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We investigate entanglement of solitons in the continuum limit of the nonlinear Frenkel-Kontorova chain.
We find that the entanglement of solitons manifests particlelike behavior as they are characterized by local-
ization of entanglement. The von Neumann entropy of solitons mixes critical with noncritical behaviors. Inside
the core of the soliton the logarithmic increase of the entropy is faster than the universal increase of a critical
field, whereas outside the core the entropy decreases and saturates the constant value of the corresponding
massive noncritical field. In addition, two solitons manifest long-range entanglement that decreases with the
separation of the solitons more slowly than the universal decrease of the critical field. Interestingly, in the
noncritical regime of the Frenkel-Kontorova model, entanglement can even increase with the separation of the
solitons. We show that most of the entanglement of the so-called internal modes of the solitons is saturated by
local degrees of freedom inside the core, and therefore we suggest using the internal modes as carriers of
quantum information.
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I. INTRODUCTION

It is well known that nonlinear theories manifest a variety
of classical configurations such as solitons and instantons
and dynamical effects such as symmetry breaking, confine-
ment, and phase transitions, which can never be seen using
an ordinary perturbative expansion. Such exact classical con-
figurations can provide us with powerful insight into the non-
perturbative content of those theories and may exhibit emer-
gent particlelike behavior. Classical configurations such as
solitons are commonly observed solutions of nonlinear rela-
tivistic or nonrelativistic equations. They are localized, finite
energy solutions, which can travel while retaining their
shape. These classical configurations also strongly determine
the structure of the corresponding quantized theories. For
example, the Hilbert space of the well-known one-
dimensional �4 and sine-Gordon field theory models are
classified to topologically inequivalent sectors, which cannot
be obtained by power expansion of the global vacuum state.
However, these sectors can be obtained by quantizing a field
around the nontrivial backgrounds of either the �4 kinks or
sine-Gordon solitons �1�.

It is interesting to ask whether nonperturbative effects,
such as collective particlelike behavior, are manifested in the
entanglement structure of nonlinear theories. Much of the
recent study of entanglement in multipartite systems has
been carried out in linear systems such as harmonic and spin
chains �2,3�. In such one-dimensional system it has been
found that entanglement is a measure of criticality and mani-
fests a universal scaling behavior �4,5�. The behavior of en-
tanglement in nonlinear systems may challenge some of the
insights from the linear systems, and shed light regarding the
nature of entanglement. The study of entanglement in non-
linear systems may also suggest implementations of
quantum-information processes.

In this work we investigate entanglement in a chain of
nearest neighbors interacting oscillators subjected to a peri-
odic on-site external potential, known as the Frenkel-
Kontorova �FK� model �6,7�. This model possesses rich be-

havior and so we parametrize it from two aspects: its weak-
and strong-coupling regime and critical and noncritical re-
gime. The continuum-limit solutions of the FK model are the
well-known sine-Gordon solitons. Although we deal with a
finite discrete system, it still retains most of the characteris-
tics of the continuum and therefore in the following we shall
use the same field-theory terminology �vacuum sector, soli-
ton sector, etc.�.

Roughly speaking, one can say that a soliton solution is
one in which the effective �mass�2 of the quantum free-field
around the classical background decreases inside the core of
the soliton and even becomes negative. Outside the soliton
the field behaves as a regular massive free theory. Therefore,
the field interpolates critical-like behavior inside the soliton’s
core and noncritical behavior outside the core.

It can be expected, therefore, that the von Neumann en-
tropy of a region which coincides with the soliton will mani-
fest a mixture of critical and noncritical behaviors, depend-
ing on its size. This is the first result we provide. We
compute the entanglement in the single-soliton sector ground
state. We find that as long as the block is confined to the
soliton’s core, entanglement increases logarithmically but
faster than the critical harmonic systems. However, as we
keep increasing the size of the block so that it grows outside
the soliton’s kink, the entanglement decreases and saturates
the asymptotic constant limit that corresponds to the non-
critical massive system. Therefore, the soliton manifests a
particlelike localization of entanglement.

Next we study long-range effects of entanglement, that is
the entanglement between two spatially separated blocks,
and use the logarithmic negativity as a measure of entangle-
ment. We find that the entanglement distribution is peaked
around the location of the solitons. We then study soliton-
soliton entanglement as a function of their separation and
compare the results with the corresponding behavior in the
vacuum sector. The latter is also equivalent to the ground
state of a linear harmonic chain with mass m�1�g, where g
is the coupling strength.

In the two-soliton sector we see complex behavior of
long-range entanglement. We find that the entanglement be-
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tween two solitons is larger than the corresponding entangle-
ment in the vacuum sector. For relatively small separations
of the solitons the entanglement decays with the separation
more slowly than that of the critical vacuum sector. More-
over, in the noncritical limit entanglement loses one of its
most fundamental properties: It is no longer a monotonically
decreasing function of the distance between the solitons.

Much of our discussion is devoted to the strong-coupling
limit. In the weak-coupling limit, where the kinks become
impurities that are confined to a few particles, we find that
the entanglement loses both its localization and long-range
effects.

Finally, we suggest and investigate the possible use of
solitons as carriers of quantum information. We propose uti-
lizing the internal localized modes, which describe collective
and vibrational perturbations of the classical soliton, as the
carriers of quantum information. The soliton is handled as a
nonperturbative classical object while the internal modes are
quantized linear perturbations “around” it. Since the internal
modes are “attached” to the soliton, by moving the soliton,
quantum information can be transported in the system.
�Transportation of quantum information has been discussed
for harmonic chains �8�, spin chains �9�, and Josephson ar-
rays �10��. We also formulate multisoliton processes, which
generate entanglement.

The paper is organized as follows. In the next section we
describe the FK model and analyze its strong- and weak-
coupling and critical-noncritical limits. Then in Sec. III we
investigate localization of entanglement in the continuum
limit of the FK model. In Sec. IV we present the soliton-
soliton long-range entanglement. In Sec. V we briefly discuss
the loss of both long-range effects and localization in
the weak-coupling limit. In Sec. VI we discuss possible
quantum-information implementations. Last, in Sec. VII we
summarize the significant results and outline future direc-
tions of research.

II. FRENKEL-KONTOROVA MODEL

We consider N particles with canonical coordinates �n
and �n, described by the Hamiltonian of the FK model �6,7�,

H = �
n=1

N
1

2
��n

2 + 2Vsub��n� + g��n+1 − �n�2� , �1�

where �n is the displacement of the nth particle from its
equilibrium position, g is the coupling constant between par-
ticles in the chain, and

Vsub��� = 1 − cos � . �2�

We use dimensionless units in which the particles mass
equals 1 and the period and amplitude of the substrate po-
tential Vsub��� are as=2� and �s=2, respectively. In the
ground state of the system all particles occupy minima of the
potential such that �n=0 or �n=2�, etc. Then the simplest
excited state is a soliton that connects two neighboring
ground-state solutions as illustrated in Fig. 1.

A. Classical solutions

The exact solutions of the discrete FK chain are not
known in an explicit analytical form due to the discreteness
of the problem. However, in the strong-coupling limit, g
�1, an approximate discrete solution can be obtained using
the continuum limit approximation, n→x=nas and �l�t�
→��x , t� �11�. In this framework we begin with the sine-
Gordon Hamiltonian density

H�x,t� = 1
2�2 + gas

2 1
2 ����2 + Vsub��� , �3�

where a dot or a prime represents differentiation with respect
to time or space, respectively. The equation of motion is then
the integrable sine-Gordon �SG� equation

�2�

�t2 − gas
2�2�

�x2 + sin � = 0. �4�

Imposing the boundary conditions

d�

dx
���� = 0 �5�

and rescaling x→x /as, we obtain the SG soliton solution

�SG�x� = 4 tan−1 exp�− �
x − X
�g

	 , �6�

where �g defines the soliton’s width in units of the period of
the substrate potential, �= �1 and X is the coordinate of the
soliton’s center. For g�gcon�16 the continuum limit is a
reasonable approximation. We can then describe our
N-particle system using the continuum solution by sampling
�SG at N points with separation 1, where X is sampled at the
middle. Throughout the paper we shall refer to this sampled
classical solution �Eq. �6�� simply as the soliton solution �for
g�gcon�. Note that as we increase g, even though the sepa-
ration between particles is kept constant, the number of par-
ticles �points� that sample the core of the soliton, �g, in-
creases.

In order to investigate long-range entanglement between
solitons, we are interested in exploring double-soliton solu-
tions as well. There are no multisoliton static solutions in
infinite systems. However, the finite sine-Gordon equation
also possesses multisoliton static solutions �Eq. �4��. This
equation describes the magnetic flux in a long Josephson
junction of length 2L with a constant homogeneous external
magnetic field H, perpendicular to the barrier and with bias
current line density I. We use these double-soliton solutions,
�2SG, as the continuum limit approximation of the of FK
model in a finite system. In the Appendix we describe the
analytical solutions of the double-soliton solutions. For illus-

FIG. 1. �Color online� Schematic structure of the FK chain for
N=10. The blue circles are the vacuum equilibrium locations,
where the black squares represent the soliton solution.
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tration purposes, we present in Fig. 2 single-soliton and
double-soliton configurations. More details are provided in
the Appendix.

In the weak-coupling limit of the FK model �g	gcon�
there are no known analytical solutions. Still, in this regime
there are kink solutions, �kink, which are localized to a small
number of particles. These kink solutions can be found nu-
merically. We use a descending gradient algorithm that mini-
mizes the classical configuration energy, given an initial so-
lution to start with. Apparently, in the weak-coupling limit,
where g is small �g�1� the analytical continuum term is still
a good enough starter for the minimizer to find the minimal
stable configuration.

B. Quantization

In order to explore quantum mechanical effects in solitons
we use a semiclassical framework. For simplicity, we pro-
vide the analysis on the continuous solutions. We consider
small perturbations 
�x , t� on the background of the classical
solution �0�x� �single soliton, double soliton or kink�, ��x�
=�0�x�+
�x , t� �1�. Setting H=U+T, where U is the poten-
tial energy and T is the kinetic energy, we assume the solu-
tions are static, T=0. Then we can make a functional Taylor
expansion of the potential energy

U��� 
 � dx�g

2
����2 + Vsub���	

about �0,

U��� = U��0� +� dx
1

2�
�x�− g�2 + � �2Vsub

��2 	
�0

�
�x�� ,

�7�

where cubic and higher terms in 
 are neglected. This re-
quires that the magnitude of 
�x� as well as the third and
higher derivatives of V��� at �0 be small.

The eigenvalues and eigenfunctions of the operator
�−g�2+�2Vsub /��2� evaluated at ��x�=�0�x� are then the
generalized solutions of the Schrödinger-like equation

− g�2 + � �2Vsub

��2 	
�0�x�

�
l�x� = �l
2
l�x� , �8�

where the 
l�x� are the orthonormal normal modes of the
fluctuations around �0�x�. In the continuous solution l is a
continuous index with possible additional discrete values.

Translating the above analysis to the discrete system we
obtain a set of equations, that is, the 
l�n� and �l

2 are ob-
tained by diagonalizing the matrix B�n ,n�=2g+cos �0�n�,
B�n ,n�1�=−g. We require that �l

2�0; otherwise the sys-
tem is in a nonstable configuration.

We obtain the quantum-mechanical modes of the system
by setting


�n,t� = �
l

cl�t�
l�n� , �9�

and quantizing the normal-mode coefficients cl. The canoni-
cal degrees of freedom are then

��n� = �0�n� + �
l


l�n�
1

�2�l

�ale
i�lt + al

†e−ı�lt� ,

��n� = �
l

− i
l�n���l

2
�ale

i�lt − al
†e−i�lt� , �10�

where al and al
† are annihilation and creation operators of the

normal modes, and

E�nl�
= U��0� + �

l
�nl +

1

2
	�l, �11�

where nl is the excitation number of the lth normal mode.
The background classical solution �0 could either be an

absolute minimum or a local minimum of U���. Consider
first the case that �0 is an absolute minimum. Then all par-
ticles are located at their equilibrium positions and the solu-
tion does not contain kinks or solitons. The normal modes
are then identical with the “phonon modes” of a harmonic
chain


l�n� � exp�ikln�, kl = 2�l/N , �12�

and the spectrum is given by �12�

�l
2 = 1 + 2g�1 − cos kl� . �13�

Upon quantization, the quantum states of the FK system
in the absolute minimum case, which we also refer to as the
“vacuum sector,” coincide with that of a harmonic chain.
Hence, in the continuum limit the vacuum sector of the FK
model corresponds to a free massive scalar field with m
�1 /�g and the ground state has the same properties of the
corresponding free field vacuum state.

If �0 is a local minimum, then the solution contains soli-
tons �or kinks�. In the continuum limit the eigenvalue equa-
tion is

−500 −250 0 250 500
0

0.5
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φ/2π
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φ
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(H=0.02)

φ
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(H=0.2)

FIG. 2. �Color online� Single-soliton �SG and double-soliton
�2SG solutions of the finite SG equation sampled at N=1000 points.
The length of the region is given by 2L=16J where J is the
Josephson length. For the single-soliton solution the stability region
for the magnetic field is H� �0.0019,1.0052� and for the double
soliton H� �0.1023,1.0622�. See details in the Appendix.

ENTANGLEMENT OF SOLITONS IN THE FRENKEL-… PHYSICAL REVIEW A 78, 052303 �2008�

052303-3



�− g
�2

�x2 + cos �SG	
l�x� = �l
2
l�x� . �14�

In the limit of an infinite system the translational invariance
of the system gives rise to a zero frequency mode �Goldstone
mode, or “zero mode”�, which requires special attention.
This problem is avoided in our case due to discreteness and
finiteness of the system. Nevertheless, in correspondence
with the infinite limit, the zero mode is still characterized by
a localized shape of a bound state and will be referred to as
an internal mode. �In other nonlinear models which have
soliton solutions such as the �4 model, there can be addi-
tional internal localized modes which are not zero modes.�

For clarification, we present several normal modes and
their eigenfrequencies for the solutions presented in Fig. 2.
In Fig. 3 the first four normal modes and the tenth normal
mode of the single-soliton solution are shown, where the first
four eigenfrequencies are �1�0.0007, �2�1.0002, �3
�1.05, �4�1.2, given in dimensionless units. Note that the
first eigenvalue is less than 1 and corresponds to the internal
mode, while all the others are phonon modes. In Fig. 4, the

first four normal modes and the tenth normal mode of the
double-soliton solution are shown, where the first five eigen-
frequencies are �1�0.008, �2�0.016, �3�1.013, �4
�1.07, �5�1.3. Here the first two normal modes are inter-
nal modes.

As we shall see, it is the presence of the internal modes
which gives rise to qualitatively different behavior of the
quantum mechanical states in the solitonic sector, such as
particlelike behavior and localization of entanglement.

C. Correlations in the vacuum and soliton sectors

We would like to compare the behavior of correlations in
the ground states of the vacuum and soliton sectors in the
strong- and weak-coupling regimes. Let us define the corre-
lation functions

�n = ��0�n� ,

�n = ��0�n� , �15�

where n is the �integer� distance between the particles.
We begin with the strong-coupling regime. In the vacuum

sector the correlations �n ,�n have been thoroughly analyzed
in connection with the harmonic chain �5�. These correla-
tions are classified by the critical and noncritical regimes. In
the critical limit there are long-range correlations as there is
no length scale in the system �m→0�. In this limit the cor-
relations scale as

�n � ln�1

n
	 ,

�n � −
1

n2 . �16�

In a system with N particles and a coupling strength g the
critical regime is valid if N��g.

The noncritical regime is characterized by a finite length
scale. Here, the correlations decay exponentially with the
distance,

�n � −
e−n

n1/2 ,

�n �
e−n

n3/2 . �17�

The noncritical regime is defined for N��g. For N=1000
�13�, for example, the system is critical for g�107, and non-
critical for gcon	g	105 �14�.

We turn now to the soliton sector. For the critical limit the
number of particles in the core of the soliton should be
greater than the number of particles in the whole chain, N
	�g. Therefore, in the critical limit the vacuum sector and
the soliton sector coincide: For a constant N taking g to
infinity causes the loss of the internal mode, which now en-
ters into the phonon band. We define gmax�N� as the maximal
coupling constant for which there is a discrete internal mode.
For g�gmax�N� no difference is predicted between the
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FIG. 3. �Color online� Normal modes in the background of the
single-soliton solution, shown in Fig. 2. The four first normal modes
and the tenth normal mode are shown. The first normal mode is an
internal mode.
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FIG. 4. �Color online� Normal modes in the background of the
double-soliton solution shown in Fig. 2. The four first normal
modes and the tenth normal mode are shown. The first two normal
modes are internal modes.
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ground states of the vacuum and soliton sectors since their
spectra and normal modes become practically identical.

On the other hand, in the weak-coupling limit, g	gcon,
the correlations decay very fast and again one may expect no
significant difference between the vacuum sector and the
kink sector. Therefore, we expect qualitative difference be-
tween the vacuum sector and the soliton sector only in the
noncritical, strong-coupling regime.

In Fig. 5 we show on log-log scale �n for N=1000, where
0�n�500. The plots are given for the vacuum sector and
the soliton �or kink� sector of the FK model, where the center
of the soliton and kink is located at n=0. We study the fol-
lowing coupling constants: g=1010 �critical limit�, g=104

�noncritical regime�, and g=5 �weak-coupling limit�. First,
we observe that the vacuum and soliton sectors are indeed
indistinguishable both in the critical limit and the weak-
coupling limit. In the noncritical regime, however, �n

sol is
qualitatively different from �n

vac. Inside the soliton’s core �n
	�g=100�, �n

sol decays more slowly than �n
vac and even

�n
critical. As n becomes greater than �g, however, we see a

strong decay in �n
sol, which quickly becomes parallel to the

graph of �n
vac in the noncritical regime.

We explain this behavior on physical grounds by relating
to the effective �mass�2 of the linearized free field around the
critical vacuum and the �noncritical� soliton sector,

mcritical
2 → 0,

msol
2 �x� � cos��0�x�� = �−

1
�g

, x = 0,

1
�g

, �x� � �g .� �18�

As �mass�2 become negative for x	�g the correlation func-
tion inside the core decays more slowly than that of the criti-
cal vacuum sector. Outside the core the correlation restores

the massive vacuum sector behavior. We expect that the en-
tanglement of solitons will have a similar behavior to the
correlation functions.

III. LOCALIZATION OF SOLITON ENTANGLEMENT

We turn now to the entanglement of the FK model in the
strong-coupling limit. Both in the vacuum sector and in the
soliton sector we assume the normal modes are in their
ground states, therefore the quantum-mechanical states are
Gaussian. Following �5�, let us represent the local canonical
variables of our N-mode system �Eq. �10�� by the vector

y = ��,��T,

where �= ��1 ,�2 , . . . ,�N� and �= ��1 ,�2 , . . . ,�N�. The
commutation relations may thus be expressed as

�y�,y�� = iJ��,

where J is the so-called symplectic matrix,

J = � 0 1

− 1 0
	 .

Assuming �y�=0, the state of the system is entirely charac-
terized by the matrix of the second moments, the so-called
phase-space 2N�2N covariance matrix �CM�,

M�y� = Re�yyT� .

Under a symplectic transformation ỹ=Sy a Gaussian state M

is mapped into a Gaussian state M̃ =SMST, where SJST=J. A
theorem due to Williamson �15,16� states that there always
exists a certain symplectic transformation SW that brings M
to the normal form �“Williamson form”�

W = SWMSW
T = diag�1,2, . . . ,N,1,2, . . . ,N� ,

where the diagonal elements 1 ,2 , . . . ,N are referred as the
symplectic eigenvalues and must be greater or equal to 1 /2
according to the uncertainty principle.

Now, suppose our pure N-mode system �Eq. �10�� is par-
titioned into two sets yA and yB. In order to measure the
entanglement between parts A and B we bring the reduced
covariance matrices MA�yA� and MB�yB� into their William-
son normal forms. Both MA�yA� and MB�yB� have the same
 j �1 /2 symplectic eigenvalues. The entanglement is then
measured by the von Neumann entropy ES,

ES = �
j

S� j� , �19�

where

S�� = � + 1
2�ln� + 1

2� − � − 1
2�ln� − 1

2� . �20�

Since the �−� correlations vanish in our model,  j are given
by the square roots of the eigenvalues of HAGA �or GAHA�
�5�, where

G = ���T�, H = ���T� . �21�

A. Mixing critical and noncritical behaviors

In Fig. 6 we plot the von Neumann entropy of a block of
l particles in the chain where in the soliton sector the center

10
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2

10
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−4
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−2

n

ξ
n

both (critical)

vac(g=104)

sol(g=104)
both (weak)

FIG. 5. �Color online� Log-log scale of �n, where 0�n�500.
The plots are given for the vacuum sector and the soliton sector in
the critical �g=1010�, noncritical �g=104�, and weak-coupling �g
=5� regimes. In the soliton sector the center of the soliton is located
at n=0.
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of the soliton coincide with the center of the block. The plots
are given for both the vacuum sector and the soliton sector
�in the strong-coupling regime of the FK model�. The plots
are given for two regimes: critical �g=108�, in which case
both sectors have the same behavior, and noncritical �g
=104�.

First, let us examine the behavior in the vacuum sector. In
the critical regime the entanglement increases as the size of
the block increases. This effect stops, however, due to the
finiteness of the chain �due to edge effects this happens long
before l=N /2�. In the noncritical regime the entanglement
increases for a finite region and then saturates a constant
value.

In Fig. 7 the same graph is plotted on logarithmic scale
for l�100. We see that the critical vacuum sector fits the
linear curve for l	101.5�30, where the noncritical vacuum
sector fits the linear curve for l	16.

In the soliton sector we observe in Fig. 6 qualitatively
different behavior, as anticipated from the discussion on the
correlation functions in the preceding section. The von Neu-
mann entropy of the soliton mixes both the critical and non-
critical scalings: It scales logarithmically inside the soliton,
that is for l	�g=100, and then it decreases to the noncritical
vacuum sector asymptotic value. As seen in Fig. 7, inside the
soliton the logarithmic increase of the soliton sector is faster
than the corresponding vacuum sector. This characteristic be-
havior implies that the entropy in the soliton sector must
have a maximal value. In contrast to the vacuum sector, the
entanglement in the soliton sector is localized as it reaches a
maximal value at a certain length scale corresponding to the
size of the soliton. Note that the logarithmic increase of the
entanglement inside the core of the soliton is even faster than
that of the critical vacuum sector. This result corresponds to
the effective negative �mass�2 inside the core.

For reference we plot in Fig. 8 the von Neumann entropy
of the soliton sector for g=200, g=1000, and g=25 000. We
may say that entanglement localization “measures” the size

of the soliton, as maximal entanglement is achieved for l
=�g in all three cases. We can see that as the system enters
deep into the noncritical regime �g=1000,200� the entangle-
ment becomes more localized and reaches a higher
maximum.

B. Logarithmic prefactor

We would like now to obtain the prefactor ��g� in the
logarithmic scaling ES=��g�ln l for small enough values of l,
l��g, in the vacuum sector and the soliton sector. As a first
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FIG. 6. �Color online� Localization of entanglement in the soli-
ton sector of the FK model. In the noncritical regime �g=104� the
size of the core is �g=100. The critical limit is given for g=108.
Localization of entanglement is seen in the noncritical regime,
where maximal entropy is obtained for l=�g.
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FIG. 7. �Color online� Localization of entanglement in the soli-
ton sector of the FK model, logarithmic scale. The increase of en-
tanglement inside the soliton is faster than the corresponding one in
the vacuum sector. Both entropies coincide outside the soliton. The
entanglement of the soliton sector has a maximal value and is there-
fore localized. Note that the logarithmic increase inside the soliton
is even faster than the corresponding one in the critical vacuum
sector.
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FIG. 8. �Color online� Localization of entanglement in the soli-
ton sector for g=200,1000,25 000. Entanglement localization
“measures” the size of the soliton, as maximal entanglement is
achieved for l=�g in all three cases.
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order for the linear curve we take the first two points in the
graph, �ln 2, ES�ln 2�� and �ln 4, ES�ln 4��. For g→� both
models have approximately the well-known universal factor
of �c=1 /3 in critical bosonic one-dimensional fields. In Fig.
9 we plot ��g� for g�gmax�N=1000��1.3�105, where g is
given in a log10 scale. We observe that as g gets closer to N
the initial logarithmic jump of the entanglement becomes
sharper. This is explained from the following conditions:

�sol�g� � �vac�g� ,

ES
sol�g� →

l��g
ES

vac�g� . �22�

Therefore, as g decreases ES
sol falls more rapidly outside the

core and the initial logarithmic jump of the entanglement
becomes sharper. This effect stops, however, for g	N, as
then already for l=1, the entanglement is close to its maxi-
mal value. As anticipated from the correlations behavior, for
any value of g in the strong-coupling regime �g�gcon�, the
logarithmic increase is even faster than the corresponding
one in the critical vacuum sector: �sol�g���vac�g→��= 1

3 ,
where �max

sol �g��4 /9 is obtained for g=N.

C. Maximal entropy

Maximal localized entanglement is achieved in the soliton
sector for lower values of the coupling constant g �yet not
too low, so that the strong-coupling limit still holds�. We
show that the maximal value of the entanglement is deter-
mined by the frequency of the internal model. In Fig. 10 the
maximal localized von Neumann entropy as a function of g
is shown, where for reference, we plot on the same graph
2 ln��1�+15, so that both plots appear with the same scale.
Clearly, �1 is minimal exactly where the von Neumann en-
tropy reaches its maximal value �g=200�.

In passing we note that as g gets closer to the critical
limit, �1 increases and eventually penetrates the phonon
band and stops behaving as a bound state. In addition, �1
increases as discreteness increases �g decreases�. This is as-

sociated with the existence of a potential barrier in a discrete
lattice that must be overcome to move the soliton along one
lattice spacing, and is known as Peierls-Nabarro potential
�17�. Note that �1 has an oscillatory behavior for g�200.
Oscillations of �1�g� are known for models that deviate from
the FK sinusoidal potential �18,19�. Here we observe the
oscillations in the FK model for large values of g, where �1
starts to increase.

IV. LONG-RANGE SOLITON-SOLITON ENTANGLEMENT

We now explore long-range effects of entanglement in the
FK model. We are interested in the entanglement between
two separated blocks of particles A and B with the same
number of particles l, separated by d particles. Now MAB
does not constitute a pure-state and the von Neumann en-
tropy cannot be used anymore. We therefore use a mixed-
state entanglement measure—the logarithmic negativity
�LN� �20,21�. This measure is based on the following obser-
vation: When the parts are entangled, reversing time direc-
tion in one part of the system, yAB

PT = ��A ,�B ,�A ,−�B�T,
breaks the symplectic symmetry of their covariance matrix,
yielding  j 	1 /2, which violates the uncertainty principle.
The amount by which  j 	1 /2 is a measure of the entangle-
ment:

ELN = − �
j

ln�2 j� . �23�

A. Distribution of long-range entanglement

In the double-soliton sector of the FK model we explore
long-range entanglement between two solitons, which are
characterized by the length scale lsol��g. We obtain differ-
ent values of the distance between the solitons, dsol, by
choosing appropriate values for H �and hence k� as described
in the Appendix.

We first show that the most significant contribution to
long-range entanglement originates from the solitons. Con-
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FIG. 9. �Color online� The prefactor ��g� of ES=� ln l for l
��g, logarithmic scale. Interestingly, for any value of g in the
strong-coupling regime �g�gcon�, �sol�g���vac�g→��=1 /3. In
the soliton sector �max

sol �g��4 /9, and is obtained for g=N.
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FIG. 10. �Color online� Maximal entropy as a function of g. �1

is minimal for g=200, exactly where the von Neumann entropy
reaches its maximal value.
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sider a certain double-soliton configuration with solitons size
lsol and separation dsol. Now let us take two blocks with the
same size and separation, l= lsol, d=dsol and slide them along
the chain. We expect that as the blocks’ positions become
identical to the solitons’ positions we will get the maximal
value of LN. In Fig. 11 we present ln ELN of two such sliding
blocks, where g=3000, lsol=56, and dsol=281. The positions
of the solitons are shown for reference. The abscissa, n, in
the graph is the average of the centers of the two blocks A
and B. Since the double-soliton solution is symmetric, the
centers of the blocks coincide with the locations of the soli-
tons for n=0. Indeed, the entanglement is maximal at that
point. In addition to the main maximum, there are secondary
maxima at n= �170, which are obtained when n coincides
with the center of the solitons. These maxima correspond to
the entanglement between the right and left tails of each of
the solitons. We note that in the vacuum sector two such
sliding blocks yield practically constant value of long-range
entanglement.

The fact that long-range entanglement has its peak at the
core of the solitons is also manifested in the structure of the
Williamson’s modes, the so-called participation functions
�22,5�:

zj�n� = uj�n�v j�n� , �24�

where HAGAuj = j
2uj and GAHAv j = j

2v j. The participation
functions qualitatively describe the distribution of entangle-
ment between two complementary regions. We split the
chain into two equal-sized blocks. In the vacuum sector the
participation functions are practically “localized” �5�. z1

vac,
which has the highest contribution to the entanglement,
originates at the boundary between the parts. The contribu-
tion of the other modes �z2

vac ,z3
vac , . . . � decreases exponen-

tially. The localization of zj
vac departs from the boundary as j

increases. In contrast, in the double-soliton solution, the par-
ticipation functions are not localized and correspond to the
entanglement between the solitons. In Fig. 12 we present z1

sol,
z2

sol, z1
vac, and z2

vac in logarithmic scale, where 
1 �the first

internal mode� is also plotted for reference. In contrast to the
participation functions in the vacuum sector, the participation
functions in the solitons sector peak at the core of the soli-
tons.

B. Long-range entanglement vs the separation

We now look at scaling of long-range entanglement as a
function of the separation between the solitons. We compare
long-range soliton-soliton entanglement to the corresponding
entanglement in the vacuum sector, which is equivalent to
long-range entanglement in the linear harmonic chain. In the
critical vacuum sector the scaling of the LN for sufficiently
large chains is universal and depends on a single parameter
r
d / l. For sufficiently large values of r, the logarithmic
negativity scales as ELN�e−�cr, where �c�2.7 �23� is the
universal decay coefficient of the critical chain. In the non-
critical chain the logarithmic negativity is not universal.
Given two blocks with constant length l, their entanglement
scales as ELN�e−��m,l�d/l for d� l, where ��m , l���c and m
is the mass of the particles.

In the soliton sector we find unique behavior of long-
range entanglement, which is qualitatively different from that
of the vacuum sector. Here we compute entanglement be-
tween two blocks that coincide with the solitons �d=dsol� for
different values of dsol. The size of the blocks l is chosen so
that it maximizes von Neumann entropy ES �Eq. �19��. As
expected l does not depend on the separation d=dsol and
approximately, l��g. In Fig. 13 we plot ln ELN versus d / l
for g=1600,104. Both values of g describe the noncritical
regime. �There is no critical regime in which the soliton so-
lutions have internal modes.� For reference we also plot
ln ELN�g=104� for the corresponding vacuum sector with the
same value of l. Clearly, long-range entanglement in the soli-
ton sector is larger than that in the vacuum sector �this is true
for all values of g�. Note also that the scaling of LN in the
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FIG. 11. �Color online� Long-range entanglement between two
sliding blocks in the presence of two solitons with g=3000, l= lsol

=56, and d=dsol=281. LN is maximized when the blocks coincide
with the solitons’ cores �the average of the centers is located in the
center of the chain, n=0�.
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FIG. 12. �Color online� First and second participation functions
of the double-soliton and vacuum sectors, shown in logarithmic
scale, where the chain is divided into two equal-sized blocks. In
contrast to the localized behavior of the participation functions in
the vacuum sector, the participation functions in the solitons sector
peak at the core of the soliton.
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soliton sector differs qualitatively from that in the vacuum
sector as ln ELN is not linearly dependent on d / l. For rela-
tively small values of d / l a linear curve approximation of
ln ELN

sol �g=104� yields �=2.3, which is even stronger than the
universal scaling of the critical vacuum sector �23�. In this
regime the solitons have a large overlap, corresponding to
the negative square mass in the region of the solitons. As d / l
increases the linear curve does not fit and has a somewhat
oscillating behavior. For large values of d / l we see that the
decay of the entanglement is larger than the corresponding
one in the vacuum sector.

For the smaller value of the coupling constant, g=1600,
we observe even more surprising behavior. The LN oscillates
around a somewhat constant value for d / l�8. In this regime
long-range entanglement loses one of its most fundamental
characteristics: It is no longer a monotonically decreasing
function of the distance between the solitons.

C. Toy model for long-range entanglement

We would like to analyze the unique behavior of the long-
range entanglement in the soliton sector. We discuss two fac-
tors, each of which dominates in a different regime of the
coupling constant g. For relatively large coupling, g�5000,
the particlelike behavior of the solitons is the dominant fac-
tor. For relatively low coupling, g	1000, it is the topologi-
cal nature of the first internal mode that dictates the entangle-
ment behavior.

Let us first discuss the particlelike behavior of the solitons
by considering a toy model. From Fig. 4 we see that the first
two internal modes: 
1, 
2 are localized to the solitons and
describe qualitatively two groups of oscillating particles in-
side each of the solitons. 
1 and 
2 are symmetric-

antisymmetric and describe correlated-anticorrelated oscilla-
tions of the two groups, respectively. Therefore, we simplify
our model to two coupled harmonic oscillators with normal-
mode eigenfrequencies �1 and �2, which we identify with
the internal modes’ eigenfrequencies in the solitons sector.
Then it can be easily shown that the entanglement between
the oscillators depends on a single symplectic eigenvalue

 = 1
4
�2 + � + �−1,

where �=�2 /�1. Correspondingly, the entanglement be-
tween the solitons depends mainly on the ratio between the
two internal modes eigenfrequencies.

In Fig. 14 we show the particlelike behavior of the two
solitons for g=104. First note that both �1�d / l� and �2�d / l�
are not monotonic functions. Each has a certain global mini-
mum, which appears due to the finiteness of the system. As
the gap between the eigenfrequencies is closed �d / l�6�, the
entanglement decreases significantly. Moreover, the slight
deviations from the curve appear when there are also devia-
tions in the gap, as indicated by the vertical arrows. For
reference, we present the entanglement of our toy mode
E���. Clearly, the toy-model manifests much larger entangle-
ment since the phonon band is not included, and therefore its
decohering screening effect is missing.

This model can be used to obtain a lower bound for the
decay coefficient � in the limit where d� l. In this limit we
can use a double-well WKB approximation to estimate the
eigenfrequencies
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FIG. 13. �Color online� Long-range entanglement as a function
of the solitons separation. The centers of the two blocks coincide
with the solitons, d=dsol and l= lsol. The plots are given for g
=1600,104. ln ELN�g=1000� of the vacuum sector is plotted for
reference, where ��g�=5.57. l��g=40,96, respectively. In the
case g=104, the entanglement of solitons decreases slower than its
critical vacuum sector correspondence for small values of d / l. In
the case g=1600, the entanglement oscillates and is not a decreas-
ing monotonic function of the separation for large values of d / l.
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FIG. 14. �Color online� Particlelike entanglement of the soli-
tons: Dependence of ln ELN on the ratio between the internal
modes’ eigenfrequencies for g=104, where 20 ln �1 and 20 ln �2

are also plotted. The three left-hand vertical arrows are examples of
drastic increase of the gap, which correspondingly changes the en-
tanglement. Notice that as the gap is closed �d / l�6�, the entangle-
ment decreases significantly. The entanglement of the toy model,
E���, is shown for reference.
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��

�
� exp�− �

−dsol/2

dsol/2

�p�x��dx	 = e−dsol/�g, �25�

where p�x� is the classical momentum, which is approxi-
mately 1 /�g. In this case the entanglement can be approxi-
mated for d� l as ES�e−2d/�g. Therefore, we obtain a lower
bound for � in the soliton sector, ��2. We expect that this
bound is valid for large values of g, where the particlelike
behavior of the solitons is the most significant effect, and for
large values of d / l so that the solitons have a small overlap.
However, for large values of the coupling constant we cannot
study very large values of d / l since the system is finite.

Figure 15 shows the exponential decay coefficient in
ELN

sol �e−�d/l in the asymptotic limit d� l, where the exponen-
tial approximation becomes accurate. ��ELN

vac� is also shown
for reference. In the vacuum sector � decreases monotoni-
cally down to the universal value 2.7 �not seen in graph�. For
g�104 the double-soliton sector has similar behavior. How-
ever, for small values of g the discussed lower bound is not
satisfied, �	2, as we enter the regime where �1 is the most
significant factor and the exponential approximation breaks
down.

D. Noncritical regime

Let us now turn to the second factor, which dominates for
relatively low coupling �g	1000�. As described in the Ap-
pendix the double-soliton solutions depart from �SG �Eq. �6��
as we require a finite system and impose d���L� /dx�0.
The separation of the solitons dsol is given by a parameter k,
where dsol monotonically increases with k. Stability ��l

2

�0� regions of the system are defined in separate intervals of
k. As the values of k in an arbitrary interval get closer to the
interval boundaries, �1 becomes closer to zero. Therefore,
we obtain an oscillatory behavior of �1 with the separation
dsol, which strengthens as discreteness increases �g de-

creases�. In Fig. 16 we present ln ELN as a function of the
separation between the solitons dsol, where g=731. For ref-
erence we present on the same graph 2 ln��1�−20 so that
both plots are more or less on the same magnitude. Note that
maximal entanglement is achieved for minimal �1. Clearly,
in this regime long-range entanglement is no longer a mono-
tonically decreasing function of the distance between the
solitons.

In Fig. 17 we show both �2 /�1 and ln �1 as a function of
ln ELN for three coupling values g=29 500,7900,1000. In
the close to critical regime �g=29 500� the particlelike be-
havior of the solitons is a dominant factor as it is a mono-
tonic function of the entanglement, where the first internal
mode has no significant effect �its minimal value does not
correspond to maximal entanglement�. In the deep noncriti-
cal regime the particlelike behavior has no significant effect
as �2 /�1 is approximately constant �slightly above 1�, and
the dominant factor is �1. In the case g=7900, we see that in
general, the entanglement increases with �2 /�1 and de-
creases with �1. However, there is an intermediate region,
where the entanglement is not a monotonic function of both
factors.
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FIG. 15. �Color online� The exponential coefficient � in the
asymptotic behavior ELN�d� l��e−�d/l as a function of g. In the
vacuum sector � decreases monotonically to the universal value 2.7
�not seen in graph�. The lower bound ��2 is satisfied in the soliton
sector for approximately g�2000. For smaller values of g the ex-
ponential approximation breaks down.
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FIG. 16. �Color online� Topological nature of �1. ln ELN versus
d for g=731 �deep in the noncritical regime�. The computed loga-
rithmic negativity is not a monotonically decreasing function of the
separation between the solitons. For reference we plot 2 ln��1�
−20. Note that maximal entanglement is achieved for minimal w1,
which characterizes the regime in which g is small.
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FIG. 17. �Color online� �2 /�1 and ln �1 as a function of ln ELN
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V. WEAK-COUPLING LIMIT

We turn now to the weak-coupling limit of the FK model,
which is characterized by small values of g. Here the en-
tanglement has far less dramatic effects. No long-range en-
tanglement has been detected between two kinks. In addi-
tion, the von Neumann entropy of an increasing block inside
the kink loses its localization as the coupling constant be-
comes too low, as seen in Fig. 18. For 0.25�g�2.25 there
are two internal modes in the soliton sector of the FK model
�19�, where the second internal mode has an eigenfrequency
close to one. However, the additional internal mode has no
significant contribution to the entanglement of the kinks.

VI. SOLITONS AS CARRIERS OF QUANTUM
INFORMATION

In this section we suggest and investigate the possible use
of solitons as carriers of quantum information. We observed
in the preceding sections that the entanglement properties of
solitons in their ground state are strongly related to the pres-
ence of internal localized modes. These are �usually� the
lowest discrete modes in the spectrum of the normal modes.
The internal modes qualitatively describe collective or vibra-
tional perturbations of the classical soliton. In our approxi-
mation method the soliton is handled as a nonperturbative
classical object while the internal modes are linear perturba-
tions around it. The quantized internal modes then corre-
spond to “phonon” bound states.

Our suggestion therefore is to use the localized internal
modes’ degrees of freedom as carriers of quantum informa-
tion. Since the modes are “attached” to the soliton, by mov-
ing the soliton under suitable adiabatic conditions, informa-
tion may be transported without being disturbed or mixed
with the phonon band. It is also possible to formulate multi-
soliton processes which create entanglement, and therefore
manipulate the information carried by each of the solitons.

To our knowledge this idea has not been investigated.
Therefore, we provide a preliminary study of this possibility

without elaborating on a particular implementation. In our
model information will be coded by exciting the internal
mode�s�. A fundamental requirement in quantum-information
processing is the possibility of local operations. However,
the internal modes are collective degrees of freedom of all
the particles in the system. To resolve this difficulty one must
show that a local addressing of the particles in the core of the
soliton is sufficient in order to manipulate the internal
mode�s� with high fidelity. Such a process seems possible
since the internal modes are localized.

To support the above requirement we present two results
regarding the single soliton and double soliton, respectively.

�1� Suppose we perform two-mode-squeezing of the inter-
nal mode with some arbitrary external degrees of freedom,
Q. Then the entanglement inserted by squeezing is saturated
by the entanglement of local degrees of freedom inside the
soliton.

�2� Suppose we perform two-mode squeezing of two new
collective modes that are linear combinations of the internal
modes, such that the new modes are confined to the left-hand
and right-hand sides of the chain, respectively. Then the en-
tanglement inserted by squeezing is saturated by local de-
grees of freedom inside each of the two solitons.

Both of these results are crucial for any quantum-
information applications, as otherwise operations cannot be
implemented locally.

A. Single soliton

Let us start with the first requirement. We write the nor-
mal modes of the system as

�̃l =� 1

2�l
�ale

i�lt + al
†e−i�lt� ,

�̃l = − i��l

2
�ale

i�lt − al
†e−i�lt� , �26�

where Eq. �10� can be rewritten as �=
�̃ and �=
�̃ in
matrix form. The degrees of freedom of the internal mode
are ��̃1 , �̃1�. The ground state of the system is clearly

��̃l=1,2,. . .,N� = �
l=1

N

�0̃l� � �0Q� . �27�

Two-mode squeezing S�r� of the internal mode and Q is
defined by

S�r� = er�a1
†aQ

† −a1aQ�, �28�

where r is the squeezing parameter. The squeezing acts on
the internal mode and Q directly through

�̃1 → �e+r�̃1 + e−rxQ�/�2,

�̃1 → �e−r�̃1 + e+rpQ�/�2,

xQ → �e+r�̃1 − e−rxQ�/�2,
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FIG. 18. �Color online� ES as a function of l for small values
of g.
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pQ → �e−r�̃1 − e+rpQ�/�2. �29�

We can plug S�r� into the covariance matrix

M → Re�
2
−1SM̃S−1
2� , �30�

where 
2=
 � 1 � 
 � 1 and

M̃ =
1

2
Diag� 1

�1
,

1

�2
, . . . ,

1

�N
,

1

�Q
,�1,�2, . . . ,�N,�Q	

is the diagonal vacuum covariance matrix in the normal
modes.

We show that for sufficiently large block A, which in-
cludes the soliton, the distillable entanglement ED between
local degrees of freedom inside A and Q saturates the in-
serted entanglement via squeezing,

ES = cosh2 r ln�cosh2 r� − sinh2 r ln�sinh2 r� . �31�

From hashing inequality �24�,

ED�A,Q� � max�0,ES�A� − ES�A � B�,ES�A� − ES�A � Q�� ,

�32�

where B complements A in the chain so that

ES�A � B� = ES�Q� ,

ES�A � Q� = ES�B� . �33�

In Fig. 19 we plot ES�A�−ES�B� as a function of l for g
=1000. ES�Q� is shown for reference. Note that indeed
ED�A ,Q� saturates ES�Q� for l�450.

We would like to provide a qualitative explanation of the
saturation obtained in Fig. 19. Note that the discussed satu-
ration does not depend on the existence of an internal mode,
but on the shape of the squeezing. The internal modes are
required for the entanglement to stay in the squeezing win-

dow, but at t=0 they do not have a significant role, where an
arbitrary collective mode �, which has the shape of a bound
state, will be saturated by local modes. We therefore turn to
analyze the vacuum sector. We specify two blocks in the
chain as can be seen in Fig. 20. The squeezing block W and
the entanglement measuring block A, where A�W. We mea-
sure the entanglement between Q and A. In addition, let us
assume that � decays significantly outside W. Saturation of
the hashing inequality means ES�A�−ES�B�→ES�Q�.

As the whole state is Gaussian we use the modewise de-
composition �5,22�. That is, the state is described by a prod-
uct of composed collective modes from A and B�Q,

��� = � ��i�A,�B�Q�. �34�

Now before squeezing, the most significant contributions to
ES�A��=ES�B�� come from collective modes that are local-
ized at the boundaries between A and B. The localization of
less significant modes tends to the center of A. Therefore,
modes that are well concentrated inside W contribute very
little to the initial entanglement. The hashing inequality is
saturated if after squeezing, ES�B� does not change much,
that is, almost all entanglement that is inserted by squeezing
is added to ES�A�.

To see that this is the case consider the following simpli-
fied model. Let us assume that before squeezing the state can
be expressed as a product of two composite states:

��� = �1A,1B� � �2A,2B� , �35�

where �1A ,1B� is a strongly entangled mode, such that �1A� is
localized at the boundaries of A �outside W� and �2A ,2B� is a
weakly entangled mode, such that �2A� is localized inside W.
Squeezing entangles �2A� to Q but it only weakly entangles
�1A� to Q. The entanglement between B and Q is therefore
modified by two negligible contributions: one from weak
squeezing �1B� and the second from weak entanglement in
the first place �2B�.
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FIG. 19. �Color online� Entangling a soliton and an external
oscillator Q by two-mode squeezing with r=0.99. Shown ES�A�
−ES�B��ED�A� as a function of l for g=1000. ES�Q� is shown for
reference. Note that the distillable entanglement saturates the in-
serted entanglement for quite small values of l.
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FIG. 20. �Color online� Saturation of the hashing inequality—
schematic presentation. At t=0 we perform two-mode squeezing of
� and Q so that � decay significantly outside the squeezing block W
and we measure the entanglement between A and Q such that A
�W. In a simplified mode-wise decomposition of A and B�Q we
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localized at the boundary and �2A ,2B�, in which the participation
function is localized inside W.
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B. Double soliton

We turn now to the second result regarding double-soliton
solutions. Now the two internal modes are symmetric and
antisymmetric, respectively. They are not confined to a single
soliton each. We want to create entanglement between the
solitons by squeezing. Therefore, we should use collective
modes, where each is confined to a single soliton. Let us
define the linear transformation


� =
1
�2

�
1 � 
2� . �36�

In the case the internal modes are almost degenerate, 
� are
localized well to each of the solitons. Note that this condition
corresponds to poor long-range vacuum entanglement of the
solitons, as described in Sec. IV. Practically degenerate inter-
nal modes appear only deep in the noncritical regime of the
double-soliton sector �g	1000�, as shown in Fig. 21, where
we plot 
� for g=500 and g=104.

We therefore assume that g=500. In correspondence with
the single-soliton squeezing, we define

S�r� = er�a+
†a−

†−a+a−� �37�

as optimal squeezing of the two solitons. We would like to
show that the inserted entanglement by squeezing E��� �Eq.
�31�� is saturated by local degrees of freedom inside the two
solitons: A1 and A2 with the same size. From symmetry,
ES�A1�=ES�A2�. Hashing inequality implies that

ED�A1,A2� � ES�A1� − ES�A1 � A2� . �38�

In Fig. 22 we plot ES�A1�−ES�A1�A2� as a function of
blocks size l, where the center of the blocks coincide with
the center of the solitons. E��� is plotted for reference. Note
that the distillable entanglement saturates the inserted en-

tanglement for l�250. Therefore, local degrees of freedom
saturate E���. Interestingly, the distillable entanglement ac-
tually exceeds the inserted entanglement through squeezing.
This is explained by the fact that for large blocks the distance
between them becomes very small, such that the vacuum
entanglement has a non-negligible contribution.

C. Implementations

Finally, based on the above analysis, we would like to
briefly discuss two possible applications: entanglement trans-
portation and entanglement manipulation through a tunneling
gate. In the entanglement transportation task we assume
there is an additional external degree of freedom, Q. Initially
the soliton is located in one side of the system, next to, say,
Alice. Alice entangles Q to some local degrees of freedom
inside the soliton. Then she classically transports the soliton
to the other side, next to Bob. Finally, Bob possesses local
degrees of freedom inside the soliton with which he can, e.g.,
perform experiments that prove nonlocal correlations with Q.
In order to keep the state Gaussian, the entanglement is
realized by two-mode squeezing. In addition, we assume
slow transportation so that the quantum modes are perturbed
only adiabatically.

In the second implementation we use the double-soliton
sector. Quantum information is tunneled between the solitons
by bringing them close to each other for a finite time interval
and then separate them apart. This application is much more
complicated than the first one, as we require that the phonon
band is not excited during the tunneling phase, while the
internal modes do.
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FIG. 21. �Color online� Double-soliton solution. 
�

= 1
�2

�
1�
2� for g=500 and g=104, where �1�g=500�=0.0011,
�2�g=500�=0.0012, �1�g=10 000�=0.0832, and �2�g=10 000�
=0.3075. Note that for almost degenerate modes the transformed
collective modes 
� are well separated, while for nondegenerate
modes the collective modes overlap and the squeezing is not
optimal.
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FIG. 22. �Color online� Double-soliton solution. Two-mode
squeezing of 
� with r=2. The graph shows ES�A1�−ES�A1�A2�
�ED�A1 ,A2� as a function of l for g=500, k=0.9415, and d�l�
=331− l �the separation between the blocks decreases as their size
increases�. E��� is plotted for reference. Note that the distillable
entanglement actually exceeds the inserted entanglement by squeez-
ing, as for large values of l, d�l� decreases to very small numbers,
for which the vacuum entanglement has a non-negligible
contribution.
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VII. CONCLUSIONS

We conclude with the main results in this work and pro-
posals for further study. We have shown that the entangle-
ment of solitons manifests particlelike behavior as they are
characterized by localization of entanglement and long-range
entanglement. The von Neumann entropy of solitons mixes
both critical and noncritical behaviors, where it increases
logarithmically inside the core of the soliton, reaches a maxi-
mal value, and then decreases and saturates the constant
value that corresponds to the massive vacuum sector. Inter-
estingly, the increase of the entanglement inside the core is
faster than that in a universal critical field. In addition, we
have shown that two solitons manifest long-range entangle-
ment, which may not decrease with their separation in the
noncritical regime. Near the critical regime the entanglement
decreases slower than the corresponding universal critical
field.

Our quantum model is based on linear perturbations
around a nonlinear classic solution. Higher order corrections
�25� are important for the treatment of the zero mode in the
infinite system. In this case one obtains nonlinear terms
which couple the solitons’ collective coordinate with the
phonon modes. It would be interesting to explore classical
configurations of two nonstatic solitons which can produce
entanglement through their mutual phonon modes. More-
over, certain models, such as the �4, manifest in addition to
the zero mode a nonzero internal mode which is associated
with local shape deformations. It would be interesting to
study mechanisms for entanglement of the internal modes in
soliton-soliton scattering �26� and in soliton-impurity scatter-
ing �27�.

We suggest that solitons’ internal modes be used as carri-
ers of quantum information. Since the modes are “attached”
to the soliton, by moving the soliton under suitable adiabatic
conditions, information may be transported without being
disturbed or mixed with the phonon band. Our proposal dif-
fers from previously suggested methods, which employ a
collective displacement of the soliton using long Josephson
junctions �28�. Realizations of the present suggestion can
possibly be achieved either in discrete systems such as
trapped ions or in an effectively one-dimensional Bose-
Einstein condensate, which manifests soliton solutions
�29,30�. Recently, a possible realization of an FK-like model
in the ion trap was discussed in �31�. The utilization of in-
ternal modes in trapped ion systems will be discussed in a
future work �32�.
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APPENDIX: SOLUTIONS OF THE SINE-GORDON
EQUATION FOR FINITE SYSTEMS

For a comprehensive analysis see �33�. The finite sine-
Gordon system describes the magnetic flux in long Joseph-

son junctions with constant, homogeneous external magnetic
field H perpendicular to the barrier and bias current line den-
sity I. We use dimensionless units,

x → x/J, H → H/Hs, I → I/Is,

where J is Josephson length and

Hs = Is = �e�2L + t�J�−1

is the superheating field of the vortex-free Meissner state,
where t is the thickness of the barrier and L is London
penetration depth.

In the finite system the boundary condition we impose on
the magnetic flux � is

d�

dx
��L� = � I + 2H , �A1�

where 2L is the length of the barrier in Josephson’s length
units. Imposing stationary condition on sine-Gordon equa-
tion, Eq. �4� reduces to

d2�/dx2 = sin � ,

where for zero transport currents the solutions are

�e�x� = ��� − 1� + 2am� x

k
+ K�k�,k	, � = 0,2,4, . . . ,

�o�x� = �� + 2am� x

k
,k	, � = 1,3,5, . . . , �A2�

where am is the Jacobi elliptic amplitude and K is the com-
plete elliptic integral of the first kind. The subscripts e �even�
and o �odd� refer to the number of soliton �vortices� in the
solutions.

These solutions are stable only for specific conditions on
k, L, and H. Stability regions in terms of k and H for Eq.
�A2� are established from the following: First, the roots of
the equation

�K�k� = L, � = 1,2, . . . ,

form an infinite decreasing sequence of bifurcation points,
where � is the analog of the topological index � in the infi-
nite single-soliton sector,

k = k� � I 
 �0,1� = ��=0
� I�,

I0 = �k1,1� ,

I� = �k�+1,k�� ,

where �=1,2 , . . .. The stability regions for the solutions �
=�e are given by the intervals I2m, whereas the stability re-
gions for the solutions �=�o are given by the intervals I2m+1,
where m=0,1 ,2 , . . .. Dependence of k on H is given by

dn�L

k
,k	 =

1 − k2

kH
, � = 2m ,
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dn�L

k
,k	 = kH, � = 2m + 1, �A3�

where

�

�u
dn�u,k� = − k cn�u,k�sn�u,k�

where cn�u ,k� and sn�u ,k� are correspondingly the elliptic
cosine and sine functions. The stability regions in terms of
the field H take the form

0 � H 	 H0, � = 0,

�H�−1
2 − 1 � H 	 H�, � = 1,2, . . . �A4�

with H� implicitly determined by

�� + 1�K� 1

H�
	 = H�L .

Turning to the quantization of the perturbation, one must
solve Eq. �8�,

− 
� + �2ksn2�x + x0,k� − 1�
 = �2
 , �A5�

where x0 is the phase of the center of the junction. Equation
�A5� is also known as Lamé equation. The boundary condi-
tions for 
 are �
��x=�L=0 �34�.

Finally we would like to note that if bias current were
introduced, the locations of the solitons in the presented so-
lutions could be modified to a nonsymmetric configuration.
In addition, note that g does not appear in the equations.
Recall that in the infinite single-soliton solution the width of
the soliton is �g. In the continuous finite-system case one can
not change arbitrarily the width of the vortices, as they scale
proportionally with the system size. Throughout the analysis
we choose L=8 as the sampled analytical solution we start
with in the minimizing algorithm.
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