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When the dynamics of a spin ensemble are expressible solely in terms of symmetric processes and collective
spin operators, the symmetric collective states of the ensemble are preserved. These many-body states, which
are invariant under particle relabeling, can be efficiently simulated since they span a subspace whose dimen-
sion is linear in the number of spins. However, many open system dynamics break this symmetry, most notably
when ensemble members undergo identical, but local, decoherence. In this paper, we extend the definition of
symmetric collective states of an ensemble of spin-1 /2 particles in order to efficiently describe these more
general collective processes. The corresponding collective states span a subspace that grows quadratically with
the number of spins. We also derive explicit formulas for expressing arbitrary, identical, local decoherence in
terms of these states. We then investigate the open system dynamics of experimentally relevant nonclassical
collective atomic states, including superposition and spin squeezed states, subject to various symmetric but
local decoherence models.
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I. INTRODUCTION

The ability to model the open system dynamics of large
spin ensembles is crucial to experiments that make use of
many atoms, as is often the case in precision metrology �1,2�,
quantum-information science �3–5�, and quantum-optical
simulations of condensed matter phenomena �6–8�. Unfortu-
nately, the mathematical description of large atomic spin sys-
tems is complicated by the fact that the dimension of the
Hilbert space HN grows exponentially in the number of at-
oms N. Realistic simulations of experiments quickly become
intractable even for atom numbers smaller than N�10. Cur-
rent experiments, however, often work with atom numbers of
more than N�1010, meaning that direct simulation of these
systems is well beyond feasible. Moreover, simulations over
a range N�1–10 are far from adequate to discern even the
qualitative behavior that would be expected in the N�1
limit. Fortunately, it is often the case that experiments in-
volving large spin ensembles respect one or more dynamical
symmetries that can be exploited to reduce the effective di-
mension of the ensemble’s Hilbert space. One can then hope
to achieve a sufficiently realistic model of experiments with-
out an exponentially large description of the system.

In particular, previous work has focused on the symmetric
collective states ��S�, which are invariant under the permuta-

tion of particle labels: �̂ij��S�= ��S�. These states span the
subspace HS�HN, which grows linearly with the number of
particles, dim�HS�=Nj+1. However, in order for HS to be an
invariant subspace, the dynamics of the system must be ex-
pressible solely in terms of symmetric processes, which are
particle permutation invariant, and collective operators,
which respect the irreducible representation structure of ro-
tations on the spin ensemble. Fortunately, even within this
restrictive class, a wide variety of phenomenon may be ob-

served, including spin squeezing �9,10� and zero-temperature
phase transitions �6�.

In practice, symmetric atomic dynamics are achieved by
ensuring that there is identical coupling between all the at-
oms in the ensemble and the electromagnetic fields �optical,
magnetic, microwave, etc.� used to both drive and observe
the system �11�. This approximation can be quite good for all
of the coherent dynamics, because with sufficient laboratory
effort, electromagnetic intensities can be made homoge-
neous, ensuring that interactions do not distinguish between
different atoms in the ensemble. However, incoherent dy-
namics are often beyond the experimenter’s control. Al-
though most types of decoherence are symmetric, they are
not generally written using collective operators. Instead they
are expressed as identical Lindblad operators for each spin,
i.e.,

L�ŝ��̂ = �
n=1

N 	ŝ�n��̂�ŝ�n��† −
1

2
�ŝ�n��†ŝ�n��̂ −

1

2
�̂�ŝ�n��†ŝ�n�
 .

�1�

The fact that decoherence does not preserve HS has been
well appreciated and the standard practice in experiments
that address the collective state of atomic ensembles has
been either �i� to model such experiments only in a very
short-time limit where decoherence can be approximately ig-
nored; or �ii� to use decoherence models that do respect the
particle symmetry, but which are written using only collec-
tive operators, even when doing so is not necessarily physi-
cally justified. In atomic spin ensembles, for example, a typi-
cal source of decoherence comes from spontaneous emission,
yet collective radiative processes occur only under specific
conditions such as superradiance from highly confined atoms
�16� and some cavity-QED or spin-grating settings �15�.

In this paper, we generalize the collective states of an
ensemble of spin-1 /2 particles �qubits� to include states that
are preserved under symmetric—but not necessarily
collective—transformations. Specifically, we generalize from
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the strict condition of complete permutation invariance to the
broader class of states that are indistinguishable across de-
generate irreducible representations �irreps� of the rotation
group. While the representation theory of the rotation group
has been utilized in a wide variety of contexts, such as to
protect quantum information from decoherence by encoding
it into degenerate irreps with the same total angular momen-
tum �12,13�, we utilize relevant aspects of the representation
theory to obtain a reduced-dimensional description of quan-
tum maps that act locally but identically on every member of
an ensemble of qubits.

Our main result, presented in Eq. �42�, enables us to rep-
resent arbitrary symmetric Lindblad operators in the collec-
tive state basis. We find that the dimension of the Hilbert
space HC spanned by these generalized collective states
scales favorably, dim�HC��N2. This allows for efficient
simulation of a broader class of collective spin dynamics
and, in particular, allows one to consider the effects of deco-
herence on previous simulations of symmetric collective spin
states. We note that dynamical symmetries for spin-1 /2 par-
ticles have been studied in the context of decoherence-free
quantum-information processing �12,13�. Unlike our work,
which uses symmetries to find a reduced description of a
quantum system, these works seek to protect quantum infor-
mation from decoherence by encoding within the degenera-
cies introduced by dynamical symmetries.

The remainder of the paper is organized as follows. Sec-
tion II reviews the representation theory of the rotation
group, which plays an important role in defining the symme-
tries related to HS and HC. Section III introduces collective
states and Sec. IV defines collective processes over these
states. Section V gives an identity for expressing arbitrary
symmetric superoperators, e.g., Eq. �1�, over the collective
states. Section VI leverages this formalism to compare the
effect of different decoherence models in nonclassical atomic
ensemble states. Section VII concludes.

II. GENERAL STATES OF THE ENSEMBLE

Consider an ensemble of N spin-1 /2 particles, with the
nth spin characterized by its angular momentum ĵ�n�

= � ĵx
�n� , ĵy

�n� , ĵz
�n��. States of the spin ensemble are elements of

the composite Hilbert space

HN = H�1�
� H�2�

� ¯ � H�N� �2�

with dim�HN�=2N. Pure states of the ensemble, ����HN,
are written as

��� = �
m1,m2,. . .,mN

cm1,m2,. . .,mN
�m1,m2, . . . ,mN� �3�

with mn= �
1
2 and where

�m1,m2, . . . ,mN� = 1

2
,m1�

1
� 1

2
,m2�

2
� ¯ � 1

2
,mN�

N

�4�

satisfies

ĵz
�n��m1,m2, . . . ,mN� = �mn�m1,m2, . . . ,mN� . �5�

When studying the open-system dynamics of the spin en-
semble, one must generally consider the density operator

�̂ = �
m1,m2,. . .,mN

m1�,m2�,. . .,mN�

�m1,m2,. . .,mN;m1�,m2�,. . .,mN�

� �m1,m2, . . . ,mN��m1�,m2�, . . . ,mN� � . �6�

States expanded as in Eqs. �5� and �6� are said to be written
in the product basis.

A. Representations of the rotation group

For a single spin-1 /2 particle, a spatial rotation through
the Euler angles R= �	 ,
 ,�� is described by the rotation
operator

R̂�	,
,�� = e−i	 ĵze−i
 ĵye−i� ĵz. �7�

The basis kets � 1
2 ,m� for this particle therefore transform un-

der the rotation R according to

R̂1

2
,m�� = �

m

Dm�,m
1/2 �R�1

2
,m� , �8�

where the matrices D1/2�R� have the elements

Dm�,m
1/2 = � 1

2
,m�R̂�	,
,��1

2
,m� . �9�

The rotation matrices D1/2�R� form a two-dimensional repre-
sentation of the rotation group.

For the ensemble of N spin-1 /2 particles, each component
of the ket ���= �m1 ,m2 , . . . ,mN� transforms separately under
a rotation so that an arbitrary state transforms as

���� = �D1/2�R���N��� . �10�

The rotation matrices D�R�= �D1/2�R���N provide a reducible
representation for the rotation group but can be decomposed
into irreducible representations as

D�R� = �
J=Jmin

Jmax

�
i=1

dN
J

DJ,i�R� . �11�

The quantum number i�J�=1,2 , . . . ,dN
J is used to distinguish

between the

dN
J =

N!�2J + 1�
�N/2 − J�!�N/2 + J + 1�!

, Jmin � J � Jmax, �12�

degenerate irreps with total angular momentum J �14�. That
is to say, dN

J is the number of ways one can combine N
spin-1 /2 particles to obtain total angular momentum J. The
matrix elements of a given irrep DJ,i�R�

DM,M�
J,i �R� = �J,M,i�D1/2�R��N�J,M�,i� �13�

are written in terms of the total angular momentum eigen-
states

Ĵ2�J,M,i� = J�J + 1��J,M,i� , �14�
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Ĵz�J,M,i� = M�J,M,i� , �15�

with Ĵz=�n=1
N ĵz

�n�, Jmax=N /2, and

Jmin = �1

2
, N odd,

0 N even.
� �16�

It is important to note that degenerate irreps have identical
matrix elements, i.e.,

�J,M,i�D1/2�R��N�J,M�,i� = �J,M,i��D1/2�R��N�J,M�,i��

�17�

for all i , i�.
In this representation, pure states are written as

��� = �
J=Jmin

Jmax

�
M=−J

J

�
i=1

dN
J

cJ,M,i�J,M,i� �18�

and mixed states as

�̂ = �
J,J�=Jmin

Jmax

�
M,M�=−J,J�

J,J�

�
i,i�=1

dN
J ,dN

J�

�J,M,i;J�,M�,i��J,M,i��J�,M�,i�� .

�19�

States written in the form of Eq. �18� or �19� are said to be
written in the irrep basis. We stress that both the product and
irrep bases can describe any arbitrary state in HN.

III. COLLECTIVE STATES

While the representations in Sec. II allow us to express
any state of the ensemble of spin-1 /2 particles, the irrep
basis suggests a scenario in which we could restrict attention
to a much smaller subspace of HN. In particular, the irrep
structure of the rotation group, as expressed in Eq. �11�, in-
dicates that rotations on the ensemble do not mix irreps and
that degenerate irreps transform identically under a rotation.

Following this line of reasoning, we introduce the collec-
tive states ��C�, which span the sub-Hilbert space HC�HN.
Collective states have the property that degenerate irreps are
identical; for pure states, cJ,M,i=cJ,M,i� for all i and i�. We
note that the symmetric collective states mentioned in the
Introduction are the collective states with cJ,M,i=0 unless J
=N /2 and thus correspond to the largest J value irrep. We
also note that

dim HC = �
J=Jmin

Jmax

�2J + 1� = �
1

4
�N + 3��N + 1� if N is odd,

1

4
�N + 2�2 if N is even.�

�20�

Physically, the collective states reflect an inability to ad-
dress different degenerate irreps of the same total J. This
new symmetry allows us to effectively ignore the quantum
number i and write

��C� = �
J=Jmin

Jmax

�
M=−J

J

�
i=1

dN
J

cJ,M,i�J,M,i� = �
J=Jmin

Jmax

�
M=−J

J

�dN
J cJ,M�J,M� ,

�21�

where we have defined effective basis kets

�J,M� =
1

�dN
J �

i=1

dN
J

�J,M,i� �22�

with effective amplitude cJ,M =cJ,M,i for all i �since the cJ,M,i
are equal for collective states�.

The factor of �dN
J serves as normalization, so that we can

apply standard spin-J operators to the effective kets without
explicitly referencing their constituent degenerate irrep kets
�J ,M , i�. In other words, �J ,M� actually represents dN

J degen-
erate kets, each with identical probability amplitude coeffi-
cients. But since the matrix elements of a spin-J operator are
identical for irreps, we need not evaluate them individually.

As an example, consider a rotation operator R̂ which nec-
essarily respects the irrep structure of the rotation group.

Calculating the expectation value of R̂ by expanding the col-
lective state ��C� in the full irrep basis, we have

��C�R̂��C� = �
J,J�

�
M,M�

�
i,i�

c
J,M,i
* cJ�,M�,i��J,M,i�R̂�J�,M�,i��

�23�

=�
J

�
M,M�

�
i

c
J,M,i
* cJ,M�,i�J,M,i�R̂�J,M�,i� �24�

=�
J

�
M,M�

dN
J c

J,M
* cJ,M��J,M�R̂�J,M�� , �25�

where in going from Eq. �23� to Eq. �24� we set J=J� and
i= i� since rotation group elements do not mix irreps. In
reaching Eq. �25�, we have further used the collective state
property that cJ,M,i=cJ,M,i� ∀ i , i� and the rotation irrep prop-

erty that �J ,M , i�R̂�J ,M� , i�= �J ,M , i��R̂�J ,M� , i�� ∀ i , i� to
drop the index i.

Equivalently we can evaluate the expectation using the
effective basis kets �J ,M� directly:

��C�R̂��C� = �
J,J�

�
M,M�

�dN
J �dN

J�c
J,M
* cJ�,M��J,M�R̂�J�,M��

�26�

=�
J

�
M,M�

dN
J c

J,M
* cJ,M��J,M�R̂�J,M�� . �27�

Comparing this to Eq. �25� and recalling that cJ,M =cJ,M,i for
all i, we see that the effective calculation gives the same
result.

We can similarly define collective state density operators
�̂C that have the properties that �i� there are no coherences
between different irrep blocks and �ii� degenerate irrep
blocks have identical density matrix elements. The second
assumption again means we can effectively drop the index i,
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since �J,M,i;J,M�,i=�J,M,i�;J,M�,i� for any i and i�. This allows us
to write

�̂C = �
J=Jmin

Jmax

�
M,M�=−J

J

�J,M;J,M��J,M��J,M�� �28�

where the effective density matrix elements, written using an
outer product with overbar, are related to the irrep matrix
elements via

�J,M;J,M��J,M��J,M�� ª
1

dN
J �

i=1

dn
J

�J,M,i;J,M�,i�J,M,i��J,M�,i� .

�29�

Just as for the effective kets, the normalization factor of dN
J

ensures that expectations are correctly calculated using the
standard spin-J operators. The density matrix has
�J=Jmin

Jmax �2J+1�2= 1
6 �N+3��N+2��N+1� elements.

We stress that the outer product notation with overbar is
different from naively taking the outer product of the effec-
tive kets defined in Eq. �22�. Such an approach would in-
volve outer products of kets between different, although de-
generate, irreps. Such terms are strictly forbidden by the first
property of collective state density operators. Instead, one
should consider the effective density operator as a represen-
tation of dN

J identical copies of a spin-J particle. The overbar
notation is meant to remind the reader that the outer product
beneath should only be interpreted using Eq. �29� to relate
back to the irrep basis.

IV. COLLECTIVE PROCESSES

We are now interested in describing quantum processes L
that preserve collective states �̂C� =L�̂C. Writing this explic-
itly, we must have

�
J1

�
M1,M1�

dN
J1�J1,M1;J1,M1�

� �J1,M1��J1,M1��

= �
J2

�
M2,M2�

dN
J2�J2,M2;J2,M2�

L�J2,M2��J2,M2�� . �30�

If we define the action of L on collective density matrix
elements as

fJ,M,M� = L�J,M��J,M�� , �31�

we immediately see that this action must be expressible as

fJ,M,M� = �
J1

�
M1,M1�

J1,M1,M1�
J,M,M� �J1,M1��J1,M1�� �32�

in order for the equality in Eq. �30� to be met. Here J1,M1,M1�
J,M,M�

is an arbitrary function of its indices. Any process that pre-
serves collective states by satisfying Eq. �32� is a collective
process.

Examples of collective processes are those involving col-

lective angular momentum operators �Ĵx , Ĵy , . . . � and, more

generally, arbitrary collective operators Ĉ=�n=1
N ĉ�n�. Since

collective operators correspond to precisely the rotations
considered when the irrep structure of the rotation group is
defined, they can all be written as

Ĉ = �
J

�
M,M�

cJ,M,M��J,M��J,M�� , �33�

which cannot couple effective matrix elements with different
J.

However, the collective operators define a more restrictive
class than an arbitrary collective process, which can couple
different J blocks, so long as it does not create coherences
between them. In fact, if all operators are collective, then the
symmetric collective states ���S�� span an invariant subspace
of the map. This holds even when considering Lindblad op-
erators that are written in terms of collective operators,

L�Ŝ��̂ = �Ŝ�̂Ŝ† −
1

2
Ŝ†Ŝ�̂ −

1

2
�̂Ŝ†Ŝ� , �34�

where Ŝ=�nŝ�n�.
In the following section, we demonstrate that a process of

the form

fJ,M,M� = �
n=1

N

ŝ�n��J,M��J,M���t̂�n��†, �35�

which cannot be written solely in terms of collective opera-
tors, is nonetheless a collective process. Moreover, if we ex-
pand the operators in the spherical Pauli basis via ŝ=s� ·�� and
t̂†= t�·�� †, we find

fJ,M,M� = s� · g�J,M,M�,N� · t� �36�

with the tensor g�J ,M ,M� ,N� defined as

gqr�J,M,M�,N� = �
n=1

N

�̂q
�n��J,M��J,M����̂r

�n��†. �37�

The tensor is written as a function of N to coincide with the
notation in the following section.

Before deriving a closed form expression for
g�J ,M ,M� ,N�, we would like to relate it to modeling sym-
metric decoherence processes, which take the form In order
to relate L�ŝ� to Eqs. �35� and �37�, set t̂= ŝ and expand the
single spin operator ŝ in the spherical Pauli basis

ŝ = sIÎ + �
q

sq�̂q = sIÎ + s+�̂+ + s−�̂− + sz�̂z �38�

with the convention �=1, �̂+= � 0
0

1
0 �, �̂−= � 0

1
0
0 �, and �̂z

= � 1
0

0
−1 �. The symmetric Lindblad operator of Eq. �37� can be

expanded as

L�ŝ��̂ = �
n=1

N 	ŝ�n��̂�ŝ�n��† −
1

2
�ŝ�n��†ŝ�n��̂ −

1

2
�̂�ŝ�n��†ŝ�n�


= �
n=1

N

�ŝ�n��̂�ŝ�n��†� −
1

2
ŜN�̂ −

1

2
�̂ŜN �39�

with the collective operator ŜN given by
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ŜN = �
n=1

N

�ŝ�n��†ŝ�n�

= 	1

2
�s−�2 +

1

2
�s+�2 + �sI�2 + �sz�2
NÎ

+ �s−
*sI − s−

*sz + s
I
*s+ + s

z
*s+�Ĵ+

+ �s
I
*s− + s+

*sI + s+
*sZ − s

z
*s−�Ĵ−

+ 	1

2
�s−�2 −

1

2
�s+�2 + s

I
*sz + s

z
*sI
Ĵz, �40�

and Ĵq=�n=1
N �̂q

�n� a collective spin operator.
In this form, it is clear that only the first term of the

symmetric Lindbladian is not written using collective opera-
tors. In fact, if we again expand ŝ�n� in the spherical basis, we
observe that the only terms which involve noncollective op-
erators are those which do not involve the identity operator,

�
n=1

N

�ŝ�n��̂�ŝ�n��†� = �sI�2N�̂ + �
q

�sqs
I
*Ĵq�̂ + sIsq

*�̂Ĵq
†�

+ �
n=1

N

	�
q,r

sqs
r
*�̂q

�n��̂��̂q
�n��†
 . �41�

The last term here is precisely the tensor evaluation of
s� ·g�J ,M ,M� ,N� ·s�*. We now proceed to give an identity for
the tensor elements.

V. IDENTITY

Identity 1. Given a collective density matrix element for N
spin-1 /2 particles, �J ,M��J ,M��, we have

gqr�J,M,M�,N� = �
n=1

N

�̂q
�n��J,M��J,M����̂r

�n��†

=
1

2J
	1 +

	N
J+1

dN
J

2J + 1

J + 1



�Aq
J,M�J,Mq��J,Mr��Ar

J,M�

+
	N

J

dN
J 2J

Bq
J,M�J − 1,Mq��J − 1,Mr��Br

J,M�+
	N

J+1

dN
J 2�J + 1�

�Dq
J,M�J + 1,Mq��J + 1,Mr��Dr

J,M�,

�42�

where q ,r� �+,−,z�, M+=M +1, M−=M −1, and Mz=M,

	N
J = �

J�=J

N/2

dN
J� =

N!

�N/2 − J�!�N/2 + J�!
, �43�

and

A+
J,M = ��J − M��J + M + 1� , �44a�

A−
J,M = ��J + M��J − M + 1� , �44b�

Az
J,M = M , �44c�

and

B+
J,M = ��J − M��J − M − 1� , �45a�

B−
J,M = − ��J + M��J + M − 1� , �45b�

Bz
J,M = ��J + M��J − M� , �45c�

and lastly

D+
J,M = − ��J + M + 1��J + M + 2� , �46a�

D−
J,M = ��J − M + 1��J − M + 2� , �46b�

Dz
J,M = ��J + M + 1��J − M + 1� . �46c�

Note that 	N
J and dN

J are zero if J is negative or J=N /2,
ensuring that only valid density matrix elements are in-
volved.

In the following sections, we prove Identity 1 inductively.
The motivation for the inductive proof comes from the
simple recursive structure of adding spin-1 /2 particles. As
seen in Fig. 1, the dN

J irreps that correspond to a total spin-J
particle composed of N spin-1 /2 particles can be split into
two groups, depending on how angular momentum was
added to reach them. By expressing the N-particle states in
terms of bipartite states of a single spin-1 /2 particle and a
spin-�N−1� particle, we can then evaluate the dynamics in-
dependently on either half by assuming that Identity 1 holds.
Returning the resulting state to the N-particle basis should
then confirm the identity. By inspection, the base case of N
=1 holds, as the Aq

J,M terms reduce to the single spin-1 /2
matrix elements. We now proceed to the inductive case.

A. Recursive state structure

In order to apply the inductive hypothesis, we need to
express an N-particle state in terms of �N−1�-particle states.
This recursive structure is best seen by examining Fig. 1,
which illustrates the branching structure for adding spin-1 /2
particles. For example, the threefold-degenerate N=4 spin-1

FIG. 1. Degeneracy structure from adding spin-1 /2 particles,
labeled as dN

J �J.
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irreps arise from two different spin additions—addition of a
single spin-1 /2 particle to the nondegenerate J= 3

2 , N=3 ir-
rep and addition to the twofold-degenerate J= 1

2 , N=3 irreps.
Since we are always adding a spin-1 /2 particle, the tree is at
most binary. This allows us to recursively decompose the
degenerate irreps for a given J in terms of adding a single
spin-1 /2 particle to the two related �N−1�-degenerate irreps.

Recall that for the collective states we defined effective
density matrix elements which group degenerate irreps �Eq.
�29��. In order to make the relationship between states of
different N clear, in this section we will add the index N to
all effective density matrix elements—�J ,M ,N��J ,M� ,N�.
Similarly, when the collective state is expressed in the irrep

basis, we will also use kets with the index N, i.e., �J ,M ,N , i�.
Here, the N and i indices indicate that the state is from the ith
degenerate total-spin-J irrep that comes from adding N
spin-1 /2 particles. So that we can leverage the binary
branching structure seen in Fig. 1, we also need to relate the
N-particle irrep states to the �N−1�-particle irrep states. Ac-
cordingly, we define �J ,M ; 1

2 ,J�
1
2 ,N−1, i1�, where the last

four entries indicate that the overall N-spin state can be
viewed as combining a single spin-1 /2 particle with a
spin-�J�

1
2 � particle. The spin-�J�

1
2 � particle is from the i1th

such irrep for N−1 spin-1 /2 particles. With these definitions,
we can now relate the N-particle states to the �N−1�-particle
states by explicitly tensoring out a single spin-1 /2 particle:

�J,M,N��J,M�,N� =
1

dN
J �

i=1

dN
J

�J,M,N,i��J,M�,N,i� �47�

=
1

dN
J �

i1=1

dN−1
J+1/2

J,M ;
1

2
,J +

1

2
,N − 1,i1��J,M�;

1

2
,J +

1

2
,N − 1,i1

+
1

dN
J �

i2=1

dN−1
J−1/2

J,M ;
1

2
,J −

1

2
,N − 1,i2��J,M�;

1

2
,J −

1

2
,N − 1,i2 �48�

=
dN−1

J+1/2

dN
J �

m1,m1�

J,MCJ+1/2,M−m1

1/2,m1 1

2
,m1�� 1

2
,m1�

� J +
1

2
,M − m1,N − 1��J +

1

2
,M� − m1�,N − 1J,M�C

J+1/2,M�−m1�
1/2,m1�

+
dn−1

J−1/2

dN
J �

m2,m2�

J,MCJ−1/2,M−m2

1/2,m2 1

2
,m2�� 1

2
,m2�

� J −
1

2
,M − m2,N − 1��J −

1

2
,M� − m2�,N − 1J,M�C

J−1/2,M�−m2�
1/2,m2� �49�

with Clebsch-Gordan coefficients J,MCj2,m2

j1,m1 = �J ,M ; j1 , j2 � j1 ,m1 ; j2 ,m2� and the mi ,mi� sums over single-spin projection values

�
1
2 . In reaching Eq. �50�, we made use of the definition of the effective density matrix element for N−1 spins given in Eq.

�29�. With this recursive state definition, we can now start the inductive step of the proof.

B. Application of the inductive hypothesis

In order to prove Identity 1, we must be able to apply the inductive hypothesis to Eq. �42�. Ignoring the Clesbsch-Gordan
coefficients for the moment, consider an arbitrary term from Eq. �52�. The dynamics are distributed as

�
n=1

N

�q
�n�	1

2
,mi�� 1

2
,mi� � J �

1

2
,M − mi,N − 1��J �

1

2
,M − mi�,N − 1
�r

�n�

= gqr	1

2
,mi,mi�,1
 � J �

1

2
,M − mi,N − 1��J �

1

2
,M − mi�,N − 1

+ 1

2
,mi�� 1

2
,mi� � gqr	J �

1

2
,M − mi,M� − mi�,N − 1
 . �50�

By extension, all terms in Eq. �50� split the dynamics in this manner, which allows us to apply the inductive hypothesis to
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evaluate gqr�
1
2 ,mi ,mi� ,1� and gqr�J�

1
2 ,M −mi ,M�−mi� ,N−1�. This means evaluating the gqr terms according to the hypothesis

in Eq. �42�, after which we rewrite the bipartite states in the N-spin basis.
We have the gqr�

1
2 ,m1 ,m1� ,1� terms

1

dN
J �

i1=1

dN−1
J+1/2

�
J1=J

J+1

�
m1

	Aq
1/2,m1 J1,MqGJ+1/2,M−m1

1/2,m1 J,MCJ+1/2,M−m1

1/2,m1 J1,Mq;
1

2
,J +

1

2
,N − 1,i1�


� �
J1�=J

J+1

�
m1�

	�J1�,Mr�;
1

2
,J +

1

2
,N − 1,i1J,M�C

J+1/2,M�−m1�
1/2,m1� J1�,Mr�C

J+1/2,M�−m1�

1/2,m1r
�

Ar
1/2,m1�
 �51�

and the gqr�
1
2 ,m2 ,m2� ,1� terms

1

dN
J �

i1=1

dN−1
J+1/2

�
J2=J−1

J

�
m2

	Aq
1/2,m2 J2,MqGJ−1/2,M−m2

1/2,m2 J,MCJ−1/2,M−m2

1/2,m2 J2,Mq;
1

2
,J +

1

2
,N − 1,i2�


� �
J2�=J−1

J

�
m2�

	�J2�,Mr�;
1

2
,J +

1

2
,N − 1,i2J,M�C

J−1/2,M�−m2�
1/2,m2� J2�,Mr�C

J+1/2,M�−m2�

1/2,m2r
�

Ar
1/2,m1�
 . �52�

The gqr�J+ 1
2 ,M −m1 ,M�−m1� ,N−1� terms are

1

dN
J �2J + 1�

	1 +
	N−1

J+3/2

dN−1
J+1/2

2J + 2

J + 3/2
 �
i1=1

dN−1
J+1/2

�
J1=J

J+1

�
m1

	Aq
J+1/2,M−m1 J1,MqCJ+1/2,Mq−m1

1/2,m1 J,MCJ+1/2,M−m1

1/2,m1 J1,Mq;
1

2
,J +

1

2
,N − 1,i1�


� �
J1�=J

J+1

�
m1�

	�J1�,Mr�;
1

2
,J +

1

2
,N − 1,i1J,M�C

J+1/2,M�−m1�
1/2,m1� J1�,Mr�C

J+1/2,Mr�−m1�
1/2,m1� Ar

J+1/2,M�−m1�
 �53�

+
	N−1

J+1/2

dN
J dN−1

J−1/22�J + 1/2� �
i1=1

dN−1
J−1/2

�
J1=J−1

J

�
m1

	Bq
J+1/2,M−m1 J1,MqCJ−1/2,Mq−m1

1/2,m1 J,MCJ+1/2,M−m1

1/2,m1 J1,Mq;
1

2
,J −

1

2
,N − 1,i1�


� �
J1�=J−1

J

�
m1�

	�J1�,Mr�;
1

2
,J −

1

2
,N − 1,i1J1,M�C

J+1/2,M�−m1�
1/2,m1� J1�,Mr�C

J−1/2,Mr�−m1�
1/2,m1� Br

J+1/2,M�−m1�
 �54�

+
	N−1

J+3/2

dN
J dN−1

J+3/22�J + 3/2� �
i1=1

dN−1
J+3/2

�
J1=J+1

J+2

�
m1

	Dq
J+1/2,M−m1 J1,MqCJ+3/2,Mq−m1

1/2,m1 J,MCJ+1/2,M−m1

1/2,m1 J1,Mq;
1

2
,J +

3

2
,N − 1,i1�


� �
J1�=J+1

J+2

�
m1�

	�J1�,Mr�;
1

2
,J +

3

2
,N − 1,i1J1,M�C

J+1/2,M�−m1�
1/2,m1� J1�,Mr�C

J+3/2,Mr�−m1�
1/2,m1� Dr

J+1/2,M�−m1�
 �55�

and, lastly, the gqr�J− 1
2 ,M −m2 ,M�−m2� ,N−1� terms are

1

dN
J 2�J − 1/2�

	1 +
	N−1

J+1/2

dN−1
J−1/2

2J

J + 1/2
 �
i2=1

dN−1
J−1/2

�
J2=J−1

J

�
m2

	Aq
J−1/2,M−m2 J2,MqCJ−1/2,Mq−m2

1/2,m2 J,MCJ−1/2,M−m2

1/2,m2 J2,Mq;
1

2
,J −

1

2
,N − 1,i2�


� �
J2=J−1

J

�
m2�

	J2�,Mr�;
1

2
,J −

1

2
,N − 1,i2� J,M�C

J−1/2,M�−m2�
1/2,m2� J2�,Mr�C

J−1/2,Mr�−m2�
1/2,m2� Ar

J−1/2,M�−m2�
 �56�

+
	N−1

J−1/2

dN
J dN−1

J−3/22�J − 1/2� �
i2=1

dN−1
J−3/2

�
J2=J−2

J−1

�
m2

	Bq
J−1/2,M−m2 J2,MqCJ−3/2,Mq−m2

1/2,m2 J,MCJ−1/2,M−m2

1/2,m2 J2,Mq;
1

2
,J −

3

2
,N − 1,i2�


� �
J2=J−2

J−1

�
m2�

	J2�,Mr�;
1

2
,J −

3

2
,N − 1,i2� J,M�C

J−1/2,M�−m2�
1/2,m2� J2�,Mr�C

J−3/2,Mr�−m2�
1/2,m2� Br

J−1/2,M�−m2�
 �57�

COLLECTIVE PROCESSES OF AN ENSEMBLE OF SPIN-… PHYSICAL REVIEW A 78, 052101 �2008�

052101-7



	N−1
J+1/2

dN
J dN−1

J+1/2�2J + 1� �
i2=1

dN−1
J+1/2

�
J2=J

J+1

�
m2

	Dq
J−1/2,M−m2 J2,MqCJ+1/2,Mq−m2

1/2,m2 J,MCJ−1/2,M−m2

1/2,m2 J2,Mq;
1

2
,J +

1

2
,N − 1,i2�


� �
J2�=J

J+1

�
m2�

	J2�,Mr�;
1

2
,J +

1

2
,N − 1,i2� J,M�C

J−1/2,M�−m2�
1/2,m2� J2�,Mr�C

J+1/2,Mr�−m2�
1/2,m2� Dr

J−1/2,M−m2�
 . �58�

C. Evaluation of the sums

We are now tasked with showing that the terms �52�–�59� sum to gqr�J ,M ,M� ,N� as written in Eq. �42�. Before doing so,
we observe that the Ji ,mi and Ji� ,mi� sums factor in all the equations above. Moreover, if one replaces primed quantities with
unprimed ones, the Clebsch-Gordan and A ,B ,D coefficients of the kets in a given Ji ,mi sum are identical to those of the bras
in the related Ji� ,mi� sum. Therefore, we focus on simplifying the unprimed sums and then apply those results to the primed
sums in order to simplify Eqs. �52�–�59�. In the Appendix, we explicitly calculate two representative sums from these
equations. The calculations involve manipulating products of Clebsch-Gordan and A ,B ,D coefficients. Although tedious, the
interested and pertinacious reader should have no trouble evaluating them for all relevant sums, finding in particular that the
J�2 terms vanish. We forego detailing all those manipulations here and simply use the results in both the primed and
unprimed terms of the equations above, which then simplify Eq. �52� to

1

dN
J �2J + 2�2 �

i1=1

dN−1
J+1/2

Dq
J,MJ + 1,Mq;

1

2
,J +

1

2
,N − 1,i1��J + 1,Mr�;

1

2
,J +

1

2
,N − 1,i1Dr

J,M�

− Aq
J,MJ,Mq;

1

2
,J +

1

2
,N − 1,i1��J + 1,Mr�;

1

2
,J +

1

2
,N − 1,i1Dr

J,M�

− Dq
J,MJ + 1,Mq;

1

2
,J +

1

2
,N − 1,i1��J,Mr�;

1

2
,J +

1

2
,N − 1,i1Ar

J,M�

+ Aq
J,MJ,Mq;

1

2
,J +

1

2
,N − 1,i1��J,Mr�;

1

2
,J +

1

2
,N − 1,i1Ar

J,M�, �59�

Eq. �53� to

1

dN
J 4J2 �

i1=1

dN−1
J−1/2

Bq
J,MJ − 1,Mq;

1

2
,J −

1

2
;N − 1,i1��J − 1,Mr�;

1

2
,J −

1

2
;N − 1,i1Br

J,M�

+ Aq
J,MJ,Mq;

1

2
,J −

1

2
;N − 1,i1��J − 1,Mr�;

1

2
,J −

1

2
;N − 1,i1Br

J,M�

+ Bq
J,MJ − 1,Mq;

1

2
,J −

1

2
;N − 1,i1��J,Mr�;

1

2
,J −

1

2
;N − 1,i1Ar

J,M�

+ Aq
J,MJ,Mq;

1

2
,J −

1

2
;N − 1,i1��J,Mr�;

1

2
,J −

1

2
;N − 1,i1Ar

J,M�, �60�

Eq. �54� to

1

dN
J �2J + 1�

	1 +
	N−1

J+3/2

dN−1
J+1/2

2J + 2

J + 3/2
 �
i1=1

dN−1
J+1/2

1

�2J + 2�2Dq
J,MJ + 1,Mq;

1

2
,J +

1

2
,N − 1,i1��J + 1,Mr�;

1

2
,J +

1

2
,N − 1,i1Dr

J,M�

−
2�J + 3/2�
�2J + 2�2 Aq

J,MJ,Mq;
1

2
,J +

1

2
,N − 1,i1��J + 1,Mr�;

1

2
,J +

1

2
,N − 1,i1Dr

J,M�

−
2�J + 3/2�
�2J + 2�2 Dq

J,MJ + 1,Mq;
1

2
,J +

1

2
,N − 1,i1��J,Mr�;

1

2
,J +

1

2
,N − 1,i1Ar

J,M�

+
�J + 3/2�2

�J + 1�2 Aq
J,MJ,Mq;

1

2
,J +

1

2
,N − 1,i1��J,Mr�;

1

2
,J +

1

2
,N − 1,i1Ar

J,M�, �61�

Eq. �55� to

BRADLEY A. CHASE AND J. M. GEREMIA PHYSICAL REVIEW A 78, 052101 �2008�

052101-8



	N−1
J+1/2

dN
J dN−1

J−1/22J�J + 1/2� �
i1=1

dN−1
J−1/2

�J + 1�Bq
J,MJ − 1,Mq;

1

2
,J −

1

2
;N − 1,i1��J − 1,Mr�;

1

2
,J −

1

2
;N − 1,i1Br

J,M�

+ Aq
J,MJ,Mq;

1

2
,J −

1

2
;N − 1,i1��J − 1,Mr�;

1

2
,J −

1

2
;N − 1,i1Br

J,M�

+ Bq
J,MJ − 1,Mq;

1

2
,J −

1

2
;N − 1,i1��J,Mr�;

1

2
,J −

1

2
;N − 1,i1Ar

J,M�

+
1

J + 1
Aq

J,MJ,Mq;
1

2
,J −

1

2
;N − 1,i1��J,Mr�;

1

2
,J −

1

2
;N − 1,i1Ar

J,M�, �62�

Eq. �56� to �since J+2 terms vanish�

	N
J+1

dN
J 2�J + 1�

1

dN
J+1 �

i1=1

dN−1
J+3/2

Dq
J,MJ + 1,Mq;

1

2
,J +

3

2
,N − 1,i1��J + 1,Mr�;

1

2
,J +

3

2
,N − 1,i1Dr

J,M�, �63�

Eq. �57� to

1

dN
J 4J22�J − 1/2�

	1 +
	N−1

J+1/2

dN−1
J−1/2

2J

J + 1/2
 �
i1=1

dN−1
J−1/2

Bq
J,MJ − 1,Mq;

1

2
,J −

1

2
;N − 1,i1��J − 1,Mr�;

1

2
,J −

1

2
;N − 1,i1Br

J,M�

− 2	J −
1

2

Aq

J,MJ,Mq;
1

2
,J −

1

2
;N − 1,i1��J − 1,Mr�;

1

2
,J −

1

2
;N − 1,i1Br

J,M�

− 2	J −
1

2

Bq

J,MJ − 1,Mq;
1

2
,J −

1

2
;N − 1,i1��J,Mr�;

1

2
,J −

1

2
;N − 1,i1Ar

J,M�

+ 4	J −
1

2

2

Aq
J,MJ,Mq;

1

2
,J −

1

2
;N − 1,i1��J,Mr�;

1

2
,J −

1

2
;N − 1,i1Ar

J,M�, �64�

Eq. �58� to �since J−2 terms vanish�

	N
J

dN
J 2J

1

dN
J−1 �

i1=1

dN−1
J−3/2

Bq
J,MJ − 1,Mq;

1

2
,J −

3

2
,N − 1,i1��J − 1,Mr�;

1

2
,J −

3

2
,N − 1,i1Br

J,M�, �65�

and Eq. �59� to

	N−1
J+1/2

dN
J dN−1

J+1/2�2J + 1� �
i1=1

dN−1
j+1/2

J

J + 1
Dq

J,MJ + 1,Mq;
1

2
,J +

1

2
,N − 1,i1��J + 1,Mr�;

1

2
,J +

1

2
,N − 1,i1Dr

J,M�

+
1

J + 1
Aq

J,MJ,Mq;
1

2
,J +

1

2
,N − 1,i1��J + 1,Mr�;

1

2
,J +

1

2
,N − 1,i1Dr

J,M�

+
1

J + 1
Dq

J,MJ + 1,Mq;
1

2
,J +

1

2
,N − 1,i1��J,Mr�;

1

2
,J +

1

2
,N − 1,i1Ar

J,M�

+
1

J�J + 1�
Aq

J,MJ,Mq;
1

2
,J +

1

2
,N − 1,i1��J,Mr�;

1

2
,J +

1

2
,N − 1,i1Ar

J,M�. �66�

D. Recovery of gqr(J ,M ,M� ,N)

We now combine the equations from the previous subsection to recover Identity 1 in Eq. �42�. Given that density operators
in the collective state representation lack coherences between different J irreps, we expect �J�1��J� and �J��J�1� terms to
vanish. Since both the �J��J�1� and �J�1��J� terms have the same coefficients, we need only explicitly deal with one of the
two. Starting with �J+1��J� coefficients from Eqs. �60�, �62�, and �67�, we find
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1

dN
J �−

1

�2J + 2�2 −
�2J + 3�

�2J + 1��2J + 2�2	1 +
	N−1

J+3/2

dN−1
J+1/2

2J + 2

J + 3/2
 +
1

�J + 1��2J + 1�
	N−1

J+1/2

dN−1
J+1/2�

=
1

dN
J �2J + 2�2	− 1 −

�N + 1�
2J + 1

+
N + 2J + 2

2J + 1

 �67�

=0. �68�

Similarly, for �J−1��J� coefficients in Eqs. �61�, �63�, and �65�, we have

1

dN
J 4J2�1 +

	N−1
J+1/22J

dN−1
J−1/2�J + 1/2�

− 	1 +
	N−1

J+1/2

dN−1
J−1/2

2J

J + 1/2
� = 0. �69�

Turning to the J+1 terms from Eqs. �60�, �62�, and �67�, the coefficients sum to

1

dN
J � 1

�2J + 2�2 +
1

�2J + 1��2J + 2�2	1 +
	N−1

J+3/2

dN−1
J+1/2

2J + 2

J + 3/2
 +
J

�J + 1��2J + 1�
	N−1

J+1/2

dN−1
J+1/2�

=
1

dN
J �2J + 2�2	1 +

N + 1

�2J + 3��2J + 1�
+

J�N + 2J + 2�
2J + 1


 �70�

=
1

dN
J

2J + N + 4

8J2 + 20J + 12
=

1

dN
J 2�J + 1�

	N
J+1

dN
J+1 , �71�

which gives overall

	N
J+1

dN
J 2�J + 1�

1

dN
J+1 �

i1=1

dN
J+1/2

Dq
J,MJ + 1,Mq;

1

2
,J +

1

2
,N − 1,i1��J + 1,Mr�;

1

2
,J +

1

2
,N − 1,i1Dr

J,M�. �72�

The J terms from Eqs. �60�, �62�, and �67� have coefficients

1

dN
J � 1

�2J + 2�2 +
�2J + 3�2

�2J + 1��2J + 2�2	1 +
	N−1

J+3/2

dN−1
J+1/2

2J + 2

J + 3/2
 +
1

J�J + 1��2J + 1�
	N−1

J+1/2

dN−1
J+1/2�

=
1

dN
J �2J + 2�2	1 +

�N + 1��2J + 3�
2J + 1

+
N + 2J + 2

J�2J + 1� 
 �73�

=
1

dN
J 2J

	1 +
	N

J+1

dN
J

2J + 1

J + 1

 , �74�

which gives overall

1

2J
	1 +

	N
J+1

dN
J

2J + 1

J + 1

 1

dN
J �

i2=1

dN−1
J+1/2

Aq
J,MJ,Mq;

1

2
,J +

1

2
,N − 1,i1� � �J,Mr�;

1

2
,J +

1

2
,N − 1,i1Ar

J,M�. �75�

Similarly, the J terms from Eqs. �61�, �63�, and �65� have coefficients

1

dN
J 4J2�1 +

	N−1
J+1/22J

dN−1
J−1/2�J + 1/2��J + 1�

+ 2	J −
1

2

	1 +

	N−1
J+1/2

dN−1
J−1/2

2J

J + 1/2
�
=

1

dN
J 4J2�2J +

N − 2J

2J + 1
	 1

J + 1
+ 2J − 1
� =

1

dN
J 2J

	1 +
	N

J+1

dN
J

2J + 1

J + 1

 , �76�

which gives

1

2J
	1 +

	N
J+1

dN
J

2J + 1

J + 1

 1

dN
J �

i1=1

dN−1
J−1/2

Aq
J,MJ,Mq;

1

2
,J −

1

2
,N − 1,i1��J,Mr�;

1

2
,J −

1

2
,N − 1,i1Ar

J,M�. �77�

And finally, the J−1 sums from Eqs. �61�, �63�, and �65� have coefficients

BRADLEY A. CHASE AND J. M. GEREMIA PHYSICAL REVIEW A 78, 052101 �2008�

052101-10



1

dN
J 4J2�1 +

	N−1
J+1/22J�J + 1�

dN−1
J−1/2�J + 1/2�

+
1

2�J − 1/2�	1 +
	N−1

J+1/2

dN−1
J−1/2

2J

J + 1/2
�
=

1

dN
J 4J2�1 +

1

2J − 1
+

N − 2J

2J + 1
	J + 1 +

1

2J − 1

� =

1

dN
J 2J

	N
J

dN
J−1 , �78�

which gives

	N
J

dN
J 2J

1

dN
J−1 �

i1=1

dN−1
J−1/2

Bq
J,MJ − 1,Mq;

1

2
,J −

1

2
,N − 1,i1� � �J − 1,Mr�;

1

2
,J −

1

2
,N − 1,i1Br

J,M�. �79�

From the definition of �J ,M ,N��J ,M� ,N� given in Eq.
�29�, we see that Eqs. �75� and �77� correspond to the
�J ,M ,N��J ,M� ,N� terms in Eq. �42�. A similar combination
of Eqs. �66� and �80� corresponds to the J−1 term and the
combination of Eqs. �64� and �73� corresponds to the J term.
We have thus shown inductively that Identity 1 holds. �

VI. EXAMPLES

As discussed in the Introduction, realistic decoherence
models for an ensemble of spin particles are often described
most aptly by a symmetric sum over local channels. Con-
sider, for example, the open system dynamics governed by
the master equation

d�̂�t�
dt

= − i�Ĥ, �̂�t�� + �L�ŝ��̂�t� , �80�

where Ĥ �and any measurements performed� are described
by collective operators, but the decoherence involves the
symmetric Linblad superoperator L�ŝ� of the form in Eq.

�37�. As this decoherence model does not preserve symmet-
ric states, it has been common practice to consider instead

the associated collective process L�Ŝ� given in Eq. �34� with

Ŝ=�nŝ�n�.
To illustrate the difference between symmetric and collec-

tive decoherence models, we considered the open system dy-
namics of two representative problems. First, we compared
the dynamics generated by the symmetric-local L�ŝ� versus

collective L�Ŝ� Linblad master equations applied to an initial
superposition �cat� state ���0��= ��N /2, +N /2�+ �N /2,
−N /2�� /�2. Figures 2�a� and 2�b� depict the fidelity F�t�
= ���0���̂�t����0� evolved under Eq. �80� �with Ĥ=0� for two
different types of decoherence channel: Figs. 2�a1� and 2�a2�
compare the collective versus symmetric master equations

with ŝ=�−
ˆ for N=10 and 100 particles, respectively; and

Figs. 2�b1� and 2�b2� make a similar comparison for ŝ= �̂z.
The examples we considered �including some not reported
here� suggest that symmetric local decoherence models can
generate dynamics that are appreciably different from their
collective analogs. This is perhaps not too surprising: for an
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initially symmetric state, collective decoherence models
L�Ŝ� confine the dynamics to only maximum-J irreps; sym-
metric local models L�ŝ� do not necessarily preserve the ir-
rep decomposition of the initial state. Figure 2�c� depicts the
norm of each total-J irrep block of the density operator NJ

=tr�P̂J�̂�t�� as a function of time for L��̂−� �P̂J
=�M�J ,M��J ,M��. The observation that small-J irreps are
only minimally populated suggests that further model reduc-
tion by truncating the Hilbert space to only the largest-J
blocks could be beneficial.

As a second example, we compared symmetric local ver-
sus collective decoherence models applied to dynamically
generated spin squeezing under the countertwisting Hamil-

tonian Ĥ=−i��Ĵ+
2 − Ĵ−

2� �9�. We performed simulations by
time-evolving Eq. �80� from the initial spin-coherent state

�N /2,N /2� for N=100 with L��̂−� and L�Ĵ−�. Figure 3 de-
picts the time-dependent squeezing parameter �2

=N��Ĵy
2� / �Ĵz�2, each for �=� /5,� ,5�. Under the condi-

tions we considered, symmetric local decoherence was evi-
dently less destructive to the squeezing dynamics than col-
lective models. As observed for the cat state dynamics, to a
large extent the main effect of symmetric local decoherence
is leakage from the maximum-J irrep. But since the driving

Hamiltonian Ĥ involves only collective spin operators, the
coherent dynamics decouple for different total J: the popula-
tion in each irrep block then undergoes its own squeezing,
evidently making the dynamics more resistant to symmetric
local decoherence than collective processes.

VII. CONCLUSION

We have presented an exact formula for efficiently ex-
pressing symmetric processes of an ensemble of spin-1 /2
particles. The efficiency is achieved by generalizing the no-
tion of collective spin states to be any such state which does
not distinguish degenerate irreps. For a collection of N
spin-1 /2 particles, the effective Hilbert space dimension
grows as N2, a drastic reduction from the full Hilbert space
scaling of 2N. The collective representation is used in Iden-
tity 1, which gives a closed form expression for evaluating
noncollective terms from symmetric Lindblad operators.
Simulations confirm that symmetric local decoherence mod-
els can be drastically different from collective decoherence
models. Unfortunately, due to the complicated structure of
addition of spin-�J�

1
2 � particles �14�, our results do not ap-

pear to generalize. Nonetheless, we believe that this ap-
proach will become a useful tool in analyzing collective spin
phenomena and, in particular, accurately considering the role
of decoherence in collective spin experiments.
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APPENDIX: EXPLICIT SIMPLIFICATION OF TYPICAL
SUMS

In Sec. V C, we simplify the sums in Eqs. �52�–�59� but
do not go through the detailed algebra. The work involves
manipulating products of Clebsch-Gordan and A ,B ,D coef-
ficients. In this appendix, we explicitly calculate two repre-
sentative sums from this set and invite the reader to calculate
the remainder in a similar fashion.

First, consider the sums over J1 and m1 in Eq. �52�, which
are representative of sums in Eqs. �52� and �53�. For J1=J
+1,

Aq
1/2,1/2 J+1,MqCJ+1/2,M−1/2

1/2,1/2q J,MCJ+1/2,M−1/2
1/2,1/2 + Aq

1/2,−1/2 J+1,MqCJ+1/2,M+1/2
1/2,−1/2q J,MCJ+1/2,M+1/2

1/2,−1/2

=
1

2�J + 1�
� �− ��J + M + 2��J + M + 1� , q = + ,

��J − M + 2��J − M + 1� , q = − ,

��J − M + 1��J + M + 1� , q = z ,
� �A1�
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FIG. 3. �Color online� Time evolution of the squeezing param-

eter �2 for a spin ensemble driven by Ĥ=−i��Ĵ+
2 − Ĵ−

2� subject to

L��̂−� �dotted lines� and L�Ĵ−� �dashed lines� with relative decoher-
ence rates �=� /5,� ,5�. For comparison, the solid line denotes
decoherence-free squeezing.
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=
1

2J + 2
Dq

J,M , �A2�

and for J1=J

Aq
1/2,1/2 J,MqCJ+1/2,M−1/2

1/2,1/2q J,MCJ+1/2,M−1/2
1/2,1/2 + Aq

1/2,−1/2 J,MqCJ+1/2,M+1/2
1/2,− 1/2q J,MCJ+1/2,M+1/2

1/2,−1/2

= −
1

2�J + 1�
� �

��J − M��J + M + 1� , q = + ,

��J + M��J − M + 1� , q = − ,

M , q = z ,
� �A3�

=−
1

2J + 2
Aq

J,M , �A4�

where A+
1/2,1/2=A−

1/2,−1/2=0, A+
1/2,−1/2=A−

1/2,1/2=1, and Az
1/2,�1/2= �1 /2.

Similarly, consider the sums over J1 and m1 in Eq. �55�, which is representative of Eqs. �55�, �56�, and �56�–�59�. For J1
=J−1, we have

Bq
J+1/2,M−1/2 J−1,MqCJ−1/2,Mq−1/2

1/2,1/2 J,MCJ+1/2,M−1/2
1/2,1/2 + Bq

J+1/2,M+1/2 J−1,MqCJ−1/2,Mq+1/2
1/2,−1/2 J,MCJ+1/2,M+1/2

1/2,−1/2

=��J − Mq��J − M + 1�
4J�J + 1�

Bq
J+1/2,M−1/2 � 	1 +�J + Mq

J − Mq

�J + M + 1

J − M + 1

Bq
J+1/2,M+1/2

Bq
J+1/2,M−1/2


=��J − Mq��J − M + 1�
4J�J + 1�

Bq
J+1/2,M−1/2 2�J + 1�

J − M + 1
=�J + 1

J
� �

��J − M��J − M − 1� , q = + ,

− ��J + M��J + M − 1� , q = − ,

��J + M��J − M� , q = z ,
� =�J + 1

J
Bq

J,M .

�A5�

Similarly, for J1=J, we have

Bq
J+1/2,M−1/2 J,MqCJ−1/2,Mq−1/2

1/2,1/2 J,MCJ+1/2,M−1/2
1/2,1/2 + BqJ +

1

2
,M +

1

2
J,MqCJ−1/2,Mq+1/2

1/2,−1/2 J,MCJ+1/2,M+1/2
1/2,−1/2

=��J + Mq��J − M + 1�
4J�J + 1�

Bq
J+1/2,M−1/2 � 	1 −�J − Mq

J + Mq

�J + M + 1

J − M + 1

Bq
J+1/2,M+1/2

Bq
J+1/2,M−1/2


=��J + Mq��J − M + 1�
4J�J + 1�

Bq
J+1/2,M−1/2 � 2 ��

1

J − M + 1
, q = + ,

−
1

J + M + 1
, q = − ,

M

�J + M��J − M + 1�
, q = z ,

�
=� 1

J�J + 1�
� �

��J − M��J + M + 1� , q = + ,

��J + M��J − M + 1� , q = − ,

M , q = z ,
� =� 1

J�J + 1�
Aq

J,M . �A6�
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