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Nonequilibrium quantum rings emit circular-polarized subterahertz radiation with a polarization degree
controllable on nano- to picosecond time scales. This we conclude using a theory developed here for the
time-dependent detection of the circular polarization of polychromatic radiations, valid for time scales com-
parable to the reciprocal of characteristic emission frequencies. The theory is applied to driven quantum rings
whereby the influence of radiative and nonradiative processes on the properties of the emitted light is
incorporated.
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Kekulé’s work on the benzene molecule �1� initiated a
continuing fascination with quantum rings. The Aharonov-
Bohm effect, persistent charge, and spin currents are just but
a few examples of the intriguing phenomena naturally
emerging in these structures �2�. Much effort is currently
devoted to light-driven molecular and nano- and mesoscopic
rings �3–10�, a development fueled by the spectacular ad-
vance in the controlled fabrication of these materials �11–16�
paralleled by equally impressive progress in laser technol-
ogy. Light irradiation may trigger nonequilibrium charge po-
larization and ring currents with associated ultrafast electric
and magnetic pulse emission �3,5–10,17�, which can be har-
nessed for applications, e.g., as a polarized light-pulse source
emitting in a wide range of frequencies. In view of these
prospects a thorough understanding of the time structure, po-
larization, and decay channels of the emitted light is manda-
tory. The aim of the current work is to show that polarization
properties of the emitted radiation, especially the degree of
the circular polarization, can be controlled on ultrafast time
scales. For that, we developed a theory for the ultrafast, time-
dependent detection of light polarization properties.

The radiation of electrons moving on a circular orbit was
considered as early as 1907 by Schott in an attempt to ex-
plain discrete atomic spectra using classical electrodynamics
�18�. His results, although not resolving the original problem,
were reproduced and became important much later �19,20� in
the context of synchrotron radiation; the polarization charac-
teristics of the angular-resolved spectrum were analyzed
�21�. Here we generalize these results to a time-dependent
case using the theory of a time-dependent spectrum �22,23�
and apply them to the emission from driven quantum rings
that can serve as miniature light sources with a polarization
switchable within picoseconds. Such a possibility to shape
the polarization on ultrafast time scales, which are compa-
rable to the reciprocal of characteristic emission frequencies,
opens new perspectives for applications with respect to ex-
isting emitters of �linear or circular� polarized light based on
quantum nanostructures �24�. The geometry of a quantum
ring allows us to achieve both almost purely circular and

linear polarized emission. In general, the time dependence of
Stokes parameters can be shaped by appropriate driving
fields.

For a driven quantum ring �with radius r0� we inspect the
emitted far-field radiation at a point R, R�r0. The far-field
intensity per solid angle �= �� ,�� follows from dI

d�

=
��

4�c3 ��Ê�R , t���2 �we use Gauss units�, where � is the me-

dium dielectric constant, c is the light speed, Ê is the electric
field operator, and �¯� denotes the expectation value. Ex-
tending the theory of a time-dependent spectrum �22,23� to
the polarized case we find the detected time t and frequency
� dependence of the intensity I�� ,� , t� to be

d2I	

d� d�
=

��

4�c3 ��e	 · Ê†�d�− �,t��e
	
* · Ê�d��,t�� . �1�

Here �f�d�� , t�=	−


 f�t��G�t�− td− t�ei�t�dt�, G�t� is a detector

function, and td is a delay time. In terms of the ring’s non-
equilibrium electric dipole ��t�, magnetic dipole M�t�, and
the quadrupole moment D�t� �we neglect higher terms� the
electric-field coherent part of the emitted light is E�R , t�
= n̂� �n̂��̈�t− t0��+��
n̂�M̈�t− t0�+ 1

6c n̂� �n̂�D�t− t0���,
with t0=R /c and unit vector n̂ �R. We use G�t�
= � 2

� �1/4 1
�T

e−t2/T2
, T is the local oscillator-pulse duration

�23�, and td= t0. Below the following polarization vectors are
used: e� is in the plane of the ring and perpendicular to n̂, e�

is perpendicular to e� and n̂, e�45°= 1
�2

�e��e��, and e�

= 1
�2

�e�� ie��. Our aim is to control the polarization proper-
ties of the emitted light by a dynamical control of the rotat-
ing charge polarization of the ring, using half-cycle pulses
�HCPs� �25,26� or short-laser pulses. Compared to other
methods for an ultrafast control of optical fields �27�, our
emitted radiation is in the subterahertz range and is control-
lable within times comparable to the charge oscillation pe-
riod in the ring �cf. below�. The light polarization is classi-
fied by the Stokes parameters S0, S1, S2, and S3. S0 is the
intensity, and S1, S2, and S3 quantify, respectively, linearly
and circularly polarized light �P=�S1

2+S2
2+S3

2 /S0 is the de-
gree of light polarization�. In term of �1�, Sj read
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S1�2,3���,t;�,�� =
d2I��45°,+�

d� d�
−

d2I��−45°,−�

d� d�
. �2�

For coherent electric-dipole emission we find if n̂ is perpen-
dicular to the ring, i.e., �=0 �Sj

�Sj��=0��,

S3
���,t� =

��

4�c32 Im���̈y�d�− �,t���̈x�d��,t��; �3�

otherwise, S3�� , t ;� ,��=S3
��� , t�cos �, whereas

S0
��� , t�=

��

4�c3 ����̈x�d�� , t��2+ ���̈y�d�� , t��2�, and the
�-averaged S0�� , t ,� ,�� is given by S0

��� , t��1+cos2 �� /2.

Further, we introduce S̄j�t ;� ,��=2	0

 d�

2�Sj�� , t ;� ,��,
j=0,1 ,2 ,3 . S̄0�t ,� ,�� is a time-dependent power per �.
The frequency-integrated circular-polarization degree is

Pcirc�t ;� ,��= S̄3�t ;� ,�� / S̄0�t ;� ,��.
A realization of a “quantum nanosynchrotron” is provided

by a spin-degenerate, thin, isolated �without contacts� two-
dimensional quantum ring with width d �d�r0� containing N
carriers. We assume that the ring lies in the xy plane. The
single-particle energies �lm and wave functions �lm�r� are
labeled by the radial quantum number l and the angular
quantum number m. Thereby the angular part of �lm�r� is
given by 1

�2�
eim� and the radial parts are wave functions of a

quantum well with infinite barriers �8�. For clarity we as-
sume d is small enough such that only the lowest radial
channel �l=1� is populated.1 In the basis �lm the field opera-

tor reads �̂�r , t�=�mâm�t��1,m�r� and the density matrix is
given by �mm��t�= �âm

† �t�âm��t�� The dipole moment �
=Tr�er�� �e is the electron charge� has the components �x
=2er0�mRe��mm−1� and �y =2er0�m Im��mm−1�. The system
time scale is given by the ballistic time �F=2�r0 /vF, where
vF is the Fermi velocity �typically �F is tens of picoseconds�.
To trigger and control the carrier dynamics, we utilize asym-
metric monocycle pulses, so-called HCPs �25,26�. For HCPs
the pulse duration is chosen as �d��F. Application of the
pulse at t=0 gives the system a kick, creating a time-
dependent dipole moment � of the ring �5,8�. Theoretically,
the parameter 	 is decisive; 	=r0p /�, p=−e	0

�dEp�t�dt, and
Ep�t� is the electric field strength of the pulse. For a pulse
linearly polarized along the x axis and 	�1, we find �x�t�
�−	er0�m�fm−1

0 − fm
0 �sin���m−�m−1�t /��, where fm

0 =�mm�t
�0� is the equilibrium distribution at t�0. Then at t=�F /4
we apply a second HCP along the y axis, creating a rotating
dipole �and a charge current �7��.

Alternatively, short circular-polarized laser pulses �CPPs�
with a frequency centered around �=2� /�F create a rotating
dipole in the ring. Such pulses or their sequences were sug-
gested previously for exciting rotating polarization and cur-
rents in atoms �28� and molecular rings �10,17,29�, as well as
in nanosize quantum rings and dots �9,30�. For a CPP we can
define 	�= 1

2r0p� /�, with p�=−e	0
�dSp�t�dt, where Sp�t� is the

envelope of the electric field of the CPP. We have calculated
that application of a CPP creates practically the same rotating
dipole moment as in the case of the two

�F

4 -delayed perpen-

dicular HCPs with 	=	� for not too strong �	�1� pulses.2

HCPs are insofar favorable as there is no need to fine-tune
the pulse frequency �as for CPPs�; also, for disordered or
deformed rings it is advantageous to use HCPs. Having cre-
ated radiating dipoles, it is essential for application to under-
stand how they decay.

Radiative damping results from the back-action of the
emitted radiation on the nonequilibrium carriers. Energy loss
due to emission causes relaxation of the density matrix.
Starting from the light-matter interaction Hamiltonian ĤD=
−	d3r�̂†�r , t�er · Ê�r , t��̂�r , t� the coupled equations for the
dynamics of the field and density operators attain a tractable
form if we allow for classical �coherent� electric fields only
�semiclassical approximation�. Applying the adiabatic �Mar-
kov� approximation �31,32� we derived the low-temperature

decay rate of the dipole moment as �= 1
6
��

e2�F
2

m*c3
N, where

�F=2� /�F is the Fermi angular velocity and m* is the car-
rier effective mass. For a semiconductor-based �n-GaAs�
ring we have m*=0.067m0 and �=12.5; other typical values
are r0=1.35 �m and N=400, meaning that �=1.5�102 s−1.
For r0=0.3 �m and N=160 we find �=0.4�104 s−1. Con-
sidering a planar array of Nr identical rings lying in the xy
plane with the array dimension being smaller than the char-
acteristic wavelength of the radiation, the radiative damping

rate is found to be ��= 1
6
��

e2�F
2

m*c3
NNr. In practice, rings have a

finite spread r0 of the ring radius distribution �r0�r0�.
After a time lapse of �spr=

2�
�F

r0

r0
the electron dynamics in

different rings is out of phase and the intensity of coherent
radiation vanishes. Hence, the value of �� is relevant only at
short times after the array excitation; otherwise, it provides
an upper bound.

To account for the spontaneous emission contribution to
the radiative damping we study the correlations between the
field and density operators �32� by applying the Hartree-Fock
approximation �âm1

† âm2

† âm3
âm4

�=�m1m4
�m2m3

−�m1m3
�m2m4

and
neglecting correlations involving two photon operators. The
adiabatic approximation for the field-density correlations
leads to additional contributions to the decay of the nondi-
agonal density matrix components �mm� due to the spontane-

ous emission; namely, �mm�
sp =��

�m−�m�
��F

�3�2+ fm+1
0 + fm�+1

0

− fm−1
0 − fm�−1

0 �. Note that the effective spontaneous decoher-
ence rate �decay rate of the dipole moment� does not exceed
2� for low temperatures.

For weak excitation �	�1� optical phonons are not in-
volved due to their high energy. Relaxation of the excited
population is, however, caused by scattering from longitudi-
nal acoustic phonons �the corresponding electron-phonon in-
teraction Hamiltonian is described, e.g., in Ref. �8� and is
similar to the light-matter interaction Hamiltonian�. Proceed-
ing as for the radiative damping and assuming the Debye
model for the phonon dispersion, we derived the decay rate
of the dipole moment due to the emission of coherent pho-

1Theory is extendable to multiple radial channels as in �6�.

2Note that the number of cycles of a CPP is not too large �its
frequency distribution is not too narrow� so that all transitions be-
tween neighboring levels of the ring in the neighborhood of the
Fermi level can take place.
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non waves as �s= 1
�LA

F�
�Fd

cLA
� if �F��D, a condition valid for

our rings. Here �D is the Debye frequency, cLA is the LA
velocity of sound, the function F�y� for our quantum-well
radial confinement is F�y�=8�2y	0

y dx 1
�1−x2/y2

sin2�x/2�
x2�x2−�2��2�2 , and

1
�LA

= �D�2

�cLA
2 �sd

2r0
, where D is the deformation constant and �s is

the lattice density. For electrons in GaAs we find �s=0.8
�106 s−1 for the case r0=1.35 �m, d=50 nm, and N=400.
For r0=0.3 �m, d=20 nm, and N=160 we deduce �s=2.1
�108 s−1. Note that the wavelength of emitted phonons is
less or on the order of the ring size. Considering thus a

planar ring array the phonon waves emitted from different
places are out of phase; a large increase in the damping con-
stant with the number of rings is thus unlikely. Density ma-
trix relaxation due to scattering by incoherent phonons we
considered in Ref. �8�, based on which we conclude that the
nondiagonal density matrix components decay due to the
spontaneous emission of incoherent phonons by the rate

�mm�
s,sp = 1

�LA
���Rm

m+�+Rm�
m�+��, where Rm�

m =F�qm�
m d��m�

m fm
0 if qm�

m

� �0,
�D

cLA
�, Rm�

m =F�qm�
m d��m�

m �1− fm
0 � if qm�

m � �−
�D

cLA
,0�, and

Rm�
m =0 otherwise. Here qm�

m = ��m−�m�� / ��cLA�, �m�
m =1 if

sgn�m�=sgn�m�� and �qm�
m ��

�D

cLA
, �m�

m =0 otherwise. Using the
expression for �mm�

s,sp we calculated numerically the effective
decay rate of the dipole moment for different parameters of
the quantum ring. For the above-mentioned ring parameters
the decay rate rises from 108 s−1 at T=1 K to 1010 s−1 at
T=10 K �see also Ref. �8��. Thus, scattering by incoherent
phonons is the main source for our dipole moment relax-
ation.

For illustration we focus on a quantum ring excited by
two mutually perpendicular HCPs delayed by �F /4. Figure 1
shows the time-dependent spectrum of the radiation emitted
perpendicular to the ring plane ��=0�. Only the electric di-
pole contributes to the radiation spectrum in this geometry.
Calculating the time-dependent spectrum we use the detector
time T=100 ps. The numerically calculated time-dependent
spectrum in Fig. 1 exhibits repeated light bursts centered at
approximately �F and with decaying peak values due to the
relaxation pathways discussed above. The bursts correspond
to revivals of the charge polarization dynamics �8�. The
abrupt radiation switch-on upon charge-polarization genera-
tion results in a relatively broad spectrum at short times.
Then we consider the degree of circular polarization at
�=0, which we denote as Pcirc

� �t�. For a detected frequency
range �0.5�F ,1.5�F� we find Pcirc

� �t��0.99. Driving the ro-
tating dipole in sequence effectively stabilizes the time-
dependent spectrum, reaching a practically stationary state
�cf. Fig. 1�b��. In this case Pcirc

� �t��0.999 is achievable for
the mentioned frequency range.

FIG. 1. �Color online� Time-dependent spectrum of the radiation
emitted from a quantum ring. The spectrum is normalized to

Snorm=��
e2r0

2�F
3

4�c3 . Parameters of the quantum ring are r0=0.3 �m,
d=20 nm, and N=160. The ring is excited �a� by two mutually
perpendicular HCPs with kick strength 	=0.4 and delay time �F /4
at T=4 K and �b� by a periodic sequence of two mutually perpen-
dicular HCPs with kick strength 	=0.1, delay time �F /4, and period
�F, at T=10 K. The duration of each HCP is �d=0.5 ps, peak field
value 33.6 V /cm in �a� and 8.4 V /cm in �b�. Detector time is T
=100 ps.

FIG. 2. �Color online� Dynamics of the detected circular polar-
ization. The ring parameters are r0=1.35 �m, d=50 nm, N=400,
and T=4 K. For the parameters of the excitation, see the text. De-
tector time is T=100 ps.
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Having demonstrated the possibility of an ultrafast gen-
eration of circular-polarized subterahertz light, we are inter-
ested in the ultrafast control of the degree of the circular
polarization. For illustrating the ubiquitous nature of the ef-
fect, we choose a different radius of 1.35 �m. The pulses
parameters are 	=0.2, �d=3 ps, and a time delay �F /4. Fur-
thermore, for a periodic train of two mutually perpendicular
HCPs, we assume a period of 0.7 ns. Each applied pulse
sequence changes the sense of rotation of the ring dipole
moment. This leads to a sign change of Pcirc

� , as demonstrated
in Fig. 2; i.e., the photons are emitted in portions with an
alternating helicity. Generally, more complicated pulse se-
quences allow control of the chirality of each emitted photon
portion.

Summarizing, we developed a theory for the ultrafast,
time-dependent detection of the light polarization properties
and applied it to the emission from quantum rings. As an
illustration, we presented calculations for the time-dependent

spectrum, accounting for relaxation effects. Applying appro-
priate sequences of half-cycle pulses �or short circular polar-
ized laser pulses� allows one to generate circular-polarized
subterahertz light on picosecond time scales and to change
and control the degree of the circular polarization of the
emitted photons in subnanoseconds. For a sufficient intensity
of emitted light, one can either use an array of rings
�11,16,33� or excite a single ring far beyond the weak exci-
tation regime considered in the present paper. Our treatment
is directly applicable to the first case whereby a small dis-
persion of the ring sizes in the array must be provided. The
proposed theory is extendable to higher excitations and to
quantum dots and quantum rings with an impurity �34� as
well as to graphene rings �35� and chiral and nonchiral mo-
lecular rings �10,17,29,36,37� and to atoms �28�. Finally, the
developed theory is applicable to the time-dependent detec-
tion of the circular polarization of quantum light �38�.
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