonstrated in Fig. 5(b).
This is only a small effect. Notice that the fidelity drops as a
function of «. This is solely due to the inadequacy of the

3’,| 1) as an approximation to an odd cat state at high ampli-
tudes, and not an artifact of the gate itself.

PHYSICAL REVIEW A 78, 052304 (2008)

The third consequence of the imperfect interference will
be an additional way in which the gate can fail. Not only will
it fail if we measure zero photons in both detectors, it will
also fail if we measure a nonzero number of photons in both
detectors simultaneously, something which was not possible
when we had perfect interference. This will result in a
slightly decreased probability of success, which begins to
manifest itself at larger amplitudes whereas the m=n=0
events are only problematic at low amplitudes. This is shown
by the dashed curves in Fig. 2.

One might expect that the the squeezed single photon will
only be as good a resource as it is an approximation to an
odd cat state. It is interesting to note that it is actually better.

A squeezed single photon §,|1) will have a certain fidelity
when compared with an odd cat state |3)—|-8), however,
using that resource for teleporting |),=|a)—|-a) results in
teleportation with a higher fidelity for a given .

In the next section, we will look at teleporting physically
realizable input states.

V. PROPOSED EXPERIMENTS

In the previous section, we demonstrated that a squeezed
single photon could be, in theory, a resource for teleportation
of arbitrary superpositions of small-amplitude coherent
states, however, at present, we are unable to create such su-
perpositions. In this section we propose two types of experi-
ment. The first is the teleportation of three particular example
states: a squeezed single photon as an approximation to an
odd cat state, a squeezed vacuum as an approximation to an
even cat state, and a coherent state. The second is an en-
tanglement swapping scheme which demonstrates the effec-
tive teleportation of an arbitrary superposition of coherent
states. In our calculations, the photon-number expansion of
the states in this section were truncated at n=15, which was
sufficient for accurate results up to S=1.2.

A. Teleportation

We will demonstrate CS teleportation by using the re-
source state |res)=S5,|1) to teleport the following input states:
a squeezed single photon S,/|1) as an approximation to an

odd cat state |a)—|-a); a squeezed vacuum state S,,|0) as an
approximation to an even cat state |a)+|—-a); and a coherent
state |a).

To teleport a squeezed single photon S,/|1) using another

squeezed single photon §,| 1), we need to match the optimal
squeezing parameters r and r’. This can be achieved by re-
lating the squeezed single photons to the odd cat states they
are intended to approximate. This gives r=ron(B) and r’'
=rop(@), where B=\2a. We have calculated the fidelity av-
eraged over only the odd photon-number results. For even
results, a Z correction is required, which would involve send-
ing the output state through another gate making a meaning-
ful comparison between the input and output states of the
teleporter difficult. Allowing for the X correction is easy as it
simply corresponds to a 7 phase shift. All further fidelities
shown in this section have also been averaged over odd
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FIG. 6. (Color online) (a) Fidelities for teleportation using
|res)b=.§'|1)r and teleporting (solid, from top to bottom): |¢),=]|a)
—|-a) and |¢),=|a)+|-a) as well as (dashed, from top to bottom)
|¢>)a=§,,|1)a, b)u=|a),, and |q§>a=$’rn|0>a. (b) Fidelities for telepor-
tation using |res),=5,/0), and teleporting (solid, from top to bot-
tom): |p),=|a)+|-a) and |p),=|a)—|-a) as well as (dashed, from
top to bottom) |¢),=S,40),, and |¢),=S,/|1),. Notice different
scales for the fidelity.

photon-number results, for consistency. We also calculated
the fidelity for teleporting |¢),=|a),—|-a), using |res),

=S,|1),. Both results are shown in Fig. 6(a). For easy com-
parison with other figures, we have plotted the fidelity as a
function of the effective 8 for the squeezed single photon,
rather than the squeezing parameter r.

To teleport the squeezed vacuum state, we set r”

=ropev(@). The fidelities for teleporting S,4]0) and |a)+|-a)
are also shown in Fig. 6(a), as is the fidelity for teleporting
|p)=| ). While there is some variation in the fidelity for the
different input states, in the region where S5 1.2, the fidelity
is always >0.99, even when we teleport the squeezed
vacuum state.

Using the squeezed vacuum state as a resource for tele-
portation, however, does not do as well. This is because the
resource state needs to be higher in amplitude than the input
state and the squeezed vacuum is not as good an approxima-
tion to an even cat state at higher amplitudes. To achieve
fidelities >0.99, we can only use BS0.5. These results are
shown in Fig. 6(b). It is interesting to note that when using
the squeezed vacuum state as a resource, the fidelities for
teleportation do not follow the general trends of the fidelity
between the ideal and approximate resource, as is the case
with using the squeezed single photon as a resource.

PHYSICAL REVIEW A 78, 052304 (2008)

FIG. 7. (Color online) (a) By measuring mode a of a Bell state
in an arbitrary basis, an arbitrary state can be prepared in mode b.
This arbitrary state can be subsequently sent through a teleporter, 7.
(b) Replacing the teleporter T with the teleporter described in Fig. 1
and delaying the measurement of mode a, until after the teleporta-
tion, results in an entanglement swapping scheme analogous to (a),
where the Bell state is created by sending the state |, through a
beam splitter and the teleporter consists of the circuit inside the
dotted region. By teleporting one qubit in the Bell state before
measuring the other qubit in that Bell state, we are effectively tele-
porting all possible states. The homodyne measurements on modes
a and d can be performed at the end in the form of state tomogra-
phy. The squiggly lines represent entanglement between qubits.

B. Entanglement swapping

To truly demonstrate a teleportation protocol, one would
like to show that the protocol is capable of teleporting an
unknown arbitrary state. We will show how this can be done
by casting the teleportation of an arbitrary unknown state
into an entanglement swapping scheme. Refer to the caption
in Fig. 7 for details.

To characterize how well this protocol works, we will
calculate the fidelity between the two-qubit entangled state in
modes a and b, after the first beam splitter, and the two-qubit
entangled state in modes a and d, after the photon number
measurements of modes b and c. In our calculations, as with
the teleportation scheme, we have omitted the even photon-
number results. The average fidelity, over the odd photon-
number results, is shown in Fig. 8. At first glance, it looks
like the entanglement swapping protocol does not work as
well as the teleportation scheme. This is because, for a given
resource state of amplitude 3, the input state to be teleported
would have an amplitude « and the cat state approximations
are much better at lower amplitudes. For the entanglement
swapping scheme, we begin with two states of amplitude 3,
which means we are already starting with lower fidelity ap-
proximations. Nevertheless, for 85 1.2, the fidelity is always
>0.99.

Using squeezed vacuum state to approximate an even cat
state does not perform as well. To achieve fidelities of
>0.99, we could only use 850.45.

VI. ERROR ANALYSIS

Until now, we have been treating the proposed experi-
ments as lossless systems, however, propagation loss, imper-
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FIG. 8. (Color online) Fidelity for an entanglement swapping
protocol using (a) |¢)=5‘rr\1) and (b) |gb)=.§',n|0). Notice different
scales for the fidelity.

fect detectors, and loss in the source are likely to be issues in
the experiment. In this section, we will investigate the effects
of loss in the proposed experiment.

Errors could occur in a number of places: the state to be
teleported and the resource state could be made imperfectly;
there could be photon loss at the optical elements; and of
course, inefficient photon number and homodyne detection.
In this paper, we will assume that imperfect creation of the
state to be teleported and any inefficiencies in the homodyne
detection of the output state reflect our inability to analyze
how well the scheme worked and are not fundamental to the
scheme itself. These errors can be compensated for in the
postmeasurement analysis of the data. The calculations in
this section were complicated by the additional loss modes,
therefore, we needed to limit ourselves to smaller values of
B. The photon-number expansion of the states in this section
were truncated at n=6 for the teleportation scheme and n
=5 for the entanglement swapping scheme which gave accu-
rate results up to S=1 and B=0.5, respectively.

A. Teleportation

We will model the imperfect creation of the resource state
by placing a beam splitter of transmittivity », just after the
source and the inefficient photodetection by placing beam
splitters of transmittivity 7, just before the detectors, as is
shown in Fig. 9. We assume that both detectors will have the
same inefficiencies. 7 ranges from 0 to 1 and at =1, we
have a lossless system. Our loss calculations have been car-
ried out for the same scenario as in Sec. V, however, the loss
in mode b will decrease the amplitude of the resource state

PHYSICAL REVIEW A 78, 052304 (2008)

FIG. 9. (Color online) Teleportation scheme (a) and entangle-
ment swapping scheme (b) with additional beam splitters of trans-
mittivity: #; to model the imperfect creation of the resource state
|res>b=.§’ /1)5, and 7, to model the inefficiencies in the photodetec-
tors. The input state is |¢>a=$‘,/|1_>a_ where r’=r(,pt(\5Za) for the
teleportation scheme and 7’ =r, (V7 8) for the entanglement swap-
ping scheme to match the amplitude of the lossy resource state.

Ires),=S,|1), by V5. To match this, our states to be tele-

ported will need to be |¢>> =\ 771a> S.|1),, and S0,
where ' =ry,(\ '7@) and 7 "= opv(V 7]1a) Figure 10 shows

the fidelity as a function of 7, and 7, using |res>b—S,|1),7 and
teleporting |¢),=S,/|1), (a) and |a), (b) for B=0.5 (solid)
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FIG. 10. (Color online) Contour plots of the fidelity for the
teleportation scheme as a function of 7, and #», for 8=0.5 (solid)

and B=1.0 (dashed): (a) |res)=S,[1) and |¢)=S.|1); (b) |res)
=$,|1) and |¢)=|a).
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and B=1.0 (dashed). As expected, loss has less effect on the

fidelity at lower B, unfortunately, for |$),=S,[1),, decreas-
ing B does not improve the fidelity in the high-fidelity re-
gime where one would like to perform experiments. Tele-
porting |p),=|a), is largely unaffected by loss. At both
amplitudes, the fidelity remains extremely high.

To compare these fidelities with those for other states, we
have taken a slice through the contour plots at n;=7, and
plotted the fidelity as a function of the equal losses. This is
shown in Fig. 11. We have calculated the fidelity for teleport-
ing a selection of ideal input states using both an ideal odd
cat state and the squeezed single photon approximation as
resources. Where possible, we have also teleported approxi-
mations to the ideal input states. This was done for 8=0.5
and B=1.0. This gives an idea of how much of the effect of
loss is inherent to the scheme and how much is a result of the
approximate input and resource states. At £=0.5, it is diffi-
cult to distinguish between the results for any of these varia-
tions between ideal and approximate input and resource
states. At this amplitude, the effects of loss are fundamental
to the scheme itself. It is interesting to note that for |¢),
=S.|1), (or |#),=|a),~|-a),), in the limit of 5, —0, the
input state amplitude is matched such that a— 0, in which
case, the input state becomes |¢#),— |1), and the output state
will be |¢'),=|0), resulting in a fidelity which goes to 0.
However, for any other input state, as 7, — 0, the input state
will tend to |@),— |0),. The output state will still be ).
=|0), resulting in a fidelity which goes to 1. This is why the
loss seems to have a greater effect on the fidelity for tele-
porting |¢#),=S,/|1),, and |¢),=|a),—|-a), than any other
state.

Increasing the amplitude to S=1.0 does not have much
effect on teleporting the odd cat state (and its approxima-
tions), but it does decrease the fidelity for the other states. In
attempting high-fidelity experiments, low loss levels will be

essential when teleporting states similar to |¢>a=3‘,, 1), and

|¢>a=|a>a_|_a>a' States closer to |¢>a=|a>a+|_a>a’ ¢>a
=|a),, and their approximations are more forgiving.

B. Entanglement swapping

In the entanglement swapping protocol, we treat modes a
and b as the input state to the teleporter and ignore loss in
these modes in the analysis of the effects of loss on the
teleporter, which has been modeled in much the same way as
in Sec. VI A. We were only able to get reliable fidelities for
B=0.5 as higher values of 8 would require higher truncation
of the photon number which, for a seven-mode calculation,
was not computationally tractable. These fidelities are shown
in Fig. 12.

At this amplitude, we can see that there is not much dif-
ference between performing the entanglement swapping with
an ideal odd cat state or the squeezed single photon. Both are
quite severely affected by loss. The ideal even cat is much
more tolerant to loss whereas the squeezed vacuum is less so,
however, still better than the odd cat and squeezed single
photon.

VII. DISCUSSION

The squeezed single photon turns out to be a great re-
source for high-fidelity teleportation of small-amplitude co-
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FIG. 11. (Color online) The fidelity for the teleportation scheme
as a function of 7, and 7,, where 7,=17, for 8=0.5 (solid) and 8
=1.0 (dashed). (a) |res)=|8)~|-B) and |Pp)=|a)—|-a) (red), |res)
=S,|1) and |p)=|a)—|-a) (blue), and |resy=S,|1) and |p)=S,/|1)
(green). The fidelities for these states are so similar, they are prac-
tically indistinguishable. (b) From top to bottom, [res)=|8)-|-5)
and |¢>=%|a>—§|—a) (red), and |res)=S,|1) and \¢>=%|a>—§
—a) (blue). For @=0.5, the fidelities are also practically indistin-
guishable. (c) From top to bottom, |res)=S,|1) and |¢)=3,/0)
(green), |res)=S,|1) and |p)=|a)+|-a) (blue), and |res)=|B8)—|-B)
and |¢)=|a)+|-a) (red). Again, practically indistinguishable at a
=0.5. (d) From top to bottom, |res)=|8)—|-B) and |¢p)=|a) (red),
and |res)=S,|1) and |$)=|a) (blue). Notice different scales for the
fidelity.

herent state superpositions. Due to its property of always
containing at least one photon, the teleportation scheme will
always succeed with a probability greater than 50%. We have
shown that the squeezed single photon can be used to tele-
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FIG. 12. (Color online) Contour plots of the fidelity for the
entanglement swapping scheme as a function of 7, and 7, for 8
=0.5 where (a) |¢)=|a)—|-a) (dashed) and |¢)=3‘,r|1> (solid), and
(b) |#)=|a)+|-a) (dashed) and |¢p)=S,.|0) (solid).

port a coherent state, a squeezed single photon, and a
squeezed vacuum, which despite not being a very good re-
source for teleportation itself, is a good approximation to an

PHYSICAL REVIEW A 78, 052304 (2008)

even cat state at very small amplitudes. In-principle telepor-
tation of arbitrary coherent state superpositions can be dem-
onstrated using the squeezed single photons as inputs to an
entanglement swapping protocol. This also works with high
fidelity at small amplitudes. Teleportation is the implementa-
tion of the identity gate and these results suggest that dem-
onstration of more complicated nontrivial gates will be prac-
tical in the foreseeable future.

Our analysis of the effects of imperfect source preparation
and inefficient detection has shown this setup to be very
fragile in this regard. It would be possible to do high-fidelity
teleportation of states like the coherent state and the even cat
state with a lossy system, but states which are more similar
to the odd cat state degrade very quickly, even with low loss.
It looks like this fragility is a property of the gate, and not
just the approximation of the states, however, at higher am-
plitudes, the fidelity is further affected by loss when using
the approximate states.

In this paper we have analyzed coherent state teleporta-
tion using small-amplitude approximations to cat states,
however, there has been progress in creating larger amplitude
cat state approximations via cat state amplification [10,20]
and ancilla-assisted photon subtraction [21].
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