
Possible entanglement detection with the naked eye
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The human eye can detect optical signals containing only a few photons. We investigate the possibility to
demonstrate entanglement with such biological detectors. While one person could not detect entanglement by
simply observing photons, we discuss the possibility for several observers to demonstrate entanglement in a
Bell-type experiment, in which standard detectors are replaced by human eyes. Using a toy model for biologi-
cal detectors that captures their main characteristic, namely, a detection threshold, we show that Bell inequali-
ties can be violated, thus demonstrating entanglement. Remarkably, when the response function of the detector
is close to a step function, quantum nonlocality can be demonstrated without any further assumptions. For
smoother response functions, as for the human eye, postselection is required.
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I. INTRODUCTION

The human eye is an extraordinary light sensitive detec-
tor. It can easily stand a comparison to today’s best man-
made detectors �1�. Already back in the 1940s, experiments
on the sensibility of the human eye to weak optical signals
were conducted �2�, leading to the conclusion that rod pho-
toreceptors can detect a very small number of photons, typi-
cally less than ten during an integration time of about 300 ms
�3�. To date, this prediction has been confirmed by many
experiments �1�. Though most specialists still disagree on the
exact number of photons required to trigger a neural re-
sponse, it seems to be now commonly accepted that there is
a threshold number of incident photons, below which no
neural signal is sent to the brain. This assumption is sup-
ported by the good agreement between theoretical models
and experimental data from behavioral experiments. Our vi-
sual system works basically as follows: first, a photon is
absorbed by the rod, which then amplifies the signal with
some very efficient chemical reactions; then, some postpro-
cessing �basically a thresholding� is performed on the signals
incoming from a group of 20–100 rods �4�; finally, a neural
signal is eventually sent to the brain. The role of the thresh-
old is possibly to maintain a very low dark noise in the visual
process, in particular, to get rid of electrical noise originating
from the individual rods �4,5�.

In quantum information, experiments carried out on pho-
tons are now routinely performed for demonstrating fascinat-
ing quantum features, such as entanglement and quantum
nonlocality �6,7�. In this context, and considering the amaz-
ing performances of the human eye, it is quite intriguing to
ask whether one could demonstrate entanglement without the
help of man-made detectors, but using only naked eyes. It
should be reminded at this point that entanglement is usually
demonstrated in Bell-type experiments �where correlations
between two distant parties are measured�, and not via single
shot measurements. Therefore one person cannot expect to
see entanglement directly. Nevertheless, one could perform a
Bell experiment in which man-made photon detectors are

replaced by human eyes �see Fig. 1�, or more generally, by
biological detectors. In case the collected data would lead to
the violation of a Bell’s inequality �8�, one could argue that
entanglement has been “seen.” Let us stress that, though such
an experiment would probably not lead to a better under-
standing of quantum nonlocality itself, it would definitely be
fascinating.

The main difference between man-made photon counters
and the human eye is a detection threshold. To test whether a
detector is able to detect single photons, one usually checks
that the response of this detector to very low intensities is
linear. Indeed, this is not the case for the eye, where the
efficiency of detection plotted as a function of the number of
incoming photons is a typical S-shaped curve �see �1��. In
this paper we report a preliminary theoretical study of Bell
tests with threshold detectors. Our goal is to provide a good
understanding of Bell experiments with a toy model for the
detector that captures the main characteristic of the human
eye.

The presentation is organized as follows. After a general
description of the scenario we consider �Sec. II�, we first
focus on detectors with a perfect threshold, i.e., no detection
below the threshold and perfect detection above �Sec. III�.
We show that, even for a Poissonian source, the threshold is
not a restriction for demonstrating quantum nonlocality; in
other words, Bell inequalities can be violated �in the strict
sense� with such detectors. Then we smoothed the threshold,
in order to make our detector model closer to the human eye
�Sec. IV�. We show that, except for close-to-perfect thresh-
olds, one must then perform postselection in order to obtain
a violation of a Bell inequality �Sec. V�.

II. GENERAL FRAMEWORK

Let us consider a typical Bell test scenario. A source sends
pairs of entangled particles �each pair being in state �� to two
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FIG. 1. �Color online� Bell experiments with human
detectors.
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distant observers, Alice and Bob, who perform measure-
ments on their respective particles. Here, Alice and Bob
choose between two different measurement settings A1 ,A2
and B1 ,B2, each of these measurements giving a binary result
� ,�� �+,−�. In this case the relevant Bell inequality is the
famous Clauser-Horne-Shimony-Holt �CHSH� inequality
�9�, which we will express here in the Clauser-Horne �CH�
�10� form,

CH � P++�A1B1� + P++�A1B2� + P++�A2B1�

− P++�A2B2� − P+�A1� − P+�B1� � 0, �1�

where P+�AiBj�� P�++ �AiBj� is the probability that �=�
=+ when Alice �Bob� has performed measurement Ai�Bj�.
Note that under the hypothesis of no signaling, the CH and
CHSH inequalities are strictly equivalent �11�.

III. PERFECT THRESHOLD

Now let us bring the threshold detector into the picture.
We start by considering a detector with a perfect threshold at
N photons; optical signals containing at least N photons are
always detected �note that our detector is not photon number
resolving�, while signals with less than N photons are never
detected. The response function of our detector is simply a
step function, the step occurring at N photons.

First, it is clear that the number of emitted pairs M has to
be larger or equal than the threshold N, otherwise the detec-
tors will never fire. At this point it should be reminded that
Bell inequalities are usually considered in a situation where
the source emits a single pair of entangled particles at a time.
Nevertheless, the violation of Bell inequalities can also be
studied in the multipair scenario �12–14�; of particular inter-
est are experimental situations where single entangled pairs
cannot be individually created or measured, for instance, in
many-body systems �14�. Nevertheless, such studies require
a careful analysis, in particular, when postselection is per-
formed, as we shall see in Sec. V.

To gain some intuition, let us start with the simplest situ-
ation M =N: the source emits exactly the threshold number of
pairs. In this case a detector clicks whenever all photons take
the same output of the polarizing beam splitter. Thus the
probabilities entering the CH inequality are simply given by

P+�Ai� = p+�Ai�N, P++�AiBj� = p++�AiBj�N, �2�

where p++�AiBj�=tr��Ai
+

� Bj
+��� is the quantum joint prob-

ability for a single pair to give a click in the “�” detector on
Alice’s and on Bob’s side, and similarly for the marginal
probability p+�Ai�. It should be stressed that, though the de-
tectors are supposed to be perfectly efficient, there are many
inconclusive events “�” �not giving any click in the � de-
tector or in the � detector�, because of the threshold. Since
we consider only the outcome � in the CH inequality, one
may relabel the outcomes in the following way: � → � and
−, � →0. Then, the experiment still provides binary out-
comes, � or 0, but no events have been discarded.

Inserting probabilities �2� into the CH inequality, we com-
pute numerically the maximal amount of violation for pure
entangled states of two qubits ��	=cos ��00	+sin ��11	. The

optimization is performed over the four measurement set-
tings. The results are presented in Fig. 2�a�, for different
values of the threshold N. Surprisingly, the inequality can be
violated for any N; this can be shown analytically for the
maximally entangled state �see �15��. For large values of N,
this is quite astonishing, since the probabilities �2� are very
small; most events do not lead to a click in the � detector.
Let us stress that no particular assumptions �such as fair-
sampling� are required here, since no events have been dis-
carded. Another astonishing feature is that, for increasing
values of N, the state that achieves the largest violation is
less and less entangled. Note that in general, the relation
between entanglement and nonlocality is not well under-
stood, but hints suggest that a partially entangled state con-
tains more nonlocality than maximally entangled ones
�16–18�.

Next we compute the resistance to noise, defined as the
maximal amount �1−w� of white noise that can be added to
the state ��	 such that the global state �=w��	
��+ �1−w� 1

4
still violates the Bell inequality. The optimization is per-
formed as above. We find that the more entangled the state is,
the more robust it is, though for N	2 the maximal violation
is not obtained for the maximally entangled state �see Fig. 2�.
So the close relation that exists, in the standard case N=1,
between the amount of violation and the resistance to noise,
does not hold here anymore �19�. Indeed, in the perspective
of experiments, the resistance to noise is the relevant figure
of merit.
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FIG. 2. �Color online� Violation of the CH inequality �a� and
resistance to noise w �b� vs the degree of entanglement of the state,
for different threshold values N. Remarkably the inequality is vio-
lated for any value of the threshold N.
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Now let us consider the case where the source emits M
	N entangled pairs, and the detector is characterized by a
response function 
�x�, where x is the number of incident
photons. The probabilities �2� now read

P+
�M� = �

n++n−=M


�n+�M!
p+

n+

n+!

p−
n−

n−!
,

P++
�M� = �

�n��=M


�n+
A�
�n+

B�M! �
�,�=�

 p��
n��

n��!
� �3�

where the indices n�,� represent the numbers of pairs that
take the outputs � on Alice’s side and � on Bob’s side, and
n+

A�n+++n+− while n+
B�n+++n−+.

For now, we still consider detectors with a perfect thresh-
old, i.e., 
�x�N�=0 and 
�x	N�=1. Again, the amount of
violation of the CH inequality as well as the resistance to
noise can be computed numerically. We have performed op-
timization for N�10 and found that the CH inequality can
still be violated but that the resistance to noise decreases for
increasing values of M. In Fig. 3 we present the results in a
slightly different way: for a fixed number of emitted pairs
�M =7�, we compute the violation of the CH inequality and
the resistance to noise for different thresholds N. The optimal
threshold is found to be N= � M+1

2 �. Note that if we had photon
counting detectors, then this threshold would simply corre-
spond to a majority vote �14�: if n+	n−, then the result is �,
otherwise it is �. It should also be pointed out that detectors
with threshold N and M −N+1 are equivalent, which can be
seen by inverting the outputs � and � �20�.

Next we consider a Poissonian source. The probability of
emitting M pairs is pM =e− M

M! , where  is the mean number
of emitted pairs. Again we compute the probabilities entering
the CH inequality as follows:

P+
�� = �

M

pMP+
�M�,

P++
�� = �

M

pMP++
�M�, �4�

with P+
�M� and P++

�M� defined in Eqs. �3�. Numerical optimiza-
tions show that the CH inequality can be violated. Figure 4
shows the results for a detector with a perfect threshold at
N=5. The largest violation is obtained for �9.05�2N−1,
so basically when the threshold corresponds to a majority
vote on the mean number of pairs, N� +1

2 . The resistance to
noise has a very different dependance on  �see Fig. 4�.
Smaller values of  are more robust against noise. Intuitively
this can be understood as follows. The term with M =N pairs
is the most robust against noise, as discussed previously. For
small values of , more weight is given to this term �com-
pared to terms with more pairs�, thus leading to a stronger
resistance to noise.

IV. SMOOTH THRESHOLD

We just showed that a threshold is not a limiting factor for
demonstrating quantum nonlocality, and consequently, en-
tanglement. However, the response function of real biologi-
cal detectors, such as the human eye, is not a perfect thresh-
old but a smooth curve. Typically, for a number of photons
near the threshold, the efficiency is low; for instance, �20%
for 60 incoming photons �see �1� for details�, here the thresh-
old being the minimum number of photons that can be de-
tected with a strictly positive probability. Let us also stress
that the efficiency of the human eye does strongly depend on
the number of incoming photons. Therefore the probability
of seeing cannot be characterized by a single parameter �for
instance, the efficiency for a single photon� as is the case for
linear detectors. One must consider the eye’s �S-shaped� re-
sponse function.

We have checked that, for smooth thresholds, the demon-
stration of quantum nonlocality in the strict sense is compro-
mised, except if the response function is close to a step func-
tion. Therefore, in the case of a response function with a
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FIG. 3. �Color online� Violation of the CH inequality �inset� and
the resistance to noise w �figure� vs the degree of entanglement of
the state, for different thresholds N. The source emits a fixed num-
ber of pairs M =7. The optimal threshold, N=4, corresponds to a
majority vote �see the text�.
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state, for a Poissonian source. The threshold is fixed to N=5, while
the mean number of emitted pairs  is varied.
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smooth threshold, for instance, in the case of the human eye,
postselection must be performed.

V. POSTSELECTION

We postselect only the events leading to a conclusive re-
sult on both sides, i.e., when one detector on Alice’s side and
one detector on Bob’s side fire. In this case probabilities

must be renormalized such that P̄��� � ij�
= P��� �AiBj� /��,�=�P��� �AiBj�. Since we postselect coin-
cidences, it is now more convenient to express the CHSH
inequality in its standard form �in which only correlation
terms appear�

S � �E�A1,B1� + E�A1,B2� + E�A2,B1� − E�A2,B2�� � L ,

�5�

where E�Ai ,Bj�=��,�=���P̄��� �AiBj�, and L is the local
bound �for a single pair L=2�. Let us stress already that
because of the postselection, the local bound L for multipairs
will be modified �see below�.

The detector now has a smooth threshold at N photons:
below the threshold the efficiency is zero 
�x�N�=0; at the
threshold the efficiency is limited to 0�
�x=N��1, and the
efficiency above the threshold is, for now, arbitrary. We start
again with the case where the source sends exactly N pairs.
The source is supposed to send multiple copies of the same
state �. For the singlet state ��= ��−	
�−��, one has that

p�−
��� �a�b��= �1−��a� ·b�� /4; here measurement settings are

written as vectors on the Bloch sphere. This leads to

E�N��a� ,b�� =
�1 − a� · b��N − �1 + a� · b��N

�1 − a� · b��N + �1 + a� · b��N
. �6�

These correlations are stronger than those of quantum phys-
ics for a single pair. This is a consequence of the postselec-
tion we performed. Note also, that our postselection depends
�in general� on the measurement settings, therefore the local
bound L of the CHSH inequality must be modified accord-
ingly. Inserting the correlators �6� into the CHSH inequality,
one gets an expression that is maximized by the usual opti-
mal settings, i.e., A1=�z, A2=�x, B1= ��z+�x� /�2, and B2
= ��z−�x� /�2. In this case one gets

S�−

�N� = 4
�1 + 1/�2�N − �1 − 1/�2�N

�1 + 1/�2�N + �1 − 1/�2�N
. �7�

For N	2, S�−

�N� exceeds the Tsirelson bound �2�2� �21�: For
example, S�−

�2�=8�2 /3�3.77. In fact Eq. �7� tends to the al-
gebraic limit of the CHSH inequality, limN→� S�−

�N�=4.
Thus we find that the violation of the CHSH inequality for

the singlet state increases with the threshold N. However, in
order to conclude for the presence of entanglement one still
has to find the bound for separable states. For N=1 this
bound is indeed equal to the local limit of the inequality �L
=2�. In the case N	2, the local bound will be increased
because of the postselection, as intuition suggests. Next we
compute this local bound, which is indeed also a bound for
any separable state of the form ��N.

We proceed as follows. We perform a numerical optimi-
zation over any local probability distribution for two binary
settings on each side. This probability distribution is of the
form of N copies of a �two-input–two-output� local probabil-
ity distribution, because of our hypothesis. The largest value
of S�N� is obtained for the following probability distribution
�22�:

p�� = ��ij� = 3/8, p�� � ��ij� = 1/8, if i = 1 or j = 1,

p�� = ��ij� = 1/8, p�� � ��ij� = 3/8, if i = j = 2, �8�

leading to the local bound

L�N� = 4�3N − 1

3N + 1
� . �9�

One can check that S�−

�N��L�N� for any N �see Fig. 5�.
Remarkably, probability distribution �8� is obtained quan-

tum mechanically by performing the optimal measurements
�mentioned above� on the Werner state �23� ��w

=w ��−	
�− � + �1−w�1 /4� for w= 1
�2

, i.e., when �w ceases to
violate the CHSH inequality. Thus, the resistance to noise for
the singlet state is independent of N. It would be interesting
to see if a strictly lower bound exists for separable states.

Note, however, that the bound �9� is valid only under the
assumption that the source sends multiple copies of the same
state �. In case this assumption breaks, the local bound
reaches the algebraic limit of CHSH inequality �L=4�, thus
removing any hope of demonstrating entanglement. More
precisely, there is a local model giving L=4 for all N	2.
Whether this bound can be reached by a separable two-qubit
state is unclear. We stress that this was not the case for per-
fect thresholds; there no assumption had to be made on the
source.
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Curiously, no violation is obtained when the source sends
a fixed number of pairs larger than the threshold �M �N�
�24�. However, for a Poissonian source, the CHSH inequality
can be violated for small values of , the mean number of
emitted pairs �see Fig. 5�. Intuitively, if �N, the term with
N pairs is dominant. When →0, the curve M =N is recov-
ered. Note that for a Poissonian source, the local bound must
be defined carefully, since the number of emitted pairs var-
ies. However, when �N it is reasonable to consider the
local bound L�N�.

VI. CONCLUSION

Amazed by the performances of the human eye, which
can detect a few photons, we investigated whether biological
detectors might replace man-made detectors in Bell-type ex-
periments. We showed that the main characteristic of these
detectors, namely, a detection threshold, is not a restriction

for violating Bell inequalities. In particular, we showed that
close to perfect threshold detectors can be used to test quan-
tum nonlocality without the need of any supplementary as-
sumption, such as fair sampling. For detectors with a
smoother response function, one must perform postselection,
but Bell inequalities can still be violated, thus highlighting
the presence of entanglement under reasonable assumptions.
These results represent a first encouraging step, since there is
apparently no fundamental restriction to detect entanglement
with threshold detectors. Nevertheless, the next crucial step
will be to estimate the feasibility of such an experiment with
realistic parameters.
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