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Optimal generalized measurements for state estimation are well understood. However, practical quantum
state tomography is typically performed using a fixed set of projective measurements, and the question of how
to choose these measurements has been largely unexplored in the literature. In this work, we develop theoret-
ical asymptotic bounds for the average fidelity of pure qubit tomography using measurement sets whose axes
correspond to faces of Platonic solids. We also present comprehensive simulations of maximum likelihood
tomography for mixed qubit states using the Platonic solid measurements. We show that overcomplete mea-
surement sets can be used to improve the accuracy of tomographic reconstructions.
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I. INTRODUCTION AND BACKGROUND

Quantum tomography �1�, the practical estimation of
quantum states through the measurement of large numbers of
copies, is of fundamental importance in the study of quantum
mechanics. With the emergence of quantum-information sci-
ence, the tomographic reconstruction of finite-dimensional
systems �2� has also become an essential technology for
characterizing the experimental performance of practical
quantum gates and state preparation. Examples include to-
mography of the polarization states of light �3,4� and elec-
tronic states of trapped ions �5,6�. It is important for these
experiments that a systematic study is carried out to deter-
mine efficient practical measurement and state estimation
strategies.

There has already been much theoretical work in this area,
and optimal bounds on state estimation as well as construc-
tions for measurements that achieve these bounds are known
�7–14�. However, these bounds require all copies of the state
to be collected and a combined measurement performed
across all the copies. While these collective measurements
are known to be more powerful than performing independent
measurements on each copy �8�, they are totally infeasible
for any existing experimental implementation.

Experimental tomography in discrete quantum systems is
currently performed using independent measurements in
fixed sets of projectors �15,16�, but it remains an important
open question as to which fixed sets are best to use �although
there are several relevant theoretical discussions �13,17–25��.
For mainly historical reasons, measurement sets such as
those described in �15� have become popular, particularly in
optical experiments �except, e.g., �4,26��. These measure-
ment sets are attractive since they have the minimal number
of settings, and in these experiments a significant amount of
time can be spent changing the measurement settings. How-
ever, such decisions are generally made without a quantita-
tive understanding of how the resulting tomographic perfor-
mance is affected. For example, in Fig. 1 we show that both
the average and worst-case fidelities of the tomographic re-
construction are greatly improved by replacing the popular
minimal measurement set of �15� with an overcomplete set
of six measurements corresponding to the six faces of a cube.

In this paper, we investigate how the choice of measure-
ments affects the quality of tomographic reconstruction for
qubit systems. We follow Jones �17� and investigate a class
of measurement sets based on Platonic solids. This class
gives close-to-optimal performance for tomography when
using independent measurements of fixed projectors by
spreading the projectors uniformly over the surface of the
Bloch sphere. The different Platonic solids allow us to inves-
tigate how the number of measurement settings affects the
tomographic reconstruction quality, and we show that the
more overcomplete sets produce the best results. We begin
by deriving analytical bounds for the performance of Pla-
tonic solid measurements in the tomography of pure states.
We then extend this analysis to systems of one- and two-
qubit mixed states by performing comprehensive numerical
simulations of the tomographic procedure for the two impor-
tant cases of photonic and atomic experiments. We present
our results as a function of the total number of copies of the
quantum state used in the experiment. This work provides a
detailed study of how information is acquired during a to-
mography experiment. To support these results, it would also
be very interesting to perform such a study in some common
experimental systems, because it would determine whether
the quality of the reconstructions was limited by the expected
statistics or by other experimental imperfections, such as
drifting sources. To the best of our knowledge, such a study
has still not been performed.

Platonic solid measurements were first proposed for to-
mography in �17�, where analytical asymptotic bounds on the
reconstruction performance were calculated for the special
case of pure states using mutual information as the figure of
merit. It is difficult to compare these results with more recent
work, however, where the most commonly used figure of
merit is the average fidelity. We therefore derive new
asymptotic bounds for the pure-state case based on the aver-
age fidelity. Much of the original interest in fidelity arises
from the fact that it bounds the distinguishability of quantum
states; see �27�. Recently, a true quantum Chernoff bound on
the distinguishability of states has been introduced �28�, and
this quantity is a tighter bound than the fidelity. We therefore
also consider this quantity as a figure of merit and show that
the results do not depend greatly on this choice.
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Very recently, Roy and Scott �21� were able to derive
results about mixed-state reconstruction performance by us-
ing another figure of merit, the mean-squared Hilbert-
Schmidt distance, choosing this measure specifically because
it allowed tractable analytical solutions. In this way, they
identified a class of measurements, including all the Platonic
solid measurements, that provide optimal reconstruction per-
formance for qubits. In contrast, by using the physically
well-motivated average fidelity and quantum Chernoff bound
figures of merit for numerical simulations, we show that
there is a range of performance within the class of Platonic
solids, with the higher-order solids performing better. Per-
haps surprisingly, this indicates that the choice of figure of
merit can have a qualitative effect on the comparison be-
tween tomographic procedures. We will briefly discuss the
ramifications and possible causes of this result.

The structure of the paper is as follows. In Sec. II, we
introduce the tomography problem, discussing how to assess
the performance of tomographic reconstructions. We then de-
fine various relevant one- and two-qubit measurement sets in
Sec. III, including Platonic solid measurements and some
others that have been studied in the literature for comparison
purposes. In Sec. IV, we present some mostly analytical re-
sults that motivate our more complete numerical investiga-
tions and illustrate some interesting effects that should be
studied experimentally. In particular, Sec. IV B provides
some important intuition about the complications that arise
when reconstructing mixed states. We then describe in detail
our numerical mixed-state simulations for atomic and photo-
nic qubit systems in Sec. V and present the results for both
the fidelity and the quantum Chernoff bound in Sec. VI. This

includes a comparison with recent analytical results based on
the mean-squared Hilbert-Schmidt distance in Sec. VID.

II. TOMOGRAPHIC RECONSTRUCTION AND
RECONSTRUCTION QUALITY

A d-dimensional quantum state � is represented by a
d�d positive semidefinite density matrix, with trace 1.
There are d2−1 real parameters to be estimated. In the case
of optical experiments such as �3,4�, the flux must also be
estimated giving d2 real parameters to be estimated.

Any setting l of an experimental apparatus designed to
measure the quantum state may be described by a positive
operator value measure �POVM�. Each of the k outcomes of
a measurement setting is represented by a positive semidefi-
nite operator Olk. The operators satisfy �kOlk= I. The prob-
ability of observing outcome k is given by the Born rule
plk=tr��Olk�. In state tomography, each of the l measure-
ments is performed on a large number of copies and esti-
mates obtained for each of the plk. We denote these estimates
p̂lk. When the number of linearly independent Olk equals the
number of parameters to be estimated, our measurements are
known as informationally complete �29�. If these probability
estimates were perfect, so that p̂lk= plk, it would be possible
to reconstruct the state exactly. In this case, there is a set of
operators Rlk, known as a dual basis or dual frame, such that
�=�lkplkRlk. �When the number of measurements Olk in an
informationally complete POVM exceeds the number of pa-
rameters to be estimated, the dual frame is not unique.� Since
our probability estimates are not perfect due to the finite
sample size, they may well be inconsistent with any such

FIG. 1. �Color online� Performance of tomographically reconstructed states on the Bloch sphere for two measurement sets. The top set
is a popular set of measurements �James4� used in the literature �15�, the bottom set is a more isotropic set composed of measurements along
the three spatial axes �a cube measurement set�; see text for details. For each target state, the average fidelity with 400 reconstructed states
is plotted by color. The ensemble of reconstructed states was generated by adding Possonian noise to a simulated experiment with an average
total of 4000 counts, and then performing maximum-likelihood tomography.
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reconstruction. In this case, it is common practice to resort to
a maximum likelihood estimate of the state �15,16�. We dis-
cuss maximum likelihood reconstruction in detail in Sec.
V C.

A. Measures for comparing mixed states

To judge the quality of reconstruction, we need a measure
of similarity between the true state � and the reconstructed
state �̂. In this paper, we will concentrate on the following
two measures.

The most commonly used is the fidelity,

f��, �̂� = �tr���̂���̂�2, �1�

where 0� f�� , �̂��1 and f =1 implies �= �̂. The advantages
of the fidelity are that it is always easy to calculate, and when
one of the states is pure ��= ���	���, it reduces to f�� , �̂�
= 	���̂���, which has a good physical interpretation. That is,
if an experimentalist trying to prepare the pure state � actu-
ally creates the mixed state �̂, then the single-shot probability
of error �that the wrong state has been prepared� is simply
Pe=1− f�� , �̂�. In the literature, the square root of this quan-
tity is often also termed the fidelity and can serve as an
alternative measure of distinguishability, but it no longer has
the same nice interpretation. All of the theoretical results we
mention are derived using the definition in Eq. �1�. As yet,
however, no physical interpretation is known for either defi-
nition if both states are mixed.

The second quantity we use is the nonlogarithmic version
of the recently derived quantum Chernoff bound �28�,

�cb��, �̂� = min
0�s�1

tr��s�̂1−s� , �2�

where as for the fidelity, 0��cb�� , �̂��1 and �cb=1 also
implies �= �̂. Although this minimization is a convex optimi-
zation problem in only one variable and therefore compara-
tively straightforward, the quantum Chernoff bound is obvi-
ously more difficult to calculate than the fidelity. This is
particularly significant when trying to derive quantitative
analytical results �as in Sec. IV A, where we use the fidelity�.
However, its main advantage is that it has a clear physical
interpretation even when both states are mixed. Suppose an
experimentalist wishes to determine if her state preparation
device creates the state � or the state �. Time is limited and
she only has N identically prepared copies of the state to
work with. She is assumed to be able to perform any mea-
surement, including a collective measurement, in her efforts
to distinguish the two states. The result of �28� is that the
probability of her making an error is asymptotically Pe

�cb�� ,��N �N large�. When one of the states is pure, the
quantum Chernoff bound is the same as the fidelity. Also, the
square root of the fidelity is always an upper bound on the
quantum Chernoff bound �27,28�, but this is not always a
tight bound, since when one state is pure, �cb�� , �̂�= f�� , �̂�
��f�� , �̂� with equality only if �̂=�. We suggest that the
quantum Chernoff bound is particularly well-suited to char-
acterizing the quality of tomographic reconstruction
schemes, because it is defined specifically in the regime most
relevant to tomography, where many copies of the quantum
system are being assessed.

Next, we define quantities based on the fidelity and the
quantum Chernoff bound that we will use to rate the perfor-
mance of a tomography scheme. The figure of merit we
adopt is based on how similar the reconstructed state is to the
true state, when averaged over measurement outcomes and
an appropriate ensemble of true states. �An interesting alter-
native approach was advocated by Blume-Kohout and Hay-
den �30�.� A tomography experiment produces a list of out-
comes of measurements performed on N copies of the true
state �. These outcomes are used to obtain an estimate of the
state �̂, and the fidelity �or the quantum Chernoff bound�
between the true and estimated states is calculated. Averag-
ing over the outcomes of many such tomography experi-
ments, we define the point fidelity,

Fpt��,N� = �
�̂

p���̂�f��, �̂� , �3�

and the point Chernoff bound,

�pt��,N� = �
�̂

p���̂��cb��, �̂� , �4�

where p���̂� is the probability of estimating state �̂ given the
true state �. Finally, averaging over all possible true states,
we obtain the average fidelity,

Fav�N� =� d�Fpt��,N� , �5�

and the average Chernoff bound,

�av�N� =� d��pt��,N� . �6�

In other works, the mean-square Hilbert-Schmidt distance
and the mean-squared Euclidean distance between Bloch
vectors have been used as figures of merit for tomography
�20,31�. For single qubits, these measures are equivalent up
to constant factors. The Hilbert-Schmidt �HS� distance is de-
fined as DHS�� ,��=�tr�A†A�, where A=�−�, and is related
to the probability of error when an experimentalist must dis-
tinguish between the two states � and � with only a single
available copy to be measured. Provided both states are
equally likely before the measurement, the probability of er-
ror in distinguishing single-qubit states � and � is Pe= 1

2
− 1

2�2
DHS�� ,��. In order to obtain an analytically tractable

measure of distinguishability in �20,31�, the authors square
DHS before averaging this quantity over measurement out-
comes and states as we have done above. This figure of merit
makes it possible to find the optimal measurement sets ana-
lytically, but, after squaring and averaging, this quantity is
not as well motivated. We will examine the effect of using
this figure of merit in Sec. VI D and show that it can lead to
qualitatively different behavior.

B. Generating random mixed states for numerical simulations

As described above, in order to assess the success of dif-
ferent tomographic schemes in a way that does not depend
on the specific state being reconstructed, we use figures of
merit that are formed by averaging over all possible states
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�Eqs. �5� and �6��. To perform these averages numerically,
we therefore need to choose states randomly according to a
probability density �or prior�, which will produce a uniform
spread throughout the allowed state space. For pure states,
there is only one clear choice—the Haar measure. For mixed
states, however, the choice is not so obvious �see, e.g., �32��,
because the notion of uniformity is directly related to the
chosen measure of distance between states �or metric�. In this
paper, we will use two different priors, one based on the
fidelity and the other on the quantum Chernoff bound. The
main idea is that given any quantity that can be used to
define a metric, it is possible to define a corresponding mea-
sure of volume in the state space. The uniform prior is then
the probability density, which ensures that two different re-
gions in state space that have the same volume must be oc-
cupied with the same probability.

The first prior we use is based on the Bures metric, which
is related to the fidelity via 1 /2 arccos f�� ,�+d��. It is a
natural choice when using a fidelity-based figure of merit,
and it has also been argued that the Bures prior corresponds
to maximal randomness of the input states �33�. The Bures
prior is unitarily invariant, and it gives a radial probability
density on the Bloch sphere,

pB�r� =
4

�

r2

�1 − r2
. �7�

By contrast, when using a figure of merit based on the
quantum Chernoff bound, it is natural to use a prior over
states based on this measure. The natural metric induced by
the quantum Chernoff bound was derived in �28�. Some of
the authors of �28� have also derived the corresponding vol-
ume element in the space of states that can be used to gen-
erate a prior on qubit mixed states �34�. In Appendix B, we
present our general derivation for states of arbitrary dimen-
sion. The resulting Chernoff prior is unitarily invariant and
the probability density over eigenvalues is given by

p��1 ¯ �M� =
C

��1 ¯ �M
�
k	j

��k − � j�2

��� j + ��k�2
, �8�

where the eigenvalues are also constrained to satisfy � j=1
M � j

=1, and C is a normalization constant. For single-qubit
states, this corresponds to a radial probability density on the
Bloch sphere given by

pCB�r� =
2

� − 2

1 − �1 − r2

�1 − r2
. �9�

A comparison of the density of the Bures and Chernoff priors
is given in Fig. 2. Both of these priors have increasing den-
sity with state purity, but the Chernoff prior is skewed
slightly more toward pure states than the Bures prior.

We will present our mixed-state results first in terms of
average fidelity with states drawn according to the Bures
prior, which is currently the standard way of assessing
mixed-state tomography, and then in terms of the average
Chernoff bound with states drawn according to the Chernoff
prior. Although the Chernoff bound is more difficult to cal-
culate than the fidelity, these results provide an important

confirmation for the qualitative conclusions drawn from the
average fidelity results. We note also that the classical ver-
sion of the Chernoff bound has been used previously in the
evaluation of tomography schemes �35�.

III. MEASUREMENT SETS

The state density matrix of a qubit can be written as

� =
I + r� · ��

2
, �10�

where r� is a real three-dimensional vector known as the
Bloch vector �with �r���1�, and �� is a vector of the Pauli
matrices �x, �y, and �z. In the special case of pure states, the
Bloch vector is unit length. The pure states therefore define
the surface of a unit sphere called the Bloch sphere. A two-
outcome projective measurement with the lth measurement
setting can be represented by two projectors,

O�
m� l� =
I 
 m� l · ��

2
, �11�

where m� l is a real three-dimensional unit Bloch vector. The
orthogonal outcomes correspond to opposite directions on
the Bloch sphere.

For any given tomographic measurement set described by
the unit Bloch vectors 
m� l�, there are two important proper-
ties that one might intuitively expect to influence the quality
of a tomographic reconstruction. First, as states are arranged
isotropically inside the Bloch sphere, it is natural to assume
that, on average, a reconstruction would perform best if the
measurements were also spaced isotropically around the sur-
face of the sphere. This idea was supported �and made pre-
cise� by the asymptotic pure state results of �17�. See also
�7,36�. It is not clear, a priori, whether it is advantageous to
have larger measurement sets. On the one hand, increasing
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FIG. 2. �Color online� Plot of probability density against Bloch
radius for the Bures and Chernoff priors over states. Both distribu-
tions have densities that increase with state purity. The Chernoff
prior is slightly more skewed toward the pure states than the Bures
prior.
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the number of measurements clearly allows more sampling
of the Bloch sphere and this is advantageous. On the other
hand, given a fixed number of available copies of the state,
increasing the number of measurements requires estimating
the mean value of each measurement with fewer copies of
the state. Consequently, one might expect there to be a
tradeoff that would result in an optimal size for the measure-
ment set, however the above-mentioned theoretical results
suggest otherwise. Moreover, we have not found any evi-
dence for this tradeoff, at least for the relatively small mea-
surement sets we have considered.

The popular measurement set described in �15� has the
minimal number of measurements and is not at all isotropic,
and Fig. 1 shows that it is far outperformed by a symmetri-
cal, overcomplete six-measurement set for pure states. In this
paper, we will concentrate on the measurement sets whose
Bloch vectors form Platonic solids. These are the five convex
regular polyhedra: tetrahedron, cube, octahedron, dodecahe-
dron, and icosahedron. These shapes are highly isotropic and
thus would be expected to give good tomographic perfor-
mance. Moreover, they also allow us to explore the effect of
increasing the number of measurements somewhat separately
from the effects of isotropy.

A. Platonic solid measurements

There are two possible ways of defining Platonic mea-
surement sets, using measurement vectors corresponding to
either the faces or the vertices of the regular polyhedra.
Throughout this paper, we define a Platonic solid measure-
ment set to be a set of L different measurement settings
whose 2L Bloch vectors 
m� 1¯ 
m� L match the 2L centers
of the faces of a Platonic solid. This definition has the ap-
pealing property that an octahedron has eight measurement
directions. Using the alternative definition would result in the
same set of shapes because the centers of the faces of one
Platonic solid match the vertices of another Platonic solid.
Such solids are said to be duals of each other. The dual pairs
are the tetrahedron with a rotated version of itself, the cube
with the octahedron and the dodecahedron with the icosahe-
dron.

The experiments we will be modeling are described in
detail in Sec. V. In the atomic qubit experiment and the dual-
detector photonic experiment each measurement has two or-
thogonal outcomes. These correspond to opposite directions
on the Bloch sphere. Thus two opposite directions are mea-
sured simultaneously by a single measurement. All the Pla-
tonic solids except the tetrahedron have a face opposite every
face, and thus these Platonic solid measurements can be mea-
sured in this way while the tetrahedron cannot. �In this case,
attempting to measure the tetrahedron directions would result
in us measuring the octahedron instead.� Direct measurement
of the tetrahedron is possible in principle and schemes have
been proposed �37,38�. However, because this is quite diffi-
cult in practice, this is not the standard way to implement
photonic measurements �although see �39,40�� and will not
be considered here. For the single-detector photonic qubit
experimental model, we will require L measurement settings
to obtain the L outcomes, as the orthogonal outcome is not

detected. This enables a tetrahedron measurement to be
meaningfully measured in this case.

We will also be interested in two-qubit states. Experimen-
tally, the simplest measurements are projective measure-
ments performed locally on both subsystems �recording joint
outcome probabilities�. While we would expect measurement
sets that include measurements entangled across both sub-
systems to give improved results, these measurements are
difficult to perform. We will examine the performance of
Platonic solid measurements on each subsystem, that is,
measurements of the form

O�
m� i� � O�
m� j� , �12�

where both i and j range over the L measurements of the
same Platonic solid.

B. Other relevant measurement sets

For simulations of one- and two-qubit optical experiments
�single-detector configuration�, we will compare our results
to the popular measurement sets described in �15�. The one-
qubit state measurement set consists of measuring polariza-
tions 
H ,V ,D ,R�, that is, the horizontal and vertical linear
polarizations, the diagonal linear polarization ��D�= ��H�
+ �V�� /�2�, and the right circular polarization ��R�= ��H�
+ i�V�� /�2�. We refer to this measurement set as James4.
The two-qubit state measurement set is 
HH ,HV ,VV ,
VH ,RH ,RV ,DV , DH ,DR ,DD , RD , HD ,VD ,VL , HL ,RL�,
where, for example, the measurement setting HL means mea-
suring horizontal polarization on the first qubit subsystem
and left circular polarization ��L�= ��H�− i�V�� /�2� on the
second qubit subsystems �52�. We refer to this measurement
set as James16. �Notice that this measurement set does not
form complete POVMs. The implementation we have in
mind is explained fully in Sec. V.�

In the case of two qubits, we also consider a modified
version of the SicPOVM �symmetric informationally com-
plete POVM� of �41� for comparison. We call this measure-
ment a projective SicPOVM. The original SicPOVM for
two-qubit states is an entangled measurement in which a
single measurement produces one of 16 outcomes. Experi-
mentally this measurement is difficult to realize. Our projec-
tive SicPOVM is a measurement set of 16 settings, in which
each setting projects onto one of the directions of the
SicPOVM. While still requiring measuring entangled projec-
tors, this should be simpler to implement experimentally than
the SicPOVM.

IV. ANALYTICAL RESULTS FOR PURE AND MIXED
STATES

A. Estimating pure qubit states using Platonic solid
measurements

The bound on average fidelity for tomographic recon-
struction using collective measurements is known to be Fav
� �N+1� / �N+2�
1−1 /N, where the approximation is good
for large N. In fact, this bound is achievable with collective
measurements �8�. It also has been shown that asymptotically
this collective bound can also be achieved by an independent
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measurement that is perfectly isotropic. This may be imple-
mented by randomly guessing the measurement direction for
each copy of the state �18,36�. �Experimentally, however, the
time required to switch measurement settings between every
count may make such a measurement unattractive.� Measur-
ing the three orthogonal axes of the Bloch sphere �a cube
measurement� is known to give an average fidelity bounded
by Fav�1−13 / �12N�, and again this bound is achievable
�42�. We have derived average fidelity bounds for the other
Platonic solids. The derivation only slightly generalizes Ap-
pendix B of �18�. We give an overview of the derivation
here, leaving the details to Appendix A.

These bounds on average tomography performance are a
consequence of the Cramér-Rao bound of classical statistics.
The Cramér-Rao bound concerns the problem of sampling
from a probability distribution, where the probability distri-
bution is determined by some parameters. The goal is to
estimate these parameters based on the results of sampling
the distribution. The Cramér-Rao bound states that the vari-
ance of an unbiassed estimator is asymptotically lower
bounded by O�1 /N�, and the coefficient of this scaling is
given by the Fisher information �the definition may be found
in Appendix A�.

In a tomography experiment, with a fixed set of measure-
ments, the outcome probability distribution is fixed by the
parameters of the quantum state we are trying to estimate,
and we can directly apply the Cramér-Rao bound. The pro-
cedure is as follows:

�i� Consider a tomography experiment on a quantum state
with parameters �, and its fidelity to the state estimated from
the tomographic reconstruction with parameters �̂. In an
asymptotic regime, our estimates will be close to the true
state, so we can expand the fidelity in a Taylor series about
the true state.

�ii� Calculating the expected value of the fidelity over the
different measurement outcomes, we obtain an asymptotic
expression for the point fidelity that is a function of the co-
variance matrix of the estimated parameters.

�iii� By applying the Cramér-Rao bound to the covariance
matrix of the estimated parameters, we can obtain an upper
bound on the point fidelity that is a function only of the
number of each kind of measurement we have made, and the
state parameters.

�iv� Finally, by averaging this point fidelity expression
uniformly over the state parameters �using the Haar measure�
we obtain the average fidelity bound.

Our expressions are analytical up to the final step, and
then we use numerical integration to average over the state
parameters using the Haar measure and obtain our final
asymptotic results.

We find Fav�1−y /N, where y is 1.083 for the cube �in
agreement with the value of 13 /12 in �42��, 1.049 for the
octahedron, 1.018 for the dodecahedron, and 1.008 for the
icosahedron. It is well known in classical statistics that the
Cramér-Rao bound can be achieved using a maximum like-
lihood estimator. Hence the above bounds are also tight.
These results show that for pure states, the performance of
the Platonic solids measurements in tomography is close to
the collective measurement bound of y=1.

Recall that the quantum Chernoff bound is equal to the
fidelity if one of the states involved is pure. Alternatively,

when, as here, both states are pure, the Hilbert-Schmidt dis-
tance is also an equivalent measure as DHS

2 = �1− f� /2, so that
the choice of figure of merit does not affect the results of this
section at all.

B. Mixed-state qubit tomography

When the state to be reconstructed can be mixed, an ana-
lytical treatment is more complicated since the requirement
that the density matrix be positive semidefinite leads to con-
straints on the allowed set of parameters. The situation is
also complicated by the way in which the fidelity function
depends on the mixedness of the state to be reconstructed.
We partially address both these issues in this section, with
the main aim to develop some qualitative intuition. For quan-
titative results, we will resort to simulation.

For mixed-state qubit tomography, the state Bloch vector
is no longer unit length. The state vector is now

r� = �rx,ry,rz�T, �13�

where rx=r cos���sin�
�, ry =r sin���sin�
�, rz=r cos�
�,
and r satisfies r�1. This constraint on the length of the
Bloch vector reflects the requirement that the density matrix
is positive semidefinite.

Mixed-state tomography introduces two new complica-
tions, which we discuss in this section. Both concern behav-
ior close to the boundary of the Bloch sphere. The first is due
solely to the definition of the mixed-state fidelity function,

f�r�, r̂�� =
1 + r� · r̂� + �1 − r2�1 − r̂2

2
, �14�

where r̂� is the estimated state vector. It can be understood by
considering only errors in the Bloch vector length r �13�.
Suppose r=1−� and our estimate is r̂=r−�. Then provided
��� and both are small, we find Fpt
1−�2 /8. From the
statistical arguments of the previous section, we would ex-
pect � to scale asymptotically like 1 /�N, so we expect to see
all point fidelities �except for perfectly pure states� to scale
like Fpt
1−1 /8N once N is large enough that our errors are
well inside the Bloch ball. Alternatively, if ��� and both are
small, we find that the point fidelities scale like Fpt
1
−� /2. Thus the general behavior of point fidelities is a tran-
sition from 1 /�N scaling at low N to a scaling of 1 /N at
large N. The transition takes place when the error associated
with the state reconstruction � becomes small enough that
r̂+� lies inside the Bloch ball. Thus the location of the tran-
sition happens at higher N for higher-purity states. This is
illustrated in Fig. 3, where numerical simulations of point
fidelities for states with different radial parameters are
shown. The Bures prior has a radial distribution that is sin-
gular at r=1, and it turns out that when point fidelities in Fig.
3 are averaged over this prior, the initial 1 /�N dependence of
the point fidelity persists long enough that the asymptotic
dependence of the average fidelity on N is not N−1 but rather
N−3/4 �43�.

The second complication arises since our estimated physi-
cal state has to be positive semidefinite. For qubits this is
equivalent to r̂�1. An estimator that predicts states lying
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outside the boundary of the Bloch ball can be improved by
mapping these states onto the boundary of the Bloch ball,
which always moves the estimate closer to the true state.
Maximum likelihood estimation is a specific example of an
estimator that does exactly this. This procedure creates a
biased estimator that nevertheless performs better than any
unbiased one. The naïve Cramér-Rao estimation is therefore
not appropriate.

For states well away from the boundary, we can ignore
this positivity constraint, and use the unbiased statistical
methods of the previous section extended to three parameters
to calculate the cube measurement point fidelity,

Fpt�r�,N� � 1 −
3

4N

3 − 3r2 + 2�ry
2rx

2 + rz
2rx

2 + rz
2ry

2�
1 − r2 . �15�

The rx, ry, and rz variables appear in the equation as an
indication of the state orientation relative to the cubic mea-
surement directions. This angular dependence of the point
fidelity is more complicated for the other platonic solids.
This theoretical curve is included in Fig. 3 for the case in
which r=0.5, and agrees well with the simulations �once N is
large enough to obtain a sensible state estimate�.

V. NUMERICAL SIMULATIONS FOR MIXED STATES

The main result of this paper is the numerical simulation
of tomography using Platonic solid measurements. The simu-
lations are performed in the following way.

�i� Choose Ns states �i at random according to the Bures
�or Chernoff� prior. For our simulations, Ns was chosen to be
10 000.

�ii� For each �i, simulate measurements on Nc copies of
the state �divided equally between the measurement sets�
generating Nc measurement outcomes �i

j. For our simula-
tions, we chose Nc=100 000.

�iii� Perform maximum-likelihood state estimation based
on increasing numbers N of these �i

1
¯�i

N obtaining state
estimates �̂i�N�.

�iv� Between each state estimate and true state, calculate
the fidelity f(�̂i�N� ,�i) via Eq. �1� or the quantum Chernoff
bound �cb(�̂i�N� ,�i) via Eq. �2�.

�v� Calculate the average fidelity,

Fav�N� = �
i=1

Ns

f„�̂i�N�,�i…/Ns,

or the average Chernoff bound,

�av�N� = �
i=1

Ns

�cb„�̂i�N�,�i…/Ns.

The Monte Carlo averaging over states and measurement
outcomes is performed simultaneously. For the Chernoff
bound simulations, the minimization in Eq. �2� was per-
formed using the MATLAB function fminbnd.

We present our results on a log-log plot of number of
copies required against 1−Fav�N�. To find the number of
copies required to achieve a target average fidelity, one can
select the target average fidelity on the horizontal axis, and
tracing vertically upward, find the number of copies required
to achieve that target average fidelity. The insets on the
graphs are enlargements of the largest N section of the graph.
The width of the lines on these insets is approximately equal
to the one standard deviation statistical error in average fi-
delity due to our choice of Ns.

We simulate two main scenarios: the tomography of
atomic qubits where the main source of error results from
measuring a finite number of copies of the system, and the
tomography of photonic qubits where the main statistical
fluctuations arise from using sources that create photons at
Poissonian-distributed times.

A. Atomic qubits

The kind of experiment we model here is an atomic qubit
as in experiments on trapped ions, such as �5,6� represented
by two metastable energy levels �0� and �1�, and an auxiliary
level �r� used for performing the measurement with a laser
driving the transition �0�→ �r� leading to fluorescence if the
state was initially in �0� �44�. Arbitrary single-qubit projec-
tive measurements are made available by a first laser pulse
tuned to the �0�→ �1� transition followed by turning a laser
on the �0�→ �r� transition and looking for this fluorescence.
We assume the dominant source of error is statistical fluctua-
tion due to the finite number of copies of the state, and ne-
glect all other sources of error. Many of these could be taken
into account by replacing our projective measurements with
suitable POVMs. However, the effects such as drifts in either
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−110
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10
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5
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av

N

r=0.5
r=0.95
r=0.98
r=0.999
r=0.5 Theory
1/2√N

FIG. 3. �Color online� Numerical simulations of atomic point
fidelities for states rotated 45 degrees about the x axis from the
positive z axis. Each graph corresponds to a different radius on the
Bloch sphere. The vertical axis is the number of copies of the state
used in the tomography. The horizontal axis is one minus the aver-
age point fidelity. The cube measurement set was used for these
simulations. Observe mixed states always have a 1 /N scaling.
States that are close to pure start �after we get to a sufficiently large
N to obtain a sensible state estimate� with a 1 /�N dependence and
transition to 1 /N scaling with larger N. This knee occurs at larger N
for purer states. The statistical theory of Eq. �15� is plotted for r
=0.5.
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state preparation or measurement settings would necessitate
a different approach.

In this limit, these single-qubit system measurements are
well described by Eqs. �10� and �11� and count for each
outcome k of a measurement setting l drawn from a multi-
nomial distribution,

p�nl1 ¯ nlK� =
Nl!

nl1! ¯ nlK!
pl1

nl1pl2
nl2

¯ plK
nlK, �16�

where Nl copies of the system are measured with measure-
ment setting l, plk=tr��Olk�, and K is number of possible
outcomes for the measurement �two for qubit systems and
four for two-qubit systems�.

For two-qubit systems, the measurement operators Olk
take the form of Eq. �12� and now the index l ranges over all
combinations of single-qubit measurement settings on the
subsystems. Experimentally this corresponds to noting the
joint probability of the four possible outcomes of fluores-
cence and no fluorescence in each subsystem, for all combi-
nations of measurement settings on the subsystems.

B. Photonic qubits

Our model for experiments on single photonic qubits is
shown in Fig. 4. In this model, our qubits are represented by
the polarization state of photons issuing from a source with
Poissonian arrival times. There are two configurations to
consider: a single-detector configuration and a dual-detector
configuration.

In the first configuration, the source is directed through a
quarter-wave plate, a half-wave plate and polarizing beam
splitter �or vertical polarizer�, and finally a single photon
counter �15�. The angles of the fast axes of both of the wave
plates can be rotated, allowing the projection onto vertical
polarization fixed by the final polarizer to be rotated into any
polarization state that the experimenter requires. The total
time available to the experimentalist t is divided equally
among the L measurement settings. Photon counts are accu-
mulated over a time tl= t /L for each measurement setting ml.
The total photons incident on the measurement apparatus
during this time Nl are drawn from the Poisson distribution,

p�Nl� =
e−Nftl�N ftl�Nl

Nl!
, �17�

where N f is the mean photon flux. The number of these
photons reaching the detector nl is then drawn from a bino-
mial distribution with probability pl=tr��Ol�. The flux is es-
timated from a set of r measurements satisfying

�
i=1

r

Oi = sId �18�

via

N f = �
i=1

r
ni

sti
. �19�

For the Platonic solid measurements, the four measure-
ments of the tetrahedron satisfy Eq. �18� with s=2, and for
higher-order Platonic solids each axis has two measurements
satisfying Eq. �18�. In the latter case, the average is made
over all the axes to obtain an improved flux estimate.

If a detector is added at the reflected port of the polarizing
beam splitter, both orthogonal polarizations are measured si-
multaneously and a potentially better estimation of the total
flux can be obtained by summing the two detector counts.
Indeed, by waiting until a set number of total counts are
obtained for each measurement, the two-detector configura-
tion will produce exactly the same binomially distributed
statistics as in the atomic case. When the detectors are per-
fectly efficient, this conclusion is fairly obvious. However,
the same will even be true in a real experiment with ineffi-
cient detectors, because although the detector loss will affect
the overall probability �and hence rate� of detecting a photon,
it will not affect the conditional probabilities that determine
the measurement outcomes given that a photon is detected.
Mathematically, this can be seen by modeling the detector
losses as simple beam splitters in front of the detectors. Pro-
vided the two detectors have the same efficiency, this is just
the same as including a loss element in the source which will
change its amplitude but not its statistics. We therefore do
not simulate the two-detector configuration separately.

We also study two-photon state tomography. A source
produces photon pairs whose arrivals are again Poisson-
distributed according to Eq. �17�. The single-photon one- and
two-detector configurations are duplicated, requiring two and
four detectors, respectively. Now only coincidences are
counted between the two photonic qubits. The number of
coincidences are drawn from the multinomial distribution of
Eq. �16�. For the single-detector configuration for each qubit,
we estimate the flux via

N f = �
j=1

r

�
i=1

r
nij

stij
, �20�

where �i=1
r � j=1

r Oi � Oj =sId.

C. Maximum likelihood state reconstruction

After simulating measurements on all copies of the state,
we have nlk detections corresponding to each measurement

QWP
HWP

Polarizing
Beam Splitter

FIG. 4. The single photonic qubit experimental configuration
consists of a quarter-wave plate and a half-wave plate to set the
basis, and a polarizing beam splitter followed by a photon detector
to analyze in that basis. We call this a single-detector configuration.
An additional detector can be placed on the reflected port in a
dual-detector configuration. This will produce the same count sta-
tistics as in the atomic case after waiting for a fixed number of
counts for each basis setting.
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operator Olk. Maximum likelihood reconstruction is the
problem of finding the state � that maximizes the likelihood
p�¯nlk¯ ��� or equivalently minimizes −ln p�¯nlk¯ ���.
To make our inversions efficiently solvable, we convert �an
approximate version of� this problem into a semidefinite pro-
gram.

For atomic �single and multiple� qubit systems, and for
each measurement setting l, the outcomes follow the multi-
nomial distribution of Eq. �16�. We will approximate these
statistics with a Gaussian distribution with mean �lk
= plk���Nl and a covariance matrix Vl with diagonal entries
�Vl�ii=Nlpli

e �1− pli
e � and off-diagonal entries �Vl�ij =−Nlpli

e plj
e ,

where plk
e =nlk /Nl. Since the outcomes of different measure-

ment settings are statistically independent, the combined
likelihood function is p�¯nlk¯ ���=�lp�nl1¯nlK�. Defining

n� l
� as the vector with kth element nlk, and �� l

� as the vector
with kth element �lk, our approximate problem is to find a
state � that minimizes

− ln p�¯nlk ¯ ��� � �
l

�n� l
� − �� l

� �TVl
−1�n� l

� − �� l
� � . �21�

We have assumed that the term in the exponential of the
Gaussian dominates the likelihood and used experimental
probabilities plk

e instead of plk��� in the covariance matrices
Vl to make the problem convex. This enables the problem to
be converted into a semidefinite program and solved with the
SEDUMI semidefinite program solver software �45�.

For single-detector simulations of single-photon and two-
photon experiments, the counts are Poisson-distributed, and
as we only measure one outcome per measurement setting,
all outcomes are statistically independent. We make a Gauss-
ian approximation with the expected number of counts for
measurement outcome Ol equal to the variance in those
counts, i.e., �l=�l

2=Nl= plN ftl, where pl=tr��Ol�. Our ap-
proximate problem is to find the state � that minimizes the
log likelihood

− ln�p�n1,n2, . . . ���� � �
l

�nl − Nl�2

2Nl
=

N ftl

2 �
l

�pl
e − pl����2

pl���
,

where pl
e=nl / �N ftl�, and we have assumed times spent on

each measurement setting tl are equal. In this case, we were
able to use Nl for mean and variance without losing the
convexity of the problem.

VI. NUMERICAL RESULTS

A. Atomic qubit results based on fidelity

The results for our numerical simulations of single-qubit
atomic tomography are shown in Fig. 5�a�. As noted above,
atomic experiments measure both orthogonal outcomes si-
multaneously, so there are no results for the tetrahedron. The
key point from the graph is that, for sufficiently large N, the
higher-order Platonic solids provide improved tomography
performance. Moreover, because N is the total number of
system copies measured, this result holds despite the fact that
each outcome probability is estimated from a smaller number
of measurements for the higher-order solids. The improve-

ment of the icosahedron over the dodecahedron is only mar-
ginal, but the differences between the other cases are statis-
tically significant.

A slightly different trend, however, is displayed by the
results for the two-qubit atomic tomography, which are
shown in Fig. 5�b�. In this case, the performance is effec-
tively the same for all the Platonic solids, and experimentally
one should choose the cube tensor measurement to minimize
the time consumed by changing the measurement settings.

B. Photonic qubit results based on fidelity

The results for a single photonic qubit using the single-
detector configuration are shown in Fig. 5�c�. In addition to
the Platonic solid measurement sets, we have also included
the popular minimal measurement sets proposed by James et
al. in �15� �labeled James4�, and the most striking result is
how poorly it performs in comparison to the Platonic solids.
The significant improvement that can be achieved by using a
tetrahedral measurement set �which is also a minimal set�
demonstrates the value of using isotropically distributed
measurements. However, the results also show that moving
to overcomplete measurements sets provides still more im-
provement, and the reconstruction quality improves with the
number of measurements. Interestingly, we note that similar
performance is achieved by the dual Platonic solid pairs �the
cube and octahedron; the dodecahedron and icosahedron�.
The clear conclusions from these results are that experimen-
talists should switch from the James4 set to Platonic solids
and that the cube and dodecahedron measurement sets pro-
vide the best value improvement in performance for the
number of measurement settings.

The photonic two-qubit simulation results for the single-
detector configuration are shown in Fig. 5�d�. In addition to
the Platonic solid measurement sets, we have also included
the popular measurement sets proposed by James et al. in
�15� �labeled James16� and the projective SicPOVM mea-
surements.

Again the most striking result is how poorly the James16
minimal measurement set performs compared to tensor prod-
ucts of any Platonic solid, even the tensor-product tetrahedral
set, which has the same �minimal� number of measurements.
Furthermore, the tensor-product cube set outperforms the tet-
rahedral set, again demonstrating the advantage of using
overcomplete measurement sets over minimal sets. However,
for two photonic qubits, as in the atomic case, moving to
more overcomplete measurement sets seems to produce neg-
ligible improvement. The projective SicPOVM measurement
set discussed in Sec. III B contains entangled measurements
that are isotropically distributed over the space of two-qubit
pure states. With the same number of measurements, we see
that the SicPOVM set performs significantly better than the
tetrahedral set. Slightly surprising, however, is that it only
shows a negligible improvement over the other platonic solid
measurement sets.

Once again, the clear conclusion from these results is that
experimentalists should switch immediately from the
James16 settings to a tensor-product cube measurement set,
or at least, if changing measurement settings consumes too
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much time, to a tensor-product tetrahedral set. Also, we note
that there would be little advantage gained in trying to imple-
ment the much more difficult SicPOVM measurements,
when virtually the same reconstruction quality can be
achieved by using an overcomplete set of separable measure-
ments.

C. Results based on the quantum Chernoff bound

As discussed in Sec. II, the average quantum Chernoff
bound has a well-motivated physical interpretation that is
particularly appealing in the context of tomography. It is thus
important to see if our conclusions hold when the quantum
Chernoff bound is used instead of the more easily calculated
fidelity.

We repeated our tomography simulations using the aver-
age quantum Chernoff bound as the figure of merit, and the
Chernoff bound prior over states. The results for one and two
atomic qubits are shown in Figs. 6�a� and 6�b�, respectively.

The results for one and two photonic qubits with single-
detector configurations are shown in Figs. 6�c� and 6�d�, re-
spectively.

In all cases, the graphs are almost identical to those from
Fig. 5. Therefore, we see that all of the conclusions that we
drew from the fidelity-based results can also be inferred from
the results based on the quantum Chernoff bound, and this in
turn provides some extra validation for the fidelity-based re-
sults and even for the average fidelity itself in assessing to-
mographic performance.

D. Comparison with analytical results based on the mean-
squared Hilbert-Schmidt distance

While we have focused on the average fidelity and the
average quantum Chernoff bound as our figures of merit for
characterizing tomography schemes, another commonly used
figure of merit, the mean-squared Hilbert-Schmidt distance,
produces quite different results.
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FIG. 5. �Color online� Tomography simulation results with a Bures prior. In �a� and �b�, the number of copies of the state are plotted
against 1−Fav, where Fav is the average fidelity. To read, select the desired average fidelity on the horizontal axis, and trace vertically to find
the number of copies of the state required to achieve that fidelity. Similarly, �c� and �d� plot the photon flux Nf multiplied by the total time
t against 1−Fav. N.B. the total time t is equally divided between the different measurement settings. Each plot shows the tomography
performance of various Platonic solids. The individual figures are tomography for �a� single atomic qubit states �the tetrahedron cannot be
measured in this configuration�, �b� two atomic qubit states, �c� single photonic qubit with single-detector configuration, and �d� two photonic
qubit with single-detector configuration.
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In a recent paper, Roy and Scott �21� found that a gener-
alized class of mutually unbiased bases �e.g., the cube mea-
surement for a single qubit in our terminology� were an op-
timal measurement set for single qubit tomography. They
chose to use the mean-squared Hilbert-Schmidt distance as a
figure of merit specifically because it allowed analytical so-
lutions to the complicated problem of characterizing mixed-
state tomography. The somewhat surprising feature of their
result is that it also holds for a generalized class of mutually
unbiased bases, which includes all of the Platonic solid mea-
surement sets, implying that the different Platonic sets
should all perform equally well. This contrasts with the re-
sults we have obtained using the average fidelity and average
quantum Chernoff bound.

To explore this discrepancy, we repeated the calculation
of Eq. �15� �for the cube measurement set�, replacing the
fidelity with squared Hilbert-Schmidt distance to give a point
squared Hilbert-Schmidt �HS� distance of

	DHS
2 �r�� �

3

2N
�3 − r2� , �22�

where r is the radius of the state on the Bloch sphere. This
equation was derived in �20� by other means and agrees with

the results of �21�. Note that the point squared Hilbert-
Schmidt distance is independent of the orientation of the true
state relative to the measurement directions on the Bloch
sphere, unlike the point fidelity, which depends explicitly on
the true state coordinates rx, ry, and rz �see Eq. �15��. In other
words, if the results of Fig. 1 for the cube measurement set
were recalculated using the point squared Hilbert-Schmidt
distance, the plot would show no variation other than some
statistical fluctuations. This calculation confirms that the
choice of figure of merit qualitatively affects the apparent
performance of different tomography schemes.

Both the above calculation and the results from �21� ne-
glect the effects of positivity constraints on the reconstructed
density matrix. We have therefore also repeated our numeri-
cal simulations for atomic qubits using mean-squared
Hilbert-Schmidt distance as a figure of merit, a Bures prior,
and full maximum likelihood estimation. Our results show
that the Platonic solids all performed equivalently. Indeed,
our results were within statistical errors of the theoretical
value obtained by integrating Eq. �22� over a Bures prior
DB�0.8438 /N.

The above results confirm the conclusion of �21� that all
of the Platonic solids appear to be optimal �and equivalent�
when the mean-squared Hilbert-Schmidt distance is used as a
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FIG. 6. �Color online� Tomography simulation results with the prior induced by the quantum Chernoff bound. In �a� and �b�, the number
of copies of the quantum state N is plotted against 1−�av, where �av is the average quantum Chernoff bound. In �c� and �d�, the photon flux
Nf multiplied by the total time t is plotted against 1−�av. The individual figures are tomography for �a� a single atomic qubit, �b� two atomic
qubits, �c� a single photonic qubit with a single-detector configuration, and �d� two photonic qubits using single-detector configurations.
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figure of merit even when the physical effects of positivity
are included. This is qualitatively different from the conclu-
sions obtained by using the physically well-motivated aver-
age quantum Chernoff bound.

VII. DISCUSSION AND CONCLUSIONS

A. Experimental recommendations

The most significant implications of the work in this pa-
per apply to tomography of photonic systems performed us-
ing single-detector configurations. We have conclusively
shown that experimentalists should immediately switch from
the minimal four-measurement set of �15� to the overcom-
plete six-measurement cube set, or at the very least switch to
the tetrahedron measurement set if the number of measure-
ment settings is an issue. In particular, we showed that for
both one- and two-qubit systems, the minimal sets of �15� are
far outperformed by all of the Platonic solid measurement
sets. This strongly suggests that the use of these symmetri-
cally arranged measurements will be advantageous for ex-
periments on systems having larger numbers of qubits. Here,
however, we note that the number of measurement settings
grows very rapidly and the time to change between detector
settings is likely to become an issue. If this is the case, then
the multiqubit tetrahedral sets should also provide much bet-
ter performance than the multiqubit sets outlined in �15�
without requiring any more measurements.

In both one- and two-qubit cases, the overcomplete Pla-
tonic sets �cube and above� also showed further improve-
ment over the minimal tetrahedral measurement set. Indeed
for two qubits, these overcomplete tensor-product Platonic
sets performed comparably to entangled measurement sets,
although only a negligible improvement was achieved by
going higher than the six-measurement cube set. For single-
qubit tomography, experimentalists would have to judge
whether the continued improvement in asymptotic perfor-
mance for the higher-order Platonic solids would result in a
net gain after the time required to switch between measure-
ment settings is taken into account.

As noted earlier, when using a dual-detector configura-
tion, the conditional statistics of the counts across the pos-
sible measurement outcomes follow binomial �or multino-
mial� distributions as with atomic qubits. In all cases we
investigated, the atomic tomography converges slightly
faster than the single-detector photonic tomography. Also,
moving to dual detectors allows some purely practical ben-
efits by allowing some compensation for, or at least the iden-
tification of, stability problems in an experimental situation.
We note, however, that the standard maximum-likelihood
penalty function introduced in �15� is only valid for the
single-detector configuration and should be replaced by the
multinomial penalty function of Eq. �21�, although in prac-
tice the difference may often be negligible.

For tomography in atomic systems �such as measurements
on trapped ions�, experimentalists are generally already per-
forming the cube measurement set. For single-qubit tomog-
raphy, our results indicate that further improvement could be
obtained by moving to higher-order Platonic solids. How-
ever, for two-qubit systems, as in the photonic case, the

higher-order solids demonstrate only a negligible improve-
ment over the cube set. This suggests that, in atomic systems,
experimentalists are already generally using the optimal to-
mographic measurement schemes.

B. Tomography and the spherical t-designs

Mathematically, the idea of isotropically spacing points
on a sphere is also captured by the concept of a spherical
t-design. A description of t-designs is beyond the scope of
this paper, but note that t-designs are sets of points that allow
numerical estimation of integrals over the sphere, with the
quality of the approximation improving as t is increased.
This suggests that good measurement sets for tomography
may well be associated with t-designs. Indeed it has been
shown �46� that t-designs are optimal for pure state estima-
tion when collective measurements are available.

Popular measurement sets for tomography of general
quantum systems include the so-called symmetric informa-
tionally complete POVMs �SicPOVMs� �41�, which are
spherical 2-designs. In fact, the tetrahedron measurement set
is the SicPOVM for a single qubit and the other Platonic
solids are also 2-designs. Moreover, it is known �47� that the
cube and octahedron are 3-designs and the dodecahedron and
icosahedron are 5-designs �a t-design is also a t�-design for
all t�	 t�. We suggest that the increasing t of the t-design for
the higher-order Platonic solids may be related to their better
performance in the tomographic reconstruction of single-
qubit states. In particular, we observe that the dual Platonic
solids, which have the same t-design, also perform similarly
well in the tomography of single qubits.

We believe that the connection between t-designs and the
performance of different measurement sets in mixed-state to-
mography deserves to be explored in more detail in future
theoretical work. From a more practical perspective, it may
also be worth investigating a tomographic measurement set
based on McLaren’s “improved Snub Cube” �47�, a 24-point
7-design, which therefore provides a fairly substantial in-
crease in the value of t for a relatively small increase in the
number of measurements.

C. Future work

The results in this paper provide definite, useful recom-
mendations for how an experimentalist can improve their
tomographic reconstructions at a practical level, but there are
still many remaining avenues for extending this work. For
example, one could investigate measurement sets made from
polyhedra other than the Platonic solids �like the semiregular
polyhedra�. However, this paper has shown that the Platonic
solids provide a good spread in the number of measurements
and in performance, and going to even higher-order shapes
appears to be of decreasing value. We thus consider explor-
ing other single-qubit shapes to be unfruitful, with the one
possible exception of the improved Snub Cube design men-
tioned above.

We have focused on qubit tomography in this paper, but it
would also be interesting to broaden our investigation to in-
clude tomography of arbitrary d-dimensional systems, since
these systems exhibit some advantages for various quantum
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computing and quantum communication protocols. More-
over, for certain dimensions, this would also provide some
insight into tomographic performance in multiqubit systems
in situations where measuring entangled projections are suf-
ficiently feasible experimentally. In higher dimensions, it
would be interesting to investigate the generalizations of the
platonic solids, the simplex, the hypercube, and the cross-
polytope. These are defined in arbitrary dimensions and may
straightforwardly be embedded into the Bloch-hypersphere
�indeed, the simplex is just the well-known SicPOVM �41��.
However, since not all the points on the hypersphere corre-
spond to pure states, finding a simplex, hypercube, or cross-
polytope of pure states is nontrivial. In �41�, this was done by
numerical search for the simplex. The results of this paper
suggest that overcomplete measurement sets based on the
hypercube and cross-polytope would outperform the
SicPOVM for state tomography.

Taking a different approach, we also suggest that tomog-
raphic performance should be investigated in the context of
real experiments. While experiments in tomography usually
report an uncertainty in the reconstruction based on a fixed
number of measured systems, it would be interesting to per-
form an experimental study of how this uncertainty de-
creases over the time of the tomography. In particular, such a
study should provide information about the noise sources
affecting the experiment. For example, drifts in either the
states or the measurement over time might be expected to
lead to a saturation of the average fidelity with N. We have
seen that when the experiment is limited by statistical noise,
then the quality of the tomography depends systematically
on N and on the choice of measurement. This could be tested
experimentally and should give detailed information about
the true errors in real experiments. In the case of optical
experiments, this simply requires rotating regularly among
the different measurement settings and keeping track of the
order in which counts arrive. State inversions can then be
done at various time intervals, and a graph of the number of
qubits N against point fidelity similar to our Fig. 3 could be
straightforwardly obtained. One should, for example, be able
to observe the general behavior of a scaling like 1 /�N at low
numbers of copies transitioning to a scaling of 1 /N at large
numbers of copies. Likewise the improvement of the point
fidelity with the choice of measurement could be checked.
Comparison to detailed point fidelity simulations should aid
in the characterization of experimental error sources. To date,
there has been almost no experimental work of this type,
although there are very recent results in �48� exploring dif-
ferent measurement sets for two-qubit tomography.

While our results have been stated purely in terms of
quantum state tomography, they also have some direct impli-
cations for quantum process tomography. In process tomog-
raphy, probe states are prepared and allowed to evolve under
the process to be characterized. The process is then inferred
from measurements of the resulting states. There are several
variations in how one can obtain the process description,
including standard quantum process tomography �SQPT�
�49�, ancilla-assisted quantum process tomography �AAPT�
�50,51�, and direct characterization of quantum dynamics
�DCQD� �35�. AAPT, where the process is applied to one
part of a single input state, has the most direct link to our

results as they directly apply to the quality of the state to-
mography of the single output state. Our results suggest that
using overcomplete measurement sets would improve the re-
construction accuracy.

In SQPT, a set of input states are used to probe the quan-
tum process, and the process is obtained from state tomog-
raphy of the output states. There is a direct connection be-
tween AAPT and SQPT if we restrict the measurements to
tensor products of system measurements with ancilla mea-
surements. Then, one can interpret the measurements on the
ancilla as a remote preparation of the input state to the sys-
tem, and we can expect the same performance between these
tensor product measurements in AAPT and the correspond-
ing input states and measurements in SQPT. In either case,
however, the situation for process tomography is compli-
cated by the requirements of complete positivity, as opposed
to just positivity for states, and our observations only provide
indications of the expected behavior. It would therefore be of
great interest to comprehensively compare the various quan-
tum process tomography strategies under a framework simi-
lar to the one we have presented, to determine the optimal
strategies to adopt.
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APPENDIX A: DERIVATION OF PURE-STATE CRAMéR-
RAO BOUNDS FOR SINGLE-QUBIT TOMOGRAPHY

Let �� = �
 ,��T be the state Bloch vector in spherical polar
coordinates, and let �̂� be the state estimate. The similarity
between �� and �̂� is given by the fidelity f����̂� �= �1+r� · r̂�� /2,
where r�= �cos���sin�
� , sin���sin�
� , cos�
��T and similarly

r̂�= �cos��̂�sin�
̂� , sin��̂�sin�
̂� , cos�
̂��T.
Since we assume �� and �̂� are close, we expand the fidel-

ity in a Taylor series to second order, giving

f����̂� � 
 f����� � + Df����� � · ��̂� − �� � +
1

2
��̂� − �� �H��� ���̂� − �� �T,

�A1�

where Df����� �i= �
�f����̂� �

��̂i
��̂� =�� and H��� � is the Hessian matrix

defined by

H��� �i,j = � �2f����̂� �

��̂i��̂ j

�
�̂� =��

. �A2�

Now f����� �=1 and Df����� �=0� , so

f����̂� � 
 1 +
1

2�
i,j

� �2f����̂� �

��̂i��̂ j

�
�̂� =��

��̂i − �i���̂ j − � j� . �A3�

During tomography, each of N identical copies of the qu-
bit state is each measured exactly once. Our measurement set
consists of l different measurement settings. So N=N / l mea-
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surements are performed with each measurement setting.
Each measurement setting is represented by Bloch vector

m� i, with outcomes �i= 
1. One set of measurements has 2l

possible outcomes represented by the string �=�1¯�l. The
probability of obtaining outcome � is given by

p����� = �
i

�1 + �ir� · m� i�/2. �A4�

The point fidelity obtained by averaging over the possible
outcomes � of the set of measurements is given by

Fpt��� � = �
�

p�����f��„�̂� ���… �A5�


1 +
1

2
tr�H��� �V��� �� , �A6�

where V��� � is the covariance matrix defined by

V��� � = �
�

p�����̂� ��� − �� ���̂� ��� − �� �T. �A7�

The Cramér-Rao bound for unbiased estimators states

V��� � �
1

NI��� �
, �A8�

where I��� � is the Fisher Information matrix defined by

Iij��� � = �
�

p�����
� ln p�����

��i

� ln p�����

�� j
. �A9�

Noting that H��� � is negative definite, the point fidelity
bound is then given by

Fpt��� � � 1 +
1

2N
tr�H��� �I−1��� �� . �A10�

Finally averaging over �� uniformly according to the Haar
measure,

d� =
sin 


4�
d
d� , �A11�

gives the average fidelity Cramér-Rao bound.

APPENDIX B: EIGENVALUE DISTRIBUTION FOR THE
QUANTUM CHERNOFF BOUND METRIC

In �28� it was shown that the infinitesimal distance be-
tween states � and �+d� according to the quantum Chernoff
bound is

ds2 =
1

2�
jk

�	j�d��k��2

��� j + ��k�2
, �B1�

where �=� j� j�j�	j� is the eigenvalue decomposition of �. We
will follow the same procedure as �33� in his calculation of

the Bures volume element to derive our quantum Chernoff
bound eigenvalue distribution.

First decompose this into an infinitesimal shift in eigen-
values followed by an infinitesimal unitary rotation,

� + �� = �I + �U��� + ����I + �U�† �B2�

=� + �� + ��U,�� , �B3�

where we have ignored any terms that are a product of mul-
tiple infinitesimal quantities and defined 	j����k�=� jkd� j. In
general, we can rewrite the infinitesimal unitary operator as

�U = �
j�k

�dxjk + idyjk��j�	k� + H.c. �B4�

Next we substitute Eqs. �B4� and �B3� into Eq. �B1�, yielding

ds2 =
1

8�
j

�d� j�2

� j
+ �

j	k

��k − � j�2

��� j + ��k�2
�dxjk

2 + dyjk
2 � .

We convert this into a differential volume element by multi-
plying together all the dsi formed by a shift in each param-
eter �i assuming the shift in the other parameters is zero.
Since the volume element will require normalization, we
combine any constant factors. The final differential volume
element is given by

dV = C�
d�1 ¯ d�M

��1 ¯ �M
�
k	j

��k − � j�2

��� j + ��k�2
dxjkdyjk, �B5�

where C� is a normalization constant.
Since the eigenvalue distribution is unitarily invariant, we

can concern ourselves with the marginal probability distribu-
tion over the eigenvalues of the density operators. That is,

p��1 ¯ �M� =
C

��1 ¯ �M
�
k	j

��k − � j�2

��� j + ��k�2
, �B6�

where the eigenvalues are also constrained to satisfy � j=1
M � j

=1 and C is a normalization constant. Next we examine the
single-qubit case.

Single-qubit case

For the qubit case, we have

p��1�2� =
C

��1�2

��1 − �2�2

���1 + ��2�2
. �B7�

The eigenvalues for the qubit case are related to r �the
radius on the Bloch sphere� according to �1= �1+r� /2 and
�2= �1−r� /2. This yields

p�r� =
C

2

1 − �1 − r2

�1 − r2
. �B8�

By requiring �0
1p�r�dr=1, we calculate C=4 / ��−2�.
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