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We study the dynamics of ultracold atoms trapped in optical double-well potentials in presence of noise
generated by an external environment. When prepared in a Fock number state, the system shows phase
coherence in the averaged density profile obtained using standard absorption image techniques, that disappears
in absence of noise. This effect indicates that also in many-body systems an external environment may enhance
quantum coherence, instead of destroying it.
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I. INTRODUCTION

Cold atoms trapped in a periodic optical potential have
become a preferred test ground for the study of quantum
effects in many-body physics, e.g., in quantum phase transi-
tion, and matter interference phenomena, and also for appli-
cations in quantum information �for instance, see Refs. �1,2�,
and references therein�.

In particular, the study of phase coherence between frac-
tions of a same condensate confined in a double well poten-
tial has been the focus of much theoretical and experimental
analysis as a powerful technique to obtain information about
the state of a trapped condensate. In general, phase coher-
ence cannot be directly observed within the trap; neverthe-
less, it can be put into evidence by releasing the confining
potential and letting the condensate freely expand, so that the
atoms from the two wells may interfere with each other: as a
consequence, fringe patterns are formed in the spatial den-
sity. The latter can be obtained by illuminating the expanding
clouds with a probe light and then by collecting the corre-
sponding absorption image. In particular, information about
the initial relative phase can be extracted from the interfer-
ence pattern �3–13�.

One expects to observe interference fringes in the density
profile only if there is phase coherence between the wells.
Instead, they appear even starting from a state with random
relative phase, such as a Fock number state.1 In this case,
however, the interference patterns have different offset posi-
tions in successive shots; as a consequence, by averaging
over multiple realizations of the experiment the interference
pattern disappears.

In the following, we shall study how this picture changes
in the presence of an external environment, weakly affecting
the dynamics of the condensate in the double-well trap. Usu-
ally, the environment is a source of noise and dissipation that
are expected to lead to decoherence. Instead, we shall show
that, the environment may create phase coherence between
two initially uncorrelated fractions of the condensate, an ef-

fect that may be traced to the presence of an environment
induced current between the two wells �14�.

We will consider a system consisting of N atoms confined
in a double-well trap with a very high barrier; in absence of
noise, the Fock number states with k atoms in one well and
N−k in the other are equilibrium states. The presence of an
environment changes the situation and makes the system an
open quantum system; its dynamics is no longer unitary and
is characterized by the presence of noise and dissipation, so
that the Fock number states are no longer stationary. We will
assume that the interaction between the atoms and the envi-
ronment be weak, with very fast decaying environment cor-
relations. In this case, the reduced dynamics of the trapped
gas admits a Markovian �i.e., memoryless� time evolution
described by a family of maps forming a quantum dynamical
semigroup �15–17�. An explicit example of such an environ-
ment has been proposed in Ref. �18�, where cold bosons in
an optical lattice are coupled to the Bogoliubov excitations
of another condensate, which mediates transitions between
the lowest and the first excited lattice Bloch bands. Alterna-
tively, one may consider the coupling of the atoms to an
external classical stochastic field, with white noise correla-
tions.

Using open quantum system techniques, we shall analyze
below the averaged density resulting from the free expansion
of the gas after trap release. We shall see that, even starting
from a Fock number state, with no definite relative phase
between the states in the two wells, interference fringes may
appear in the averaged density profile; they disappear in ab-
sence of the environment, thus showing the purely noisy ori-
gin of the effect. We shall also see that this phenomenon may
be related to the presence of a dissipative current between the
two wells �14�.

II. COLD ATOMS IN A DOUBLE-WELL POTENTIAL

The usual description of cold atoms trapped in a double
well potential uses a two-mode Bose-Hubbard model �20,21�
with Hamiltonian

HBH = �1a1
†a1 + �2a2

†a2 + U��a1
†a1�2 + �a2

†a2�2�

− T�a1
†a2 + a1a2

†� , �1�

where a1,2, a1,2
† annihilate and create atom states in the first,

1This phenomenon has been the focus of various investigations,
aiming to explain single shot interference formation via the detec-
tion process �see Refs. �6–13�, and references therein�. An alternate
explanation is, however, possible: as further discussed in Sec. III, it
makes use of a projection onto fixed-phase, coherentlike states.
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second well, respectively, and satisfy the Bose commutation
relations �ai ,aj

†�=�ij. Of the contributions to HBH, the last
one corresponds to a hopping term depending on the tunnel-
ing amplitude T, the first two are due to the trapping poten-
tial and are proportional to the depth of the wells: in the
following we will consider the case of a symmetric trap, i.e.,
�1=�2. Finally, the third term, quadratic in the number op-
erators ai

†ai, takes into account repulsive Coulomb interac-
tions inside each well.

Let ���i��i=1
� be a complete set of orthonormal single-

particle atom states; the creation operator �̂†�x� of an atom at
position x can then be decomposed as

�̂†�x� = 	
i=1

�

�
i
*�x�ai

†, �2�

where ai
† creates an atom in the state ��i�=ai

†�vac� with wave
function �i�x�= 
x ��i�. The Bose-Hubbard Hamiltonian �1�
results from a tight binding approximation, where only the
first two of the basis vector are relevant; in this case �1,2�x�
are orthogonal functions, �1�x� localized within the first
well, �2�x� within the second one.

The total number N of atoms is conserved by Eq. �1�.
Therefore, the Hilbert space of the system is
�N+1�-dimensional and can be spanned by Fock number
states of the form

�k,N − k� ª
�a1

†�k�a2
†�N−k

�k!��N − k�!
�vac� , �3�

describing the situation in which the first well is filled with k
atoms, while the other one contains N−k particles. They are
obtained by the action of the creation operators on the
vacuum state. These states turn out to be eigenstates of the
Bose-Hubbard Hamiltonian when the tunneling term can be
neglected.

Alternatively, one can consider the so-called phase states

��,�;N� =
1

�N!
���ei��/2�a1

† + �1 − �e−i��/2�a2
†�N�vac� , �4�

depending on two real parameters, an amplitude �� �0,1�
and a phase �� �0,2��. These states describe a physical
situation where all N atoms are in a same superposition
of a two-mode single particle state with relative phase �;
from a many-body point of view, such states correspond to a
macroscopic wave function obeying the Gross-Pitaevski
equation �3�. Moreover, the parameter � is related to the
mean value of the relative occupation number

� ,� ;N��a1

†a1−a2
†a2��� ,� ;N�=N�2�−1�.

These states form an overcomplete set

1N =
N + 1

2�
�

0

1

d��
0

2�

d���,�;N�
�,�;N� . �5�

Although not orthogonal, for sufficiently large N �a very
common situation in actual experiments�, the phase states
become nearly so,


�,�;N���,��;N� 
1

N
��� − ������ − ��� . �6�

One can then decompose any N atom state in terms of these
states; in particular, for Fock number states, one can write

�k,N − k� =
N + 1

2�
�

0

1

d��
0

2�

d�
�,�;N�k,N − k���,�;N� ,

�7�

where the overlapping functions are explicitly given by


�,�;N�k,N − k� = �N

k
�1/2

�k/2�1 − ���N−k�/2e−i��k−N/2�. �8�

Further, the action of �̂�x� on the phase states can be easily
derived using Eq. �2�,

�̂�x���,�;N� = �N����1�x�ei��/2� + �1 − ��2�x�e−i��/2��

	��,�;N − 1� . �9�

III. DENSITY PROFILE AFTER FREE EXPANSION

As explained in the Introduction, our aim is to study the
spatial density profile obtained by releasing the trap and by
subsequently letting the cold atoms freely expand for a time

. If 
 is large enough, the two fractions of cold atoms inter-
fere with each other thus providing a spatial fringe pattern
that one can probe by light absorption.

Suppose the trap is released at 
=0 when the cold atoms
are in the phase state �4�. In order to describe the free expan-
sion, disregarding atom-atom interactions, we make use of
the following model: we let the single-particle states evolve
under the action of an unitary operator U
; notice that, by the
unitarity of U
, the basis states ��i� evolve in another set of
basis states

��i�
 = U
��i� ª ai
†�
��vac�, ai

†�
� � U
ai
†U


†. �10�

Thanks to the absence of interactions during the expan-
sion, the evolution of the phase states follows immediately
from the evolution of the single particle states

��,�;N�
 =
1

�N!
���ei��/2�a1

†�
� + �1 − �e−i��/2�a2
†�
��N�vac� ,

�11�

while both the relations �5� and �6� still hold for any 
 �22�.
The annihilation operator �which does not evolve in time�
could be again decomposed over the new basis

�̂�x� = 	
i=0

�

�i�x,
�ai�
�, �i�x,
� = 
x��i�
, �12�

and therefore the action on the freely evolved phase state
reads

�̂�x���,�;N�
 = �N����1�x,
�ei��/2� + �1 − ��2�x,
�e−i��/2��

	��,�;N − 1�
. �13�
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If the two fractions of the condensate expand indepen-
dently, we can explicitly evaluate the relative phase
gained during the ballistic expansion. Writing
�i�x ,
�= ��i�x ,
��ei�i�x,
�, the phase �i�x ,
� can be obtained,
for large 
, in terms of the classical behavior of the velocity

v� = �

m�� �i=
r�

 �3�. We shall focus upon the direction x, hence

upon the phase modulation

�1,2�x,
� =
1

2

m�x − x1,2�2

�

,

where xi is the position of the ith well; it follows that the
overall relative phase after a time of flight 
 can be well
approximated by

�1�x,
� − �2�x,
� =
md

�

x , �14�

where the trap is considered to be located along the x
axis, centered at x=0 with the two wells at position
x1=−d /2, x2=d /2, respectively.

Then, starting from a phase state, the one-particle spatial
density explicitly reads

n�,��x,
� = 

�,�;N��̂†�x��̂�x���,�;N�


= N����1�x,
��2 + �1 − ����2�x,
��2

+ 2���1 − ����1�x,
����2�x,
��cos�md

�

x + ��� .

�15�

The last term in this equation exhibits the presence of fringes
that are equally separated by a distance �

�

md with an offset

position fixed by the initial phase �.
The situation is completely different if one starts instead

from a Fock number state; in this case the mean value of the
density operator after the free expansion can be calculated by
decomposing the state using the analog2 of Eq. �7� at time 
,

�k,N − k�
 =
N + 1

2�
�

0

1

d��
0

2�

d�
�,�;N�k,N − k���,�;N�
.

�16�

Experimentally, the light-absorption image relative to a
Fock number state shows the same fringe pattern �15� of the
superfluid state, whereas one would expect no interference
fringes at all. However, if one repeats the experiment with
the same initial conditions, the fringe patterns are obtained
with randomly distributed offset positions. Therefore, by av-
eraging over them, the fringes cancel out and the averaged
density profile does not exhibit any interference pattern
�3–13�.

In order to interpret this effect, notice that the absorption
image amounts to a measurement of the initial relative phase
�, for it gives a one-shot density profile of the form �15�.

Furthermore, starting from a phase-state �� ,� ;N�, every
single repetition of the experiment will always give the same
interference pattern n�,��x ,
� �11�. On the contrary, when the
initial state at 
=0 is a Fock number state �k ,N−k�, each
single shot will correspond to a random selection of one of
the phase states �11� in the expansion �16�, with probability
densities that are independent of the relative phase and pro-
portional to

�
�,�;N�k,N − k��2 = �N

k
��k�1 − ��N−k. �17�

In other words, every single-shot measurement of the density
profile in the state �k ,N−k�
 resulting from the Fock number
state �k ,N−k�, randomly projects out the density profile of
one of the phase states �� ,� ;N�
, with weight �17�. As a
consequence, the averaged density profile reads

nk�x,
� ª
N + 1

2�
�

0

1

d��
0

2�

d��
�,�;N�k,N − k��2n�,��x,
�

=
N

N + 2
��k + 1���1�x,
��2 + �N − k + 1���2�x,
��2�

�18�

and shows no interference pattern �see Ref. �22� for further
details�.

The density profile at time 
 after trap release depends on
the state of the N-atom system at time 
=0. Since we are
interested in studying the effects of a dissipative open dy-
namics during the interval of time t spent by the system
within the confining double-well potential, we will describe
the system state at time t by a generic density matrix �t:

�t = 	
k,q=0

N

Rkq
t �k,N − k�
q,N − q� . �19�

Notice that the information about the dynamics during the
time t spent by the atoms within the double-well trap is con-
tained in the coefficients Rkq

t .
In order to construct the averaged density profile in

such a case, one considers the ensemble of profiles

n�,��x ,
�= 

� ,� ;N��̂†�x��̂�x��� ,� ;N�
 that are obtained in
many repetitions of the experiment, with the same initial
conditions. Each image shows interference fringes of the
form �15� and appears in the statistical ensemble of all col-
lected images with weights proportional to


�,�;N��t��,�;N� = 	
k,q=0

N

Rkq
t ��N

k
��N

q
�

	��k+q�/2�1 − ��N−�k+q�/2e−i��k−q�.

�20�

The resulting one-particle spatial density profile is then
given by the corresponding statistical average

2Note that the scalar products 
� ,� ;N �k ,N−k� in Eq. �16� do not
depend on time.
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n�t
�x,
� =

N + 1

2�
�

0

1

d��
0

2�

d�
�,���t��,��n�,��x,
�

=
N

N + 2�	
k=0

N

Rkk
t ��k + 1���1�x,
��2 + �N − k + 1�

	��2�x,
��2� + 	
k=0

N−1

Rkk+1
t ��k + 1��N − k���1�x,
��

	��2�x,
��e−i�md/�
�x + c.c.� . �21�

The presence of visible interference fringes is strictly related
to the next-to-diagonal entries of the density matrix Rkk+1

t

�and their Hermitian conjugates�.3

Notice that the previous average can be computed as

the mean value of the density operator �̂†�x��̂�x� with
respect to a density matrix �̃t which results from the
freely evolved state U
�tU


† by the action of a generalized
measurement, a so-called positive operator valued measure
�POVM� �23,24�, consisting of the family of projectors
P�,�;Nª �� ,� ;N�
� ,� ;N�. Explicitly, one has

�̃
 =
N + 1

2�
�

0

1

d��
0

2�

d�P�,�;NU
�tU

†P�,�;N. �22�

The map from �t to �̃t corresponds to the canonical descrip-
tion of the quantum measurement process associated with the
POVM �P�,�;N�. One notices that it does not correspond to a
measurement of the number operator in the state U
�tU


†

which gives an average number of the form

Tr��̂†�x��̂�x�U
�tU

†�

= N� dx2 ¯ dxN
x,x2, . . . ,xN�U
�tU

†�x,x2, . . . ,xN�

= 	
k=0

N

Rkk
t �k��1�x,
��2 + �N − k���2�x,
��2�

+ �	
k=0

N−1

Rkk+1
t ��k + 1��N − k���1�x,
��

	��2�x,
��e−i�md/�
�x + c.c.� , �23�

which is often used to fit experimental data; this average
corresponds to a POVM consisting of projections onto eigen-

states of the operator �̂†�x��̂�x�, not onto phase states.
For N large, the difference between Eqs. �23� and �21� are

very small for all practical purposes. Furthermore, the differ-
ence does not show up in the oscillating terms. In the fol-

lowing we will make use of the the description of the absorp-
tion images in terms of a POVM consisting of the
projections onto the phase states, since this appears to de-
scribe more adequately the absorption image formation �22�.

IV. NOISY DYNAMICS WITHIN THE TRAP

In this section we study the dynamics of the N atoms
within a trap immersed in an external environment; in par-
ticular, we shall focus upon its effects on the ground state
�N /2,N /2� of Eq. �1� with a very high potential barrier. The
density matrix of the total system, atoms plus environment,
�SE evolves unitarily under the action of a total Hamiltonian
which can be written in the form

HSE = HBH � 1E + 1 � HE + HI, �24�

where HBH is as in Eq. �1� and describes the motion of the
system in absence of the environment, HE is the Hamiltonian
of the environment, while HI describes the interaction be-
tween them and can be taken to have the general form

HI = 	
i

Vi � Bi �25�

where Vi and Bi are suitable system and environment hermit-
ian operators, respectively.

The evolution of the system density matrix �=TrE��SE�
can be obtained by tracing out the environment degrees of
freedom from the standard unitary evolution of the total sys-
tem initial state �SE. In general this operation leads to a mas-
ter equation affected by memory terms and nonlinearities.
The latter can be avoided by choosing an initially uncorre-
lated state of the system and the bath, �SE=� � �E; this is a
common situation in experimental contexts when the envi-
ronment is supposed to be in a reference equilibrium state �E.

On the other hand, memory effects can be considered a
short time phenomenon; if we are not interested in this tran-
sient regime, they can be neglected by studying the effective
evolution of the system on a slower timescale. This amounts
to a Markov approximation �15–17� which is only plausible
when a neat separation exists between system and environ-
ment time scales. Necessary conditions for this approxima-
tion are, for instance, satisfied within the so-called singular
coupling limit �25–27�, where the characteristic decay times
of the environment correlations

Gij�t� = 
Bi�t�Bj� � Tr�Bi�t�Bj�E�, Bi�t� = eitHEBie
−itHE

�26�

are very small when compared to the typical time scale of the
system. This condition is satisfied by a thermal bath in equi-
librium at very high temperature or by an external stochastic
white-noise classical field; in this latter case, the matrix
�Gij�t�� turn out to be real symmetric. In Ref. �18�, a suitable
bath fulfilling the above conditions has been proposed, where
the system is coupled with the Bogoliubov excitations of
another condensate, which drive a transition of the trapped

3The evolution of the atoms within the trap affects only the coef-
ficient Rkq

t and depends on the time t spent inside the trap; the time
of flight 
 refers instead to the time interval between the releasing of
the trap and the snapshot of the density and it is a parameter of the
experimental setup.
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atoms to the first excited lattice Bloch band, with a charac-
teristic transition rate �.4

In the singular-coupling limit, the dissipative time-
evolution of the open system density matrix is generated by
a master equation of the form

���t�
�t

= L���t�� � − i�HBH + H�2�,��t�� + D���t�� , �27�

where the noise contributes with an effective correction H�2�

to the free Hamiltonian and with a linear operator D�¯�
which cannot be recast in Hamiltonian form. Their explicit
expressions take the standard Kossakowski-Lindblad form
�15–17�

D��� = 	
ij=1

4

cij�Vj
†�Vi −

1

2
�ViVj

†,��� , �28�

H�2� = 	
ij=1

4

sijViVj
†. �29�

The operators Vi are the operators involved in the interaction
Hamiltonian �25�, while the entries of the two Hermitian
matrices �cij� and �sij� embody all the information about the
effects induced by the environment and are obtained from
the correlation functions of the environment

�
0

�

dtGij�t� =
1

2
cij + isij , �30�

cij = �
−�

+�

dtGij�t� � �FGij�����=0,

sij =
1

2�
P�

−�

+�

d�
FGij���

�
, �31�

where F denotes Fourier transforming and P the principal
value.

In particular �cij� is known as Kossakowski matrix and
turns out to be positive definite, a key requirement to ensure
the positivity of the eigenvalues of the evolved density ma-
trix �t at all times and therefore the consistency of the dy-
namics. For instance, in the case of the environment pro-
posed in Ref. �18�, the matrix �cij� takes the explicit
expression5

�cij� =�
2� − 2� 0 i�

− 2� 2� 0 − i�

0 0 0 0

− i� i� 0 �/2
� . �32�

The operator L�¯� in Eq. �27� generates a family of maps
�t=etL, which forms a quantum dynamical semigroup
�15–17�, fulfilling the forward in time composition law
�t ��s=�t+s, t ,s�0, and describing the irreversible character
of the dissipative evolution.

Quite in general, the presence of an environment will af-
fect both the tunneling amplitude and the minima of the con-
fining potential; the environment operators Bi will then be
coupled to the following bilinear atom operators appearing in
the system Hamiltonian �1� a1

†a1, a2
†a2, a1

†a2, and a2
†a1, or

more precisely to the four Hermitian operators

Vi = �a1
†a1,a2

†a2,�a1
†a2 + a2

†a1�,i�a1
†a2 − a2

†a1�� . �33�

As a final remark, notice that the action of the environment
ceases as a consequence of the trap release.

V. EFFECTS OF NOISE IN THE DENSITY PROFILE

As mentioned before, we shall consider an initial atom
state of the form

�0 = �N/2,N/2�
N/2,N/2� . �34�

In absence of the environment and for a high potential bar-
rier, this state is the ground state of Eq. �1�; as a conse-
quence, the components Rkq

t in Eq. �19� are time independent
and Rkq=0 if k and q differ from N /2. Therefore in both Eqs.
�21� and �23� no interference fringes appear.

In order to study the effects induced by the presence of
noise, it is sufficient to consider the small time dynamics
resulting from Eq. �27�, whose solution up to first order in
time then reads

�t = �0 + it�HBH + H�2�,�0� + tD��0� + O�t2� . �35�

Since �HBH ,�0�=0, only the dissipative contributions in
Eq. �35� need to be studied. The explicit expressions of D��0�
and i�H�2� ,�0� are collected in the Appendix. Using them, to
first order in t, one finally gets

n�t
�x,
� =

N

2
���1�x,
��2 + ��2�x,
��2� + t

N2

4
�4 Im�c34�

	���2�x,
��2 − ��1�x,
��2� + ��1�x,
����2�x,
��

	��2 Re�s24 − s14� + Im�c14 − c24��cos�md

�

x�

+ �2 Re�s23 − s13� + Im�c13 − c23��sin�md

�

x��� .

�36�

The last two lines of the last equation contain oscillating
terms which give rise to interference fringes spaced by a
distance l�
 /md; notice that these fringes disappear in ab-
sence of noise �i.e., when cij =0=sij�. While the interference

4It is interesting to notice that another possible mechanism induc-
ing dissipation is provided by inelastic collisions among atoms on
the same lattice site, that can be tuned on by a nonvanishing imagi-
nary part of the interaction parameter U �19�. These effects would
nevertheless lead to atom loss, i.e., to nonconservation of N, requir-
ing an extension of the formalism to be properly treated.

5The dissipative effects induced by inelastic atom collision dis-
cussed in Ref. �19� can similarly be described in terms of a master
equation of the form �27�; the magnitude of the elements of the
corresponding Kossakowski matrix is determined by Im�U�.
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pattern is the same as in Eq. �15� and is essentially due to the
ballistic expansion, the amplitude of these oscillations is pro-
portional to the entries of the matrices �cij� and �sij�, which
depend on the strength of the environment correlation func-
tions.

Since for large enough 
 the atomic clouds coming from
the two wells overlap, i.e., ��1�x ,
�����2�x ,
��, the magni-
tude of the dissipative terms goes as tN�cij� with respect to
the standard, noise independent contribution. Despite the
large number N of atoms, because the system environment
coupling is weak and thus the constants cij and sij are small
�25–27�, the first-order expansion in Eq. �35� is meaningful
even for sufficiently long system environment interaction
times t.

For instance, if the Kossakowski matrix �cij� is as in Eq.
�32�, the magnitude of its entries is proportional to the tran-
sition rate �; for typical values of this parameter and of N, t
can be large enough to allow a direct experimental observa-
tion of the interference fringes. Finally, notice that if instead
the system is coupled to a stochastic classical field, the ma-
trix �cij� is real symmetric while all the entries of �sij� van-
ishes �25�; therefore, the oscillating terms in Eq. �36� disap-
pear; this means that classical correlations do not lead to any
environment induced interference phenomena.

VI. RELATIONS WITH DISSIPATIVE CURRENT

To better understand the physical origin of the environ-
ment induced interference pattern, let us consider the mean
value of the following current operator �14�:

Ĵ = i�a1
†a2 − a2

†a1� , �37�

which describes the motion of the barycenter of the atom gas
in the double well. Its mean value is clearly zero in the initial
state �0, while, in the evolved state up to first order in t, it
becomes


Ĵ��t
= N�N

2
+ 1��Im�c23 − c13� + 2 Re�s13 − s23�� . �38�

By comparing the last expression with Eq. �36� one notices
that, if the current operator has nonzero mean value, then
interference fringes can be observed; however the structure
of the interference pattern is in general richer, as also the
tunneling operator a1

†a2+a2
†a1 contributes to it. Indeed, one

finds


a1
†a2 + a2

†a1��t
= N�N

2
+ 1��Im�c14 − c24� + 2 Re�s24 − s14�� .

�39�

This is precisely the situation that occurs for the Kossa-
kowski matrix �32�; it leads to a vanishing mean value of the
current operator, while instead the mean value of the tunnel-
ing operator is proportional to �.

VII. OUTLOOK

We have seen that, even in the ground state �0 of the
Hamiltonian �1�, the presence of a noisy environment may
give rise to interference effects in the averaged density pro-
file. The periodic structure of these fringes comes from the
ballistic evolution of the gas and does not depend on the
noise; their oscillations amplitude are, however, directly pro-
portional to the characteristic parameters of the noise and
vanish in absence of it.

This phenomenon can be related to a dissipative current
between the wells, so that the study of the interference
fringes in the averaged density profile gives information
about this current.

The system we analyzed can in principle be engineered in
the laboratory, for instance, using a second condensed gas as
an environment as proposed in Ref. �18�: the resulting inter-
ferences fringes can be detected by subtracting the density
pattern in absence of noise. This effect can also be useful to
further understand the role of noise in double well potentials
and in particular for the possibility of driving the system out
of the ground state �0 without lowering the barrier.

Similar conclusions can be easily extended to the case of
an optical lattice. In this situation the capability of suitably
engineered environment to create correlations between dif-
ferent sites of the lattice could be practically very useful in
order to create specific classes of correlated states.
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APPENDIX

By setting �k���k ,N−k� for the sake of simplicity, the
explicit expressions of D��0� and i�H�2� ,�0� read

D��0� =
N

2
�N

2
+ 1���c33 + c44 + i�c34 − c34

* ���N

2
+ 1��N

2
+ 1�

+ �c33 + c44 − i�c34 − c34
* ���N

2
− 1��N

2
− 1� − 2�c33 + c44��N

2
��N

2
��

+ ��N

2
�N

2
+ 1��N

4
�c13

* − ic14
* + c23

* − ic24
* � −

1

2
�c13

* − ic14
* − c23

* + ic24
* �

−
N

4
�c13 − ic14 + c23 − ic24���N

2
��N

2
+ 1�

ANDERLONI et al. PHYSICAL REVIEW A 78, 052118 �2008�

052118-6



+�N

2
�N

2
+ 1��N

4
�c13

* + ic14
* + c23

* + ic24
* � +

1

2
�c13

* + ic14
* − c23

* − ic24
* � −

N

4
�c13 + ic14 + c23 + ic24���N

2
��N

2
− 1�

+
1

2
��N

2
+ 2��N

2
+ 1��N

2
− 1�N

2
�c44 − c33���N

2
��N

2
+ 2� + �N

2
��N

2
− 2��

+
N

2
�N

2
+ 1��c33 − c44 + i�c34 + c34

* ���N

2
+ 1��N

2
− 1� + H.c.� , �A1�

i�H�2�,�0� = i�N

2
�N

2
+ 1����N

2
+ 1�s13 +

N

2
s13
* + i�N

2
+ 1�s14 + i

N

2
s14
*

+ �N

2
− 1�s23 +

N

2
s23
* + i�N

2
− 1�s24 +

N

2
s24
* ��N

2
+ 1��N

2
�

+ ��N

2
− 1�s13 +

N

2
s13
* − i�N

2
− 1�s14 − i

N

2
s14
* + �N

2
+ 1�s23 +

N

2
s23
* − i�N

2
+ 1�s24 −

N

2
s24
* ��N

2
− 1��N

2
�

+ 2i��N

2
+ 1��N

2
+ 2��s34 − s34

* ��N

2
+ 2��N

2
� − 2i��N

2
− 1�N

2
�s34 − s34

* ��N

2
− 2��N

2
�� + H.c. �A2�
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