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We introduce a family of Hamiltonians with two degrees of freedom, axial symmetry and complete integra-
bility. The potential function depends on coordinates and one control parameter. A fold catastrophe typically
occurs in such a family of potentials and its consequences on the global dynamics are investigated through the
energy-momentum map which defines the singular fibration of the four-dimensional phase space. The two
inequivalent local canonical forms of the catastrophe are presented: the first case corresponds to the appearance
of a second sheet in the image of the energy-momentum map while the second case is associated with the
breaking of an already existing second sheet. A special effort is placed on the description of the singularities.
In particular, the existence of cuspidal tori is related to a second-order contact point between the energy level
set and the reduced phase space. The quantum mechanical aspects of the changes induced by the fold catas-
trophe are investigated with the quantum eigenstates computed for an octic potential and are interpreted
through the quantum-classical correspondence. We note that the singularity exposed in this paper is not an
obstruction to a global definition of action-angle variables.
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I. INTRODUCTION

Quantum mechanics is the natural theoretical framework
for a quantitative description of the properties of atoms and
molecules. Classical mechanics should, however, not be
completely discarded. In the last decades, sophisticated con-
cepts have emerged that provide a geometric view of the
dynamics while bifurcation theory taught us the central role
of singularities. The relevance of the quantum-classical cor-
respondence for a qualitative understanding of quantum sys-
tems has been pointed out in Refs. �1,2�, where previously
unnoticed important features in the quantum analog of the
classical systems were revealed. This approach proves useful
for the global analysis of completely integrable few-body
models. The exact Hamiltonians of atoms or molecules do
not naturally belong to this category but their important
qualitative features are reproduced by integrable approxima-
tions.

The integrals of motion of completely integrable systems
define a singular fibration of the classical phase space and the
equations of motion take their simplest expression in locally
defined action-angle coordinates. Duistermaat �3� and Cush-
man �4,5� introduced the concept of Hamiltonian mono-
dromy which is an obstruction to the global definition of
action-angle variables. Many completely integrable models
of atomic and molecular systems with two or three degrees
of freedom are known to have monodromy �6,7�. This prop-
erty exists in the coupling of two or three angular momenta
�8,9�, in some floppy molecules described by spherical pen-
dulumlike models �5�, in the Lagrange top �10�, in the bottle
champagne potential �11,12� which is akin to the bending
motion of quasilinear molecules �see also Ref. �13��, in the
hydrogen atom in electromagnetic fields �14–17�, in the
problem of two fixed centers �18� describing H2

+ and HHe2+

molecular ions, and in the three-dimensional elastic pendu-
lum �19–21� which is a model for the 1:1:2 resonance of the
carbon dioxide.

The singularities worth consideration in physics are the
structurally stable ones �22,23�, that is, singularities that are
still present after a small perturbation of the system. Hamil-
tonian monodromy gives an example: it originates from the
existence of a pinched torus in the phase space and this phe-
nomenon persists under a small perturbation. It may happen
that a singularity of a system is unstable under a perturbation
but is structurally stable in a family of systems. Catastrophe
theory helps in classifying the possible changes that may
occur in such a family where one or more control parameters
comes into play. The main ideas of this theory have been
used by Gilmore, Kais, and Levine �24� in the study of a
one-dimensional system with the cusp catastrophe as the po-
tential energy term of the Hamiltonian. The signatures of the
fold and cusp catastrophes were looked for from the classical
and quantum mechanical points of view.

The qualitative analysis of completely integrable systems
is concerned with global properties such as the filling of the
phase space by regular and singular fibers or the typical sin-
gularities that are susceptible to appear �25�. The relationship
between the phase space and the set of constants of motion is
established through the energy-momentum map �4�. In par-
ticular, the Mineur-Liouville-Arnold theorem �26–28� states
that the preimage of a regular value in the image of the
energy-momentum map consists in at least one torus. The
quantum-classical correspondence establishes a relationship
between the classical actions variables and the quantum
numbers via the Einstein-Brillouin-Kramers quantization of
the tori. The set of eigenvalues of the commuting observ-
ables �joint spectrum� of the quantum analog of a completely
integrable Hamiltonian defines a lattice �29� in the image of
the energy-momentum map. Typical images of the energy-
momentum map of two degrees of freedom systems with
axial symmetry have already been exposed in the literature*guillaume.dhont@univ-littoral.fr
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and we review the simplest typical cases before presenting
our results.

Figure 1�a� illustrates the simplest conceivable open sub-
set in the image of the energy-momentum map: the gray
domain contains only regular values that lift to one regular
T2 torus. The quantum lattice obtained from the quantum
analog of the system is superposed on the same figure. This
lattice is locally isomorphic to the Z�Z set and is therefore
completely regular. This regularity is confirmed by drawing a
series of elementary cells �8� along any closed loop. The
example drawn in Fig. 1�a� demonstrates that the initial and
final cells are identical.

A nontrivial case is the integer monodromy, which is
characterized by the existence in the image of the energy-
momentum map of an open subset where one critical value
for a two-degree-of-freedom system �see the circle in the
center of Fig. 1�b�� or one critical thread for a three-degree-
of-freedom system �21� is present. The consequence of
monodromy is that any torus bundle over a closed loop of
regular values that encircles the singularity is nontrivial. The
deformation of elementary cells drawn along this loop shows
that the initial and final cells are different: quantum mono-
dromy is interpreted as a defect in the lattice of the joint
spectrum �30�.

The two previous cases illustrated by Figs. 1�a� and 1�b�
are in some sense elementary, for the preimage through the
energy-momentum map of a regular value consists of a
unique regular torus. The situation depicted in the integer
monodromy case can be deformed to generate a more com-
plex case. The preimage of points in the light gray region of
Fig. 1�c� consists of one torus whereas the preimage of
points in the dark gray region is composed of two tori. We
can draw a parallel between this property and the Riemann
surface of multivalued functions in the complex plane: the
�m ,h� plane can be organized in sheets, such that �1� the
preimage of a regular point of a sheet consists of one and
only one regular torus and �2� the torus related to one point
of one sheet can be continuously deformed to any other tori
associated with points on the same sheet. A first sheet is
defined on the whole �m ,h� region visible in Fig. 1�c�. The
critical value of Fig. 1�b� becomes a finite curve �dashed

curve of Fig. 1�c�� and a second sheet of classical values is
glued along this curve. The evolution of elementary cells
along a closed loop around the dashed curve proves the ex-
istence of the so-called nonlocal monodromy. The quantum
correspondence of these two sheets of classical values is the
superposition of two quantum lattices. Nonlocal monodromy
has been proved to exist in the quadratic pendulum �31� and
its physical realization, the LiNC/NCLi molecule �32�. The
HCN/CNH molecule �33�, albeit similar to the LiNC/NCLi
case, has no monodromy due to the impossibility of defining
a loop around the nonlocal singularity that would go over
regular values only, which is a requirement for studying
monodromy.

This paper presents a system where two sheets of classical
values exist and are glued along a singular curve. However,
in contrast to systems with nonlocal monodromy, there is no
monodromy around the singular curve. Section II introduces
a one-parameter family of completely integrable systems that
describes the dynamics of a point mass in a plane. The com-
plete symmetry group of the Hamiltonian is determined and
the axial symmetry is used to reduce the dimensionality of
the problem. Section III discusses the two canonical forms
originating from the fold catastrophe which generically ex-
ists in this family. Section IV illustrates these two possible
cases with a potential written as an octic polynomial and
discusses the quantum-classical correspondence.

II. A CLASS OF AXIALLY INVARIANT HAMILTONIANS

A. Mechanical system

A mechanical model of a two-degree-of-freedom autono-
mous system may be thought of as a particle of mass M
moving on a plane P under the action of conservative forces.
The two-dimensional real space R2 stands for the configura-
tion space and the Hamiltonian H is a scalar function defined
on the cotangent bundle R4. The Hamiltonian �1� is assumed
to be the sum of a kinetic energy term and an axially sym-
metric potential:

H : R4 → R ,

�q̃x, q̃y, p̃x, p̃y� �
p̃x

2 + p̃y
2

2M
+ �

i=0

imax

b2i�q̃x
2 + q̃y

2�i �b2imax
� 0� .

�1�

The �p̃x , p̃y� pair of variables are the conjugate momenta of
the �q̃x , q̃y� Cartesian coordinates. The b0 constant is the first
term in the expansion of the potential and plays a trivial role
in the Hamiltonian by merely translating the origin of the
energy scale and accordingly is set to zero. A scaling trans-
formation q̃i=�qi, p̃i= pi /�, i� �1,2�, modify Hamiltonian
�1� into the simpler form

H : R4 → R ,

�qx,qy,px,py� �
px

2 + py
2

2
+ �

i=1

imax

c2i�qx
2 + qy

2�i �c2imax
= 1� .

�2�
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FIG. 1. Typical open subsets of the image of the energy-
momentum map for a two-degree-of-freedom completely integrable
system when the first action is a global action. The lattice of dots
represents the joint spectrum of commuting observables and the
filled quadrilaterals describe the evolution of an elementary cell
along one closed loop. �a� Open subset with only regular values. �b�
Open subset with regular values and one singular value indicated by
the circle. �c� Open subset with two sheets of regular values glued
along a singular dashed curve.
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B. Symmetries of the Hamiltonian

Symmetries simplify the problem at hand and often have
fingerprints in the dynamics of the system. The complete
symmetry group of Hamiltonian �2� contains both continuous
symmetries �rotational symmetry� and discrete symmetries
�reflections through a plane containing the z axis and the
time-reversal operation�.

1. Rotational symmetry

The group of rotations Ct of angle t, 0� t�2�, around
the third axis z perpendicular to the plane P is isomorphic to
the SO�2� group. It induces a transformation �3a� and �3b�
between the qx and qy coordinates and between the px and py
momenta:

Ct : �0;2����R4� → R4,

t ��
qx�0�
qy�0�
px�0�
py�0�

	� M�t��
qx�0�
qy�0�
px�0�
py�0�

	 , �3a�

M�t� =�
cos t − sin t 0 0

sin t cos t 0 0

0 0 cos t − sin t

0 0 sin t cos t
	 , �3b�

where M�t� is a block-diagonal rotation matrix. This trans-
formation induces 2�-periodic orbits in the phase space and
defines an S1 group action. The one-parameter continuous
symmetry implies by virtue of Noether’s theorem that the z
component of the angular momentum �see Eq. �4�� �simply
called angular momentum in the rest of the paper� is a con-
stant of motion,

M : R4 → R, �qx,qy,px,py� � qxpy − qypx. �4�

2. Plane reflection

The operations �t consist of the reflection of the coordi-
nates and momenta through the line �Ox� rotated by an angle
t around the z axis. Equation �5a� and �5b� describes the
block-diagonal matrix representation of the transformation,

�t : �0;����R4� → R4,

t ��
qx�0�
qy�0�
px�0�
py�0�

	� N�t��
qx�0�
qy�0�
px�0�
py�0�

	 , �5a�

N�t� =�
cos 2t sin 2t 0 0

sin 2t − cos 2t 0 0

0 0 cos 2t sin 2t

0 0 sin 2t − cos 2t
	 . �5b�

3. Time reversal

The Hamiltonian �2� is invariant under the time-reversal
operation T which acts as the identity operation on the pair of
�qx ,qy� coordinates but reverses the sign of the pair �px , py�
of conjugate momenta:

T : R4 → R4, �qx,qy,px,py� � �qx,qy,− px,− py� .

4. Complete symmetry group of the Hamiltonian

The group generated by all products of the Ct and �t
operations is isomorphic to the C�v group in the Schönflies
notation. The total symmetry group of the Hamiltonian H is
the direct product C�v� �E ,T�.

C. Symmetry reduction

The symmetry of the system is now used to transform the
initial four-dimensional problem into a two-dimensional
problem only. The S1 action defines an equivalence relation
in phase space. All the points of one orbit are identified to
one point of the space of orbits or orbifold �34�. The conser-
vation of the angular momentum restricts the dynamics of
the particle and a given value of the constant of motion de-
fines a slice of the orbifold. As a consequence, the final space
has two dimensions fewer than the original phase space.

Equation �3a� and �3b� reveals that the action of the SO�2�
group on the phase space leaves invariant the point at the
origin �0,0,0,0� and the action is therefore not free. The
adapted procedure is the singular reduction �4� and is pre-
sented in Sec. II C 1. A simpler but less rigorous procedure
based on polar coordinates is exposed in Sec. II C 2.

1. Singular reduction

The Hamiltonian �2� is the sum of a kinetic energy qua-
dratic term and of a potential depending only on qx

2+qy
2. The

singular reduction procedure is based on the construction of
a ring of SO�2�-invariant polynomials �35� which are func-
tions of coordinates and conjugate momenta. These invariant
polynomials are easily built up in complex coordinates z1

=qx+ ı̇qy, z2= px+ ı̇py, for the effect of the SO�2� action is
equivalent to a multiplication by a phase factor e	it:

zj → eitzj ,

z̄ j → e−itz̄ j, j � �1,2� .

The four SO�2�-invariant quadratic polynomials R, T, K, and
L are displayed in Table I. We introduce two other polyno-
mials X and Y which are linear combinations of the T and R
polynomials. The syzygy X2+K2+L2=Y2 shows that the four
polynomials �X ,Y ,K ,L� are algebraically dependent. We
consider X, Y, and L as the principal invariant polynomials
and K as the auxiliary polynomial. Such a choice and the
syzygy relation mean that any SO�2�-invariant function can
be uniquely decomposed as a linear combination of the poly-
nomials contained in the set �XpYqLrKs 
 �p ,q ,r��N3 ,
s� �0,1��.
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The definition of L as given by Table I is just half the
angular momentum of Eq. �4�. The polynomial L is a con-
stant of the motion for Hamiltonian �2� and is equal to m /2
where m is the value of the angular momentum. The syzygy
relation and the property that Y is always positive by con-
struction imply that Y considered as a function of X, K, and
m defines a set �Sm�m�R of two-dimensional reduced phase
spaces parametrized by the value of the angular momentum.
Figure 2�a� shows that the reduced phase space for m=0 has
a conical-shaped singularity at the origin. All the other re-
duced phase spaces are smooth, as exemplified by Fig. 2�b�
for m=2. The point at the tip of the m=0 surface lifts to a
single point and all the other points of the m=0 surface or
m�0 surfaces lift to a circle.

The behavior of the invariant polynomial upon the time-
reversal operation depends on the evenness or oddness of the
total degree of the momenta variables. R, T, X, and Y are
invariant whereas the K and L polynomials change sign.

2. Polar coordinates

The potential of Hamiltonian �2� is axially symmetric and
polar coordinates �
 ,q�� and their conjugate momenta
�p
 , p�� decouple the two degrees of freedom. The momen-
tum p� is the angular momentum and is a constant of motion
which can be replaced by its value m. In polar coordinates,
the Hamiltonian is read as a one-dimensional Hamiltonian:

Hpol,m : R+ � R → R ,

�
,p
� �
p


2

2
+ Veff�
;m2� , �6�

with an effective potential Veff

Veff�
;m� =
m2

2
2 + V0�
� , �7a�

V0�
� = �
i=1

imax

c2i

2i. �7b�

D. Energy-momentum map

1. Definition

The time-independent Hamiltonian �2� is completely inte-
grable and has two integrals of motion �energy and angular
momentum�. The relation between the initial phase space and
the set of constants of motion is described through the
energy-momentum map:

EM : R4 → R2,

�qx,qy,px,py� � �M�qx,qy,px,py�

H�qx,qy,px,py�
� . �8�

The relative equilibria �stationary points of the reduced
Hamiltonian� are orbits of the action of the SO�2� symmetry.
They are critical values of the energy-momentum map and
define parametrized curves in the image of the energy-
momentum map �11�. The angular momentum of such rela-
tive equilibria is determined by looking for stationary points
in the one-dimensional radial effective potential while the
term h�
�=Veff(
 ;m�
�) gives their energy:

�m�
�
h�
�

� =�	
3�dV0

d

�
��

V0�
� +



2

dV0

d

�
� 	 ,

for ranges of 
 such that �dV0 /d
��
��0.

2. Symmetry

The value of the angular momentum changes sign under
the time-reversal operation while the value of the energy is
left unchanged. These properties imply that every point
�m ,h� in the image of the energy-momentum map has a
counterpart �−m ,h� with the angular momentum reversed.
We conclude that the image of the energy-momentum map is
symmetric with respect to the change of sign of the angular
momentum.

III. FOLD CATASTROPHE IN A FAMILY OF POTENTIALS

A. Local description of a potential

1. Noncritical points and Morse critical points

The topology of the potential energy function may have a
direct influence on the properties of an Hamiltonian system
�36�. A qualitative approach of the local dynamics in the
neighborhood of a point of the configuration space is based
on the inspection of the first few terms of the Taylor expan-
sion of the potential. Noncritical points and critical points are

TABLE I. SO�2�-invariant polynomials.

Complex coordinates Cartesian coordinates

R 1
4z1z̄1

1
4 �qx

2+qy
2�

T 1
4z2z̄2

1
4 �px

2+ py
2�

X 1
4 �z2z̄2−z1z̄1� 1

4 �px
2+ py

2−qx
2−qy

2�
Y 1

4 �z2z̄2+z1z̄1� 1
4 �px

2+ py
2+qx

2+qy
2�

K 1
4 �z1z̄2+ z̄1z2� 1

2 �qxpx+qypy�
L i

4 �z1z̄2− z̄1z2� 1
2 �qxpy −qypx�

X
K

Y

(a)

X
K

Y

(b)

FIG. 2. Reduced phase spaces of a two-degree-of-freedom
SO�2�-invariant Hamiltonian in the space of invariant polynomials
�X ,K ,Y�. �a� Singular reduced phase space for m=0. �b� Smooth
reduced phase space for m=2.
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two qualitatively different types of points that typically exist
for a given potential. The gradient of the potential does not
vanish at a noncritical point and implies the existence of a
force which acts on the particle�s� of the system. An equilib-
rium is located at a Morse critical point where the gradient
and the force vanish but the next term in the Taylor expan-
sion, that is, the quadratic form, is nondegenerate. A Morse
critical point persists under a small perturbation even if its
position and the value of the function at such a point changes
slightly.

2. Degenerate critical points

The quadratic form at a degenerate critical point is degen-
erate. The degeneracy is partially or completely lifted under
a small perturbation and these points are not structurally
stable. However, degenerate critical points may generically
appear in a family of function when at least one control
parameter enter the representation of the function. The fold
catastrophe is the simplest case of Thom’s elementary catas-
trophes �22,23,37� and the unfolding of its germ requires
only one control parameter. The polynomial x3+�x describes
the local process of the creation or coalescence of a mini-
mum and a maximum. Figure 3 illustrates the evolution of
the function f with the parameter �. The function f has two
extrema when � is negative and is monotonically increasing
for positive �. The function for �=0 with a degenerate criti-
cal point at the origin marks the transition between these two
qualitatively different behaviors.

3. A family of local potentials

We consider the local consequences of a fold catastrophe
in a potential V0 with one control parameter. The local one-
dimensional effective potential Veff

loc,− or Veff
loc,+ is written in

the neighborhood of 
0 as the sum of a cubic polynomial and
a repulsive term:

Veff
loc,−�
;m;�� = − �
 − 
0�3 + ��
 − 
0� +

m2

2
2 , �9a�

Veff
loc,+�
;m;�� = + �
 − 
0�3 + ��
 − 
0� +

m2

2
2 . �9b�

The two parameters m and � have distinct physical ori-
gins. The reduction with the S1 action of the initial axially
symmetric Hamiltonian induces a new Hamiltonian where
the angular momentum m appears as a constant of motion
through Noether’s theorem. As a consequence, m describes

the internal dynamics of the system. On the contrary, the
parameter � is an external parameter which reflects tunable
external forces imposed on the system.

The first two terms of Eqs. �9a� and �9b� are similar to the
canonical form of the fold catastrophe except for the sign in
front of the cubic term. The two possible cases are distinct
due to presence of the repulsive term that appears after re-
duction of the rotational symmetry. This term forbids the
symmetry operation 
−
0�−�
−
0� that is performed in
canonical catastrophe theory �37�. Section III B discusses the
consequences of the first case given by Eq. �9a� whereas Sec.
III C treats the second case described by Eq. �9b�.

B. Case I: Appearance of a second sheet

1. Critical points in the effective potentials

A stationary point of the effective potential is a relative
equilibrium of the original system. The local effective poten-
tial of Eq. �9a� is plotted for five values of m2 in Fig. 4 for
three values of � around and including zero. Figure 4�a�
shows that the effective potentials are decreasing monotonic
functions for ��0 and for any m2. They have no stationary
points. When the control parameter vanishes, one degenerate
critical point appears at 
=
0 for the m=0 thick curve in Fig.
4�b�. The effective potentials for all other m values are de-
creasing monotonic functions. The situation where ��0 is
the richest �see Fig. 4�c��. The effective potential
Veff

loc,−(
 ;mdeg,I��� ;�) has a degenerate critical point at 

=
deg,I���. This curve separates the potentials with m
�mdeg,I��� that have one minimum and one maximum from
the potentials with m�mdeg,I��� that are decreasing mono-
tonic functions and have no stationary points. Using the

0.0

0.1

-0.50 -0.25 0.00 0.25 0.50

x3 +
λx

x

-0.1

FIG. 3. Fold catastrophe: the germ ��=0, solid curve� and its
unfolding for �=−0.1 �dashed line� and 0.1 �dotted line�.
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FIG. 4. Local effective potential Veff
loc,−�
 ;m ;�� for 
0=2 and a

fixed set of five values of angular momentum m. The effective
potential with m=0 is represented by a thick curve. The angular
momentum increases �values: m1=0.5, m2=0.8, mdeg,I�0.1��0.903,
m3=1.0� when jumping from one potential curve to the one above.
Filled squares indicate degenerate critical points. Control parameter
�= �a�−0.1, �b� 0, and �c� 0.1. Positions of the minima and maxima
of the effective potentials are indicated by the dashed curves.
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property that both first and second derivatives vanish at the
critical point, we find the position, the angular momentum,
and the energy of this point as a function of the control
parameter �:


deg,I��� = �4 +1 + 5
�


0
2�
0

5
, �10a�

mdeg,I
2 ��� = −

2

3125
�1 −1 + 5

�


0
2��4 +1 + 5

�


0
2�4


0
5,

�10b�

hdeg,I��� = Veff
loc,−

„
deg,I���;mdeg,I���;�… . �10c�

We note from Eq. �10a� that the position of the degenerate
critical point �which exists only for �0� is an increasing
function of �. We conclude that, in general, the effective
potential has no stationary point, except for the important
case where � is positive and the angular momentum is less
than the critical value mdeg,I���.

2. Reduced phase space and tori

The axially symmetric Hamiltonian with potential �9a� is
a function of the invariant polynomials T and R or, equiva-
lently, a function of the invariant polynomials X and Y. The
level sets H�X ,Y�=h of the Hamiltonian define a family of
two-dimensional surfaces Sh parametrized by the energy h in
the three-dimensional space �X ,K ,Y�. The invariant tori of
the initial phase space R4 are reconstructed for a given an-
gular momentum m and energy h from the intersection Im,h
between the surface Sm of the reduced phase space and the
surface Sh of the energy level set �4�. The parametrization of
Sh does not depend on the polynomial K and it is convenient
to project both Sm and Sh surfaces on the �X ,Y ,K=0� plane.
The gray domains Dm of Fig. 5 are projections of the Sm
surface on the K=0 plane while the projection of the Sh
surface is drawn as a dotted curve Ch. The projection of the
intersection Im,h is the part of the curve Ch contained in the
domain Dm. A point of Ch inside the domain Dm is the pro-
jection of two points of Im,h while a point of Ch on the border
of the domain Dm corresponds to only one point of Im,h.

The local character of the fiber, i.e., regular or singular, is
determined by how the energy level set crosses the reduced
phase space. The crossing pictured in Figs. 5�a� and 5�b� is
the typical situation associated with a locally regular torus
and happens when the gradients of the two surfaces differ at
the intersection point. First- and higher-order points occur
when the two surfaces Sh and Sm are locally tangent. The
gradients at the intersection point are identical and the dif-
ference between the two surfaces requires a higher order
Taylor expansion. In such situations, the difference between
the two surfaces near this point may be quadratic �Figs.
5�c�–5�f��, cubic �Figs. 5�g� and 5�h�� or even higher. The
intersection in Figs. 5�c� and 5�d� is locally reduced to the
point marked by a diamond and corresponds to a S1 circle in
the initial phase space. Figures 5�e� and 5�f� illustrates the
situation when the projected intersection Im,h is identical to
the full energy level set near the contact point marked by the

triangle. The fiber is in this case locally diffeomorphic to a
bitorus. The square in Fig. 5�h� is a second-order contact
point. The corresponding fiber is not locally regular as in
Figs. 5�a� and 5�b� but has a singular line and is called a
cuspidal torus �38,39�. Finally, a case where more than one
regular intersection may occur, as pictured in Figs. 5�i� and
5�j�. The rightmost part of the energy level set in the gray
domain of Fig. 5�j� lifts up to a complete regular torus
whereas the leftmost part lifts up to a locally regular torus.

Figure 6 shows the projection of reduced phase space sur-
faces and energy level sets on the K=0 plane obtained from
potential �9a� for several values of the control parameter �
and angular momentum m. The vertical axis shows the sum
of the two invariant polynomials X and Y: this choice, rather
than the natural choice of Y as in Fig. 5, is made only for a
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FIG. 5. Five different cases of intersections between the reduced
phase spaces and the energy level sets. Left column: three-
dimensional view in the �X ,K ,Y� space of invariant polynomials.
The surfaces drawn in continuous curves are the reduced phase
spaces and the level sets of the energy are drawn with dashed lines.
The intersections of these two surfaces are drawn as thick curves
whose individual points lift up to S1 circles. Right column: projec-
tion of the reduced phase space �gray domain� and the projection of
the energy level sets �dashed curves� in the �X ,Y� space of invariant
polynomials. �a�,�b� Regular intersection. �c�,�d� First-order contact
point, S1 intersection. �e�,�f� First-order contact point, locally bi-
toruslike intersection. �g�,�h� Second-order contact point, locally
cuspidal-like intersection. �i�,�j� Three regular intersections.
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better legibility of the figure. Most of the fibers are regular
T2 tori and the interesting fibers are naturally the singular
ones. All the fibers are regular T2 tori when ��0. This situ-
ation persists for �=0, except for one fiber which is locally
similar to a cuspidal torus �see Fig. 6�b��. The last two fig-
ures show for ��0 three examples of singular fibers similar
to those presented in Figs. 5�c�–5�h�, that is, an
S1-degenerate torus and a locally bitoruslike fiber �Fig. 6�c��
and a locally cuspidal-like fiber �Fig. 6�d��.

It should be noted that the time-reversal operation
changes the sign of the value of the angular momentum and
distinguishes the two cuspidal tori that exist when ��0 from
the cuspidal torus that appears for �=0. This operation maps

for ��0 a cuspidal torus to the cuspidal torus with opposite
angular momentum whereas time-reversal maps the cuspidal
torus for �=0 to itself. As a consequence, the invariance
group of the �=0 cuspidal torus is bigger than the invariance
group of one ��0 cuspidal torus.

3. Image of the energy-momentum map

The understanding of the foliation of the phase space by
regular and singular fibers is improved with the concept of
the energy-momentum map. Images of the energy-
momentum map EM are presented in Fig. 7 for three values
of �. The left-right symmetry is a direct consequence of the
symmetry mentioned in Sec. II D 2. The preimages of some
selected points are pictured on the left and right sides of the
figure. The Hamiltonian of Eq. �6� gives a relationship be-
tween 
 and p
 that is useful for visualizing invariant tori:

h =
p


2

2
+ Veff

loc,−�
;m;�� .

The radial conjugate momentum is a function of h, m, and 
.
Due to the rotational symmetry, we can suppose y=0 and
represent p
 as a function of x.

Figure 7�a� clearly indicates that only one sheet exists for
��0. A point �m ,h� inside the sheet corresponds to one
locally regular torus T2. The description of the situation for
�=0 is the same �see Fig. 7�b��, except for the appearance of
a particular point at the origin. The preimage of this point is
a locally cuspidal-like torus at �m=0,h=0�. Figure 7�c�
shows that the situation for ��0 is more complex: the light
gray domain is a region where each point lifts through the
energy-momentum map to one locally regular torus T2,
whereas the dark gray domain is a region where each point
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FIG. 6. Projections of the reduced phase spaces �gray domains�
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invariant polynomials for the case I with 
0=2. The symbols of Fig.
5 are used to label the singular intersection points.
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lifts to two different locally regular tori T2�T2. Note that
one of these two tori can be continuously deformed to any
regular torus associated with the light gray domain. This
property strongly advocates the definition of a first sheet
such that its domain is the whole �m ,h� region of Fig. 7�c�.
The remaining tori, the ones that cannot be continuously de-
formed to a torus in the light gray domain, are associated
with a second sheet whose region is restricted to the gray
domain. The two sheets are glued together along the dashed
curve, which is a set of critical values. The preimage of each
of these values is a locally bitoruslike fiber, where two tori
are glued along one singular line. The remaining border of
the second sheet consists of points that each lifts to an S1

circle �a degenerate torus�.
The main conclusion in case I is that a second sheet ap-

pears as � becomes positive.

C. Case II: Breaking of the second sheet

1. Critical points in effective potentials

The same methodology as above is pursued to discuss the
consequences of Eq. �9b� on the foliation of the phase space.
The local effective potentials pictured in Fig. 8 show that the
situation is opposite to Fig. 4: the potentials with one mini-
mum and one maximum are now the rule, except when � is
positive and m�mdeg,II��� where the potential is a monotoni-
cally increasing function of 
. Curves with a degenerate criti-
cal point appear only for �0. A degenerate critical point
appears exactly at 
=
0 for �=0 and Eq. �11a� states that
this point moves towards smaller values of 
 when � in-
creases. Note that this effect is the opposite to case I.


deg,II��� = �4 +1 − 5
�


0
2�
0

5
, �11a�

mdeg,II
2 ��� =

2

3125
�1 −1 − 5

�


0
2��4 +1 − 5

�


0
2�4


0
5,

�11b�

hdeg,II��� = Veff
loc,+

„
deg,II���;mdeg,II���;�… . �11c�

2. Reduced phase space and tori

Figure 9 is the counterpart for the potential �9b� of Fig. 6.
The most striking difference from case I is the existence of
S1 degenerate tori and locally bitoruslike fibers even for
negative values of the control parameter, as shown in Figs.
9�a�, 9�c�, and 9�d�. However, the appearance of locally
cuspidal-like tori occurs only for �0 �see Figs. 9�b� and
9�e�� exactly as in case I.

3. Image of the energy-momentum map

The images of the energy-momentum map in Fig. 10 are
fundamentally different from those pictured in Fig. 7 for case
I. We do not see any longer the creation or annihilation of a
second sheet but rather observe the breaking of a sheet into
two symmetric sheets. This symmetry comes from the left-
right symmetry of the image of the energy-momentum map.
A point in the light gray domain is associated with one regu-
lar torus T2 whereas a point in the dark gray domain is as-
sociated with two different regular torus T2�T2. The conti-
nuity argument among the tori of case I is employed again to
define two different sheets: a first sheet that covers the whole
Fig. 10�c� and a second one that covers the dark gray do-
main. The preimage of a point in the upper boundary �dashed
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FIG. 8. Local effective potential Veff
loc,+ �
 ;m ;�� for 
0=2 and a

fixed set of five values of angular momentum m. The effective
potential with m=0 is represented by a thick curve. The angular
momentum increases �values: m1=0.5, m2=0.8, mdeg,II�0.1�
�0.886, m3=1.0� when jumping from one potential curve to the
one above. Filled squares indicate degenerate critical points. Posi-
tions of the minima and maxima of the effective potentials are
indicated by the dashed curves. Control parameter �= �a�−0.1, �b�
0, and �c� 0.1.

0.05

0.10

0.15

-1.50 -1.25 -1.00 -0.75 -0.50 -0.25

Y
+

X

X

(e) λ=0.1 ; m=mdeg.,II(λ)
0.10
0.20
0.30
0.40

Y
+

X

(d) λ=0.1 ; m=1.3
0.10
0.20
0.30
0.40

Y
+

X

(c) λ=0 ; m=1.2

0.00

0.05

Y
+

X

(b) λ=0 ; m=0

0.00

0.05

Y
+

X

(a) λ=-0.1 ; m=0

FIG. 9. Projections of the reduced phase spaces �gray domains�
and energy level sets �dashed curves� in the �X ,Y +X� space of
invariant polynomials for the case II with 
0=2. The symbols of
Fig. 5 are used to label the singular intersection points.

G. DHONT AND B. I. ZHILINSKIÍ PHYSICAL REVIEW A 78, 052117 �2008�

052117-8



curve� of the second sheet is a locally bitoruslike fiber. The
preimage of a point in the lower boundary of the second
sheet is an S1 circle. Figures 10�b� and 10�c� show that these
upper and lower boundaries intersect for �0 and the pre-
image of the intersection point is a locally cuspidal-like
torus.

We conclude that in case II as � becomes positive, the
domain with two sheets breaks into two symmetric domains
with two sheets each.

D. Structural stability

The effects of a fold catastrophe in a one-dimensional
effective potential were discussed in Secs. III B and III C.
We now prove that the phenomenon is structurally stable and
persists under a small perturbation of the system, which is a
requirement for this phenomenon to be of physical impor-
tance.

1. Family of effective potentials

We consider a family of one-dimensional effective poten-
tials depending on the variable 
 and two parameters m2 and
�:

Veff�
;m;�� = V0�
� +
m2

2
2 + �F�
� , �12�

where V0�
� is the potential of the system and F is a func-
tion. We suppose that a degenerate critical point occurs at
�
=
0, m=0, �=0� and we accordingly rewrite the potential
as

Veff�
;m;�� = V0�
0� + �
 − 
0�3W�
� +
m2

2
2 + �F�
� ,

with W�
0��0. The constant V0�
0� is nonessential and may
be dropped.

For � nonzero, we find the position of the degenerate
critical point and the angular momentum using Newton’s
method:


deg = 
0 −

3
dF

d

�
0� + 
0

d2F

d
2 �
0�

6
0W�
0�
� + O��2� ,

mdeg
2 = 
0

3dF

d

�
0�� + O��2� .

For small enough �, the sign of mdeg
2 is the same as that of

�dF /d
��
0��. We suppose �dF /d
��
0� is positive. We can
always redefine the external parameter � and the external
function F if this does not hold. When � is negative, no
cuspidal points can exist whereas two cuspidal points exist
for m�0 for positive �.

2. Perturbation

We consider equivariant perturbations, that is, perturba-
tive functions that have the axial symmetry of the original
problem and add a perturbative term to the effective poten-
tial. Catastrophe theory establishes that one parameter is nec-
essary and sufficient for the fold catastrophe to occur in a
family of one-dimensional potentials. The existence of this
degenerate critical point is structurally stable: the fold catas-
trophe persists under a perturbation of the potential whereas
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the values of the parameter and the position of the singular
point are slightly changed.

The unperturbed effective one-dimensional potential de-
pends on one internal parameter m and one external param-
eter �. A degenerate critical point exists for the unperturbed
local potential when both internal and external parameters
vanish. When the angular momentum at m=0 is kept fixed,
the perturbation merely shifts the position of the degenerate
critical point which appears at �=�

deg
* . The qualitative de-

scription of the unfolding of the fold catastrophe at �m=0,
�=0� remains valid at �m=0, �=�

deg
* �. The phenomena pre-

sented in this paper are henceforth stable under any small
equivariant perturbation.

IV. FOLD CATASTROPHE IN OCTIC POTENTIALS

A. Family of Hamiltonians

Section III discussed the local changes induced by a fold
catastrophe in the fibration of the phase space for a family of
axially symmetric Hamiltonians. This section deals with the
consequences of a fold catastrophe in a family of systems
described by Eq. �6� with an octic potential defined on the
real half line:

Voct�
;�� = 
8 −
4

3
�
2

2 + 2
1
2�
6 + 2�2
1

2
2
2 + 
1

4 − ��
4

− 4
2
2�
1

4 − ��
2. �13�

The potential is parametrized by a control parameter � and
two positive constants 
1 and 
2. Table II lists the relative
equilibria of the system for m=0 �extrema of the potential
Voct� and it can be inferred from the appearance of two new
critical points for �0 that a cusp catastrophe occurs in this
family of potentials at 
=
1. This behavior with increasing
control parameter is the same as the one observed in Fig. 4
with the potential Veff

loc,− and vanishing angular momentum
but reverses the sequence of events obtained in Fig. 8 from
Veff

loc,+. We should expect in this second situation the breaking
of the second sheet when the control parameter decreases.

The potential Voct is expanded in Taylor series at 
=
1 as

Voct�
;�� = V0 + V1�
 − 
1� + V2�
 − 
1�2 + V3�
 − 
1�3

+ O„�
 − 
1�4
… , �14�

with

V0 =
1

3

1

6�
1
2 − 4
2

2� − 2�
1
2�
1

2 − 2
2
2� , �15a�

V1 = − 8�
1�
1 − 
2��
1 + 
2� , �15b�

V2 = 4��
2
2 − 3
1

2� , �15c�

V3 =
32

3

1

3�
1 − 
2��
1 + 
2� − 8�
1. �15d�

The terms V1 and V2 in front of the linear and quadratic
terms of the Taylor expansion are proportional to the control
parameter �. These two terms vanish at �=0 and the poten-
tial Voct has a degenerate critical point at 
=
1. Catastrophe
theory states the existence of a nonlinear transformation that
casts Eq. �14� in the canonical form V0	 �
̃− 
̃0�3

+��� ,V1 ,V2 ,V3 , . . . ��
̃− 
̃0� of a fold catastrophe, where � is
a function of the parameter � and of the coefficients Vi. The
potential Voct is defined on the real half line and the two
possible signs in front of the cubic term are therefore in-
equivalent. The sign of 
1−
2 determines the sign of V3 in
front of the cubic term of Eq. �14� for � small enough and
discriminates between the two cases of Sec. III.

B. Monodromy

A noteworthy feature of the family of potentials Voct is its
behavior near the origin 
=0. The quadratic term dominates
and is negative for � small enough, which makes this poten-
tial locally similar to the so-called bottle champagne or
Mexican hat potential �11,12�. The value �m=0, h=0� is a
singular value of the energy-momentum map and its preim-
age is a pinched torus. This singular fiber makes impossible
the global definition of action-angle variables and induces a
local defect in the lattice of quantum eigenstates. The rest of
the paper focuses on the dynamics for negative energies only.
The image of the energy-momentum map for a control pa-
rameter � is noted D� and the restriction to negative energy
values defines the subset D�,h�0= ��m ,h� 
 �m ,h��D� ,h
�0�.

C. Case �2��1: Appearance of a second sheet

We first deal with the situation where 
2�
1. Figure 11
shows, for three different values of the control parameter �,
the image of the energy-momentum map and the octic poten-
tial Voct. The small dots represent the lattice of quantum
eigenstates obtained by solving the time-independent
Schrödinger equation in a two-dimensional harmonic oscil-
lator basis �12,40�. The Heisenberg uncertainty and the zero-
point energy imply that this joint spectrum is completely
inside the classical domain of the energy-momentum map.
The succession of events occurring in D�,h�0 with increasing
� is the same as the local model of Eq. �9a�. All the values in
D�,h�0 are regular when the control parameter is negative
and corresponds quantum mechanically to the regularity of
the lattice in this region.

The open circle in Fig. 11�b� corresponds to the singular
value originating from the fold catastrophe which appears
when the control parameter vanishes. The enlargement of an
open set containing this singularity is pictured in Fig. 12�a�.
The displacement of an elementary cell around this singular-
ity indicates that the final cell can be superposed to the initial
cell and is related to the absence of monodromy in D�,h�0.

TABLE II. Positions of the extrema of the octic potential Voct

defined in Eq. �13�.

Sign of � Positions of extrema

��0 0, 
2

�=0 0, 
2, 
1, 
1

��0 0, 
2, 
1
2−�, 
1

2+�

G. DHONT AND B. I. ZHILINSKIÍ PHYSICAL REVIEW A 78, 052117 �2008�

052117-10



Figure 11�c� is marked by the presence of a second sheet in
the positive control parameter case. The pointlike singularity
has become a singular line and once again the displacement
on an elementary cell around this line in Fig. 12�b� proves
that there is no monodromy in D�,h�0. The appearance of a

second sheet in D�,h�0 does not alter the regularity of the
quantum lattice.

D. Case �2��1: Reversed breaking of the second sheet

We now deal with the situation where 
2�
1. The joint
spectra of the quantum system superposed on the image of
the energy-momentum maps are drawn in Fig. 13 for three
different values of the parameter �. The three insets repre-
sent the one-dimensional potential Voct for the corresponding
values of the control parameter. The number of extrema in-
creases from one to three via a fold catastrophe at �=0. The
possible monodromy is usually searched for with a closed
loop that encircles a singularity and which passes through
only regular values in D�,h�0. Such a loop is impossible to
construct for any of the three energy-momentum maps of
Fig. 13 and the concept of monodromy is not relevant for the
case 
2�
1.

Figure 13�a� has, nevertheless, interesting properties and
an enlargement of the energy-momentum map between m
=2.1 and 2.6 is presented in Fig. 14�a� where a shift of the
energy scale by a linear function of m has been performed.
The points in the light gray region of the image of the
energy-momentum map lift up to one torus while the points
in the dark gray region lift up to two tori. A similar figure has
been discussed by Sadovskií and Zhilinskií in relation to the
manifestation of bidromy �see Fig. 18 of Ref. �41��. Figures
14�b�–14�k� show the effective potential, the energy, and the
radial momentum 	p
�
� for ten �m ,h� selected points. The
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plot of the radial momentum as a function of the radial co-
ordinate gives a good indication of the shape of the torus. We
consider now a continuous transformation of tori while trav-
eling counterclockwise on the loop represented in Fig. 14�a�:
it begins from the point attached to Fig. 14�b� and terminates
at the point attached to Fig. 14�k�. These two points are
identical in the image of the energy-momentum map but a
comparison between Fig. 14�b� and Fig. 14�k� reveals that
we can continuously pass from the torus on the right of Fig.
14�b� �the torus where the radial coordinate is higher� to the
torus on the left.

We start with the point attached to Fig. 14�b� from the
torus located at the right and move continuously on the loop.
The torus on the left gets smaller until the point attached
with Fig. 14�c� is met where this torus finally degenerates to
an S1 circle in the phase space. The points attached with
Figs. 14�d�–14�i� are in the light gray domain of Fig. 14�a�
and only one torus appears on each of Figs. 14�d�–14�i�.
Figure 14�j� is marked by the appearance of a circle in the
phase space which develops afterward as a second torus.
Comparing Fig. 14�b� and Fig. 14�k�, we see that one of the

two tori has been continuously transformed to the other one.
Two regular quantum lattices are superposed in the dark gray
region and the continuous loop presented above indicates
that it is possible to pass from one lattice into the other one,
which means that these two parts belong to the same regular
self-overlapping lattice.

V. CONCLUSION

This paper presents the consequences of a fold catastro-
phe occurring in the potential of an axially symmetric system
with one external parameter. The foliation of the phase space
by tori is investigated for the two inequivalent canonical
forms of the fold catastrophe. The first local model implies
the appearance of a second sheet in the image of the energy-
momentum map while the second model involves the sym-
metric breaking of a second sheet. The sequence of events in
the second case is not the reverse seen for the first case. A
family of systems with an octic potential is used to illustrate
the phenomena. The proposed Hamiltonian contains the two
local models. The relationship between the singularity in-
duced by the fold catastrophe and the regularity of the joint
spectrum is investigated, with emphasis on the possible
manifestation of monodromy. The displacement of an el-
ementary cell around the singularity and the absence of de-
formation between the initial and the final cell proves in the
first case that the fold catastrophe singularity does not induce
monodromy. In the second case, no closed loop around a
singularity can be defined and the concept of monodromy is
irrelevant. There is however a domain in the image of the
energy-momentum map where the preimage of a regular
point consists of two tori and it is possible to continuously
transform one torus to the other one.

The concomitant existence of two sheets and monodromy
in some previous studied systems is only a fortuitous acci-
dent. This paper definitively shows that the singularity in-
duced by the fold catastrophe can be the cause of the exis-
tence of two sheets of regular values but does not introduce
monodromy in the system.

The results presented in this paper illustrate one type of
change with respect to the number of sheets in the image of
the energy-momentum map but numerous other possibilities
exist. It is known that several sheets appear as well in the
image of the energy-momentum map of the three-
dimensional ellipsoid with distinct semiaxes �42� and a sys-
tematic description of the possible modifications of the num-
ber of sheets would certainly be worthwhile.
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FIG. 14. �a� Enlargement of Fig. 13�a�. The quantum eigenstates
have been determined with the Planck constant �=0.005. The en-
ergy axis is shifted by a linear function �h of the angular momen-
tum m: �h�m�=1.6m−9.06. �b�–�k� Effective potential �dashed
curve�, energy �horizontal dashed line�, and radial momentum
	p
�
� �solid curves� are drawn for ten representative points in the
image of the energy-momentum map. The small filled circles rep-
resent 	p
�
� curves reduced to one point. The evolution of a torus
from �b� to �k� is seen in the continuous curves. �b� and �k� have
two regular tori: one is drawn as a continuous curve and the other
one is drawn as a dotted curve.
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