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With the goal of gaining a deeper understanding of quantum nonlocality, we decompose quantum correla-
tions into more elementary nonlocal correlations. We show that the correlations of all pure entangled states of
two qubits can be simulated without communication, hence using only no-signaling resources. Our simulation
model works in two steps. First, we decompose the quantum correlations into a local and a nonlocal part.
Second, we present a model for simulating the nonlocal part using only no-signaling resources. In our model
partially entangled states require more nonlocal resources than maximally entangled states, but the less the
state is entangled, the less frequently must the nonlocal resources be used.
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I. INTRODUCTION

Quantum correlations are very peculiar, especially those
violating some Bell inequality �1�. Gaining a deeper insight
into such nonlocal quantum correlations is a grand challenge.
Children gain understanding of how their toys function by
dismantling them into pieces. In the present paper we follow
a similar approach by decomposing the quantum correlations
into simpler, more elementary, nonlocal correlations.

This work is part of a general research program that looks
for nonlocal models compatible and incompatible with quan-
tum predictions. The goal is to find out what is essential in
quantum correlations. Note that we do not claim that nature
functions as our model. Nevertheless, we believe that finding
the minimal resources sufficient to simulate quantum corre-
lations and studying the computational power that they offer
�2–5� provide enlightening insights into the quantum world.

In the last years, two different ways of decomposing
quantum correlations have been proposed. The first one, due
to Elitzur, Popescu, and Rohrlich �EPR-2� �6�, consists in
decomposing some quantum correlations into a local and a
nonlocal part. A second approach consists in the simulation
of entanglement with the help of some nonlocal resource—
e.g., classical communication or a nonlocal box. While com-
munication models �7,8� give insight to quantum correlations
from the point of view of communication complexity, we
believe that models using only no-signaling resources �9� are
more relevant from a physical point of view, since it is most
unlikely that nature uses any form of communication �10�. In
this paper, we shall combine both approaches and prove that
all pure entangled states of two qubits can be simulated using
only no-signaling resources—i.e., without communication.

The approach we follow works in two steps. First, in the
EPR-2 spirit, we decompose the quantum correlation PQ cor-
responding to von Neumann measurements performed on
pure entangled states of two qubits ������=cos ��00�
+sin ��11� into a statistical mixture of a local correlation PL
and a nonlocal correlation PNL �6�:

PQ = pL���PL + �1 − pL����PNL. �1�

The weight pL��� is thus a measure of the locality of the state
������. In particular, for any maximally entangled state of

two qubits one has pL��=� /4�=0 �6�, a result that holds true
for maximally entangled states in any dimension �11�. Note
that in general the probability distribution PNL does not need
to be quantum, but is restricted to no-signaling correlations
by construction.

Then, we provide a simulation of the nonlocal correlation
PNL using only nonlocal, but no-signaling resources. Accord-
ingly, in order to simulate PQ, it suffices to simulate PL with
probability pL���, which requires only shared randomness
�but no nonlocal resources�, and to simulate PNL with the
complementary probability 1− pL���. As expected, the less
the quantum state ������ is entangled, the smaller the weight
pL��� of the local correlation �6,12�. Consequently, the simu-
lation of a less entangled state requires less frequent use of
nonlocal resources; in particular, for separable states pL��
=0�=1. However, not much is known about the nonlocal
resources needed to simulate the nonlocal part of quantum
correlations—i.e., to simulate pNL. Reference �9� presented a
simulation of the quantum correlation for the special case of
maximally entangled qubit pairs ��=� /4� using only one
nonlocal box, the so-called Popescu-Rohrlich �PR� box �13�.
For nonmaximally entangled qubit states, very few are
known. To our knowledge, the only known result is that one
PR box is not sufficient for simulating slightly entangled
states �14�. This result shows that entanglement and nonlo-
cality are different resources, as also suggested by other
works �15–18�.

In this paper we use a decomposition of the form �1�,
recently presented in Ref. �12�, which is optimal under some
general assumption, and present a simulation of the corre-
sponding nonlocal correlation PNL for arbitrarily entangled
two qubit states. This simulation requires finitely many non-
local boxes, though no claim of optimality can be made. For
pedagogical reasons, the paper is organized as follows. After
introducing the general framework in Sec. II and briefly re-
viewing the case of maximal entanglement in Sec. III, we
present in Sec. IV a preliminary model for simulating par-
tially entangled qubit states, without using any decomposi-
tion into local and nonlocal parts. This allows us to introduce
the two main ingredients of our model: first, the technique of
correlated local flips; second, the millionaire box, a generali-
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zation of the PR box. Then in Sec. V, we briefly recall the
decomposition into local and nonlocal parts presented in �12�
and explain how our preliminary simulation model can be
extended to simulate the nonlocal part PNL of the model of
Ref. �12�. Finally we give some conclusions and perspec-
tives.

II. GENERAL FRAMEWORK

Formally, a correlation is a conditional probability distri-

bution P��� �a�b��, where � and � denote the outcomes ob-
served by Alice and Bob when they perform measurements

labeled by a� and b� . Here, measurements are conveniently
represented as vectors on the Bloch sphere, since we focus
on von Neumann measurements on qubits. A correlation is
nonsignaling if and only if Alice and Bob’s marginals MA
and MB are independent of the partner’s input: MA does not

depend on b� , and MB does not depend on a� . For binary
outcomes �� ,�� �−1, +1��, the correlations are conve-
niently written as

P��,��a� ,b�� =
1

4
�1 + �MA�a�� + �MB�b�� + ��C�a� ,b��� ,

�2�

where

MA�a�� = 	
�,�

�P��,��a� ,b�� ,

MB�b�� = 	
�,�

�P��,��a� ,b�� �3�

are the local marginals and

C�a� ,b�� = 	
�,�

��P��,��a� ,b�� �4�

is the correlation term. Here we shall focus on pure en-
tangled states of two qubits ������=cos ��00�+sin ��11�, �

� �0,� /4�. Thus the quantum correlation PQ��� �a�b�� is
given by

MA�a�� = caz, MB�b�� = cbz,

C�a� ,b�� = azbz + s�axbx − ayby� , �5�

where c
cos 2� and s
sin 2�.
Now, we would like to decompose the correlations PQ

into simpler ones, such that

PQ��,��a� ,b�� =� d� P���,��a� ,b�� , �6�

where d� is a normalized measure. In a simulation model,
two ingredients are required: first, nonlocal resources for cre-
ating the elementary correlations P�; second, a strategy �rep-
resented by the �’s� for judiciously combining them. In this
paper, we provide such a decomposition. The remarkable
feature of our model is that the elementary nonlocal correla-

tions are obtained without communication—that is, using
only no-signaling resources.

III. MAXIMALLY ENTANGLED STATE

Let us briefly review the simple case of maximal
entanglement—i.e., �=� /4. In this case the marginals van-

ish, MA�a��=MB�b��=0, and the correlation takes the simple

scalar product form C�a� ,b��=a� ·b� .1 In Ref. �9� a model simu-
lating this correlations is presented. This model uses as re-
sources only shared randomness and one PR box, which sat-
isfies the relation a � b=xy, where x and y are Alice’s and
Bob’s input bits and a and b their outcome bits. In general,
nonlocal boxes provide some elementary nonlocal correla-
tions. They are elementary in that they allow only for a lim-
ited �usually finite� number of inputs and outputs and they
are extremal points in the convex set of no-signaling corre-
lations �19�. They are nonlocal in the sense that they violate
some Bell inequality. Importantly, they do not allow signal-
ing; that is, the statistics of the local outcomes �i.e., the mar-
ginals� are independent from the other parties inputs. This
model demonstrates that the resource needed to simulate
maximally entangled qubit pairs is surprisingly simple. In-
deed, what could be simpler than a � b=xy?

IV. PARTIALLY ENTANGLED STATES:
PRELIMINARY MODEL

We now turn to partially entangled states of two qubits. In

general, the marginals MA�a�� and MB�b�� do not vanish. How-
ever, in the case of two parties and binary outcomes, it is
proven that all extremal nonlocal boxes have vanishing �or
deterministic� marginals �20,21�. This explains in part why it
is difficult to simulate partially entangled states. In order to
circumvent this difficulty we introduce now the concept of
correlated local flips.

A. Correlated local flips

Let us consider an arbitrary probability distribution

P0��,��a� ,b�� =
1

4
�1 + ��C0�a� ,b��� , �7�

with vanishing marginals and correlation term C0�a� ,b��. Now,
Alice and Bob perform local flips on the probability distri-
bution P0; that is, Alice �Bob� flips her �his� output −1 with
a probability fa �fb�, while the output +1 is left untouched.
After this processing, also called a Z channel, the marginals
are clearly biased towards +1. Let us now assume that fb
� fa and that the flips of Alice and Bob are both determined
by a shared random variable � uniformly distributed in �0,1�.
Alice and Bob flip their −1 outcome if and only if �	 fa and
�	 fb, respectively. The resulting probability distribution
reads

1The sign change in �3� can be adapted locally by one of the
parties—for instance, by Alice: ay→−ay.
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Pf��,��a� ,b�� =
1

4
�1 + �fa + �fb + ���fa + �1 − fb�C0�a� ,b���� .

�8�

It should be pointed out that the flips fa and fb must be
correlated; this will be crucial in the following. Note also
that every probability distribution P�� ,��= 1

4 �1+�MA
+�MB+��C� with MB�MA can be generated in this way.

B. Preliminary model, step 1

We just described a technique for creating a probability
distribution Pf with nontrivial �i.e., nonvanishing� marginals,
starting from an initial probability distribution P0 which had
trivial marginals. Now the intuition is the following: since
correlation with trivial marginals seems to be easier to create
with standard nonlocal resources �such as PR boxes�, let us
do the identification Pf = PQ and find out what is the required
initial distribution P0. For partially entangled states of two
qubits �PQ given by �5��, this leads to

fa = caz, fb = cbz, C0 = a� · B� , �9�

where

B� 
 �sbx,− sby,bz − c�/�1 − cbz� . �10�

Note that �B� �=1. Remarkably, B� corresponds to Bob’s origi-

nal measurement setting b� moved one step back on the
Hardy ladder �22�.

Consequently the problem of simulating correlations
originating from von Neumann measurements on partially
entangled states reduces to the problem of simulating the
unbiased probability distribution

P0 =
1

4
�1 + ��a� · B� � . �11�

Such a “scalar product” correlation can be reproduced with a
single bit of communication �7� or with a single PR box �9�.
However, there is a caveat: Alice and Bob must know
whether bz�az �as assumed above� or if on the contrary az
�bz. This is due to the fact that the local flips must be
correlated. Note that in the case az�bz, the initial probability

distribution is given by P0= 1
4 �1+��A� ·b��, where A� is de-

fined similarly to Eq. �10�.
At first sight it may seem that a resource solving this

problem will lead to signaling, because it would reveal a
relationship between Alice’s and Bob’s measurements. Re-
markably, this is not the case. Next, we show that a no-
signaling �nonlocal� resource known as the millionaire box is
exactly the tool we need.

C. Millionaire box

Two millionaires challenge each other: who is richer?
Since millionaires are in general quite reluctant to reveal
how much money they own, they prefer to use the million-
aire box �M box� �23�, a nonlocal two-input two-output box.
The two outputs a and b are binary �a ,b� �0,1�� and are

locally random in order to ensure no-signaling. The two in-
puts x and y can be chosen in the continuous interval �0,1�.
The M box is characterized by the following relation:

a � b = �x 
 y� , �12�

where �X� denotes the logical value of X: �X�=0 when X is
true. Note that the M box admits an infinite number of pos-
sible inputs. So both millionaires input the amount of money
they own, x and y, into the machine; the parity of the outputs
�a � b� indicates the winner. Fortunately, the M box is also
useful to physicists, as will be shown in the next section.
Note that the M box is a generalization of the PR box; in the
case the inputs x and y are binary, the M box is simply
equivalent to a PR box �given here by x�y � 1�=a � b � 1�. It
is also worth mentioning that the M box reaches the no-
signaling bound of all the Bell inequalities INN22 introduced
in �24�. An interesting question is whether all �bipartite� non-
local boxes with two outcomes �20,21� can be simulated with
one M box. Indeed, a detailed study of the nonlocal proper-
ties of the M box would be relevant, but is beyond the scope
of this paper.

D. Preliminary model, step 2

As shown above, the technique of local flips allows one to
recover the correlation of partially entangled states under the
condition that bz�az �or az�bz�. But how do Alice and Bob
know whether bz�az or az�bz? The M box can overcome
this problem.

Alice and Bob share two PR boxes for creating “scalar
product” correlations �see Fig. 1�; from now on, we call these
Cerf-Gisin-Massar-Popescu �CGMP� boxes �9�. The first one
is used to create the correlation given by the scalar product

a� ·B� —i.e., corresponding to the case bz�az—and the second

one for the scalar product A� ·b�—i.e., for the case az�bz.
Local flips are then performed. At this point, Alice and Bob
have each got two possible outputs �1 ,�2 and �1 ,�2, but do
not know which one to use, since they do not know whether
az
bz or bz
az.

FIG. 1. Preliminary model. Simulating partial entanglement
without communication. The model requires four PR boxes and a
millionaire box �M box�. The first two PR boxes create “scalar
product” correlations �CGMP boxes�. Then the M box “selects” the
correct CGMP box, without revealing any relation between Alice’s
and Bob’s measurement settings �i.e., without signaling�. Finally,
two additional PR boxes are required for computing the correct
outputs.
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Next, they input the z component of their measurement
setting �respectively,2 az and bz� into the M box and get out-
puts a and b. It is clear that, for the simulation to succeed,
the final output of Alice and Bob, � and �, should be equal
to �1 and �1 if az�bz and equal to �2 and �2 if bz�az.
Mathematically this translates into the expression

� � � = �a � b���1 � �1� � �a � b � 1���2 � �2� .

�13�

Developing the previous equation, one gets

� � � = a��1 � �2� � �2 � b��1 � �2� � �2

� a��1 � �2� � b��1 � �2� , �14�

which contains some local terms, as well as some nonlocal
terms. Remarkably, the nonlocal terms �second line of
Eq. �14�� are simply obtained by using two supplementary
PR boxes, a3 � b3=a��1 � �2� and a4 � b4=b��1 � �2� �see
Fig. 1�.

So finally, using four PR boxes �two CGMP boxes and
two additional PR boxes� and one M box, one can simulate
the correlation of any partially entangled state of two qubits.
Whether the M box can be replaced by a finite number of PR
boxes �or more generally with a nonlocal box having a finite
number of possible inputs� is an interesting open question.

V. PARTIALLY ENTANGLED STATES: MAIN MODEL,
INTEGRATING EPR-2

We are now ready to present our model, combining the
preliminary model �presented in the previous section� and
the decomposition of Ref. �12�, into local and nonlocal parts
�i.e., of the form �1��. The decomposition is the following:

pL��� = 1 − s ,

PL =
1

4
�1 + �f�az���1 + �f�bz�� ,

PNL =
1

4
�1 + �F�az� + �F�bz� + ��G�a� · b��� , �15�

where f�x�=sgn�x�min�1, c
1−s �x��, F�x�= 1

s �cx− �1−s�f�x��,
and G�a�b��=axbx−ayby + 1

s �azbz− �1−s�f�az�f�bz��. We refer
the reader to �12� for further details.

Let us point out two important features of decomposition
�15�. First, the weight of the local part pL���=1−s is a mono-
tonic decreasing function of �—i.e., of the degree of en-
tanglement of the state ������. Note also that pL���=1−s is
optimal under the assumption that PL depends only on az and
bz. Second, the nonlocal part PNL depends on the measure-
ment settings. More precisely, when the measurement setting
of Alice is such that az
 �1−s� /c �i.e., inside a slice of the
Bloch sphere around the equator�, her local marginal van-
ishes and similarly for Bob. On the contrary, when the mea-

surement setting lies outside the slice, the marginal is biased.
When both the settings of Alice and Bob are found inside the
slice, the correlation reduces to a simple scalar product with
trivial marginals.

The simulation of PNL is very similar to that presented
above; thus, we only describe Alice’s and Bob’s strategies.
As previously, the required nonlocal resources are two
CGMP boxes, an M box, and two additional PR boxes. After
establishing nonlocal correlations with both CGMP boxes,
Alice and Bob perform local flips. Finally they use two ad-
ditional PR boxes to compute the correct output �see Fig. 2�.

Alice proceeds as follows. When her setting is inside the
slice �az
 �1−s� /c�, she inputs according to a� into both
CGMP boxes and does not perform any local flip �fa=0�.
When her setting is outside the slice, she inputs the first

CGMP box according to A� = �sax ,say ,c−az� / �1−azc� and the
second CGMP box according to a� . Then she biases her out-
put towards outcome +1 with probability fa=F�az�.

Bob proceeds almost similarly. When his measurement
setting is inside the slice �bz
 �1−s� /c�, he inputs both

CGMP boxes according to b��= �bx ,−by ,−bz�. When his

2Since PQ�−� ,� �−a� ,b��= PQ�� ,� �a� ,b��, it is sufficient to consider
the case where az ,bz�0.

FIG. 2. �Color online� Sketch of the main model. �1� Alice and
Bob inside the slice �see text�; both CGMP boxes can be used. �2�
Alice inside, Bob outside; then indeed az
bz. �3� Alice outside,
Bob inside. �4� Alice and Bob outside. Depending whether az
bz

or az�bz, the M box selects the correct CGMP box. Note that we
have omitted the two additional PR boxes �PR3, PR4 of Fig. 2�.
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setting is outside the slice, he inputs the first CGMP box

according to b�� and the second according to B�

= �sbx ,−sby ,bz−c� / �1−bzc�. Then he biases his output with
probability fb=F�bz�.

VI. CONCLUSION AND OUTLOOK

By dismantling the quantum correlations of partially en-
tangled states of two qubits into more elementary nonlocal
but no-signaling correlations, we gained insight into the
quantum world. We showed that the correlations of all pure
entangled states of two qubits �under von Neumann measure-
ments� can be simulated using only no-signaling resources,
hence without communication. Our decomposition is likely
not to be optimal in the sense that there might exist more
economical models. Still, there are already two lessons we
learn from the present decomposition. First, the less the
quantum state is entangled, the less frequently one needs to
use nonlocal resources to simulate it, as intuition suggests.
Next, whenever one needs nonlocal resources, then these are
definitively larger for �at least some� partially entangled
states than for the maximally entangled state; indeed, this is
proven for slightly entangled states �14�, but is still an open
question for close to maximally entangled states. Hence, in
counting the resources required to simulate two-qubit states,
one should distinguish between the required amount of non-
local resources and the frequency at which one has to use
them.

It is interesting to establish the following connection with
Leggett’s approach to quantum correlation �25�, which re-

cently attracted quite some attention �26–31�. In models in
the manner of Leggett one assumes that the elementary cor-
relations, contrary to PR boxes, have nontrivial marginals;
Leggett’s original idea is that each qubit, when analyzed in-
dividually, appears to be always in a pure state; see �25,29�.
However, one can prove that any such model, with elemen-
tary correlation having nontrivial marginals, fails to repro-
duce the quantum correlation of maximally entangled states
of two qubits �29,31�. This is a kind of converse to the
present paper in which we show that it is especially hard to
simulated at the same time nonlocal correlations and nonva-
nishing marginals.

Among the open questions, we like to underline the fol-
lowing one. How could one prove that a decomposition is
minimal? As said, this question has two sides: minimality of
the resources and minimality of the frequency at which one
has to use them. Our experience suggests that the first aspect
is an especially difficult problem. The second aspect looks
more promising: it seems natural to conjecture that an
EPR2-type decomposition with pNL���=1−cos 2� should
exist �12�.
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