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We show how it is possible to more than double the on-site interaction energy of neutral atoms in optical
potentials by the technique of radio-frequency �rf� dressing, while maintaining interwell dynamics. We calcu-
late Bose-Hubbard parameters for rf-dressed optical lattices and arrays of rf-dressed dipole traps. We show that
decreasing the distance between wells, by the interpolation of wells confining different mF states, increases the
interaction energy more than decreasing the height of the classically forbidden region between existing wells.
The schemes we propose have negligible Landau-Zener losses caused by atomic motion; this was a dominant
effect in the first experimental demonstration of the modification of an optical potential by radio-frequency
dressing.
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The study of complex nonlinear quantum systems is a
major area of research in the fields of atomic and condensed-
matter physics. A subject of current interest is the effect of
the nonlinear interaction term on the behavior of ultracold
atoms confined in optical lattices. The dynamics of ultracold
bosonic atoms in such a system has been shown to be de-
scribed by the Bose-Hubbard Hamiltonian �1�

H = − J�
�i,j�

ai
†aj + �U/2��

i

n̂i�n̂i − 1� , �1�

where i and j denote lattice sites of a homogeneous lattice.
The ground state of the Bose-Hubbard Hamiltonian passes
from superfluid to Mott insulator as the parameters control-
ling U and J are varied; this behavior has been demonstrated
experimentally �2�.

The on-site interaction energy, the Hubbard U, is the
dominant parameter characterizing interactions between ul-
tracold atoms in optical lattices. As such, it plays a pivotal
role in phase transitions �2� and entanglement �3�. The ability
to generate complex entangled states has drawn interest to
these systems for the purposes of quantum computing �4�
and quantum simulation �5�. Typically, the magnitude of U
controls the purity of the resulting many-particle state or the
speed at which this entanglement may be generated �6�. It is
likely that there are a significant number of “impurity” atoms
present in the Mott-insulator states currently being made
�3,7�; for applications such as quantum computing and simu-
lation, it is desirable to reduce the number of these impurities
as much as possible. Furthermore, by increasing the on-site
interaction relative to the tunneling energy, it may be pos-
sible to push optical lattice systems into new regimes—for
example, where the on-site interaction energy is greater than
the band gap �8�.

In this paper we study ways to increase the on-site inter-
action energy U, while still maintaining slow interwell dy-
namics, using the technique of radio-frequency �rf� dressing
of optical potentials. We study both optical lattices and ar-
rays of highly focused laser dipole spots, both seen as prom-

ising systems for quantum information processing �5,9�. We
restrict our study to dressing the optical potential along a
single direction of the lattice. The atoms in these potentials
will have far lower Landau-Zener loss rates than in the recent
experiment �10� and low collisional loss rates. For a number
of specific experimental configurations we calculate the en-
hancement factor for U at a particular interwell tunneling
rate.

Radio-frequency dressing has been used in a variety of
experiments to dress magnetic potentials �11–13�. Dressing
of optical potentials has received much less attention, al-
though recently both theoretical �14� and experimental �10�
studies have been carried out. A dominant feature of the re-
cent experiment �10� was high loss rates, attributed to nona-
diabatic Landau-Zener transitions �14�. We should mention
other methods which may be adapted to increase on-site in-
teractions in a lattice include tunable scattering lengths and
Feshbach resonances �15,16�, and other methods proposed to
give sub-half-wavelength structure to optical lattices—for
example, Raman processes �17,18�.

The phase transition from the superfluid state ceases to be
adiabatic when the inverse time scale 1 /� becomes of the
same order of magnitude as the frequencies of the lowest-
lying excitations, which are �U in the limit U�J; increas-
ing U will decrease the number fluctuations in the final state.
Furthermore, when finite-temperature effects are taken into
account, it has been shown that increasing U increases the
purity of the final state �19�, as one would expect from ther-
modynamic considerations. Both temperature and nonadia-
batic defects are exponentially suppressed by increasing U,
as discussed below.

We treat the case with the spin-dependent potential only
along one direction of the lattice; dressing a spin-dependent
potential of more than one dimension tends to lead to struc-
tures with extended potential minima �14�. The methods we
describe may be used with or without additional tunneling in
the perpendicular directions �along spin-independent poten-
tials�. Note that a low-dimensional lattice can already have a
larger U than a higher-dimensional lattice due to tight con-
finement being possible along the perpendicular directions.

In this work we confine our analysis to bosons, specifi-
cally to 87Rb. We choose to work in the F=1 lower hyperfine*m.shotter@physics.ox.ac.uk
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state with three magnetic substates. With Brf and B0 perpen-
dicular �B0 being the static magnetic field�, there will be
equal intensities of �+ and �− rf dressing fields. We assume a
state-independent �� polarized or with large frequency de-
tuning� optical lattice in the y and z directions, meaning that
the difference in energy between magnetic substates is inde-
pendent of y and z. We can then write, for these three sub-
states,

H = 	V+1�x� + �+1 �rf/2 0

�rf/2 V0�x� �rf/2
0 �rf/2 V−1�x� + �−1


 , �2�

with ��1=�E�1,0 /	�
rf. The optical dipole potentials
VmF�r� can be shown to be �20�

VmF
�r� = ��c2�/2
3�

���1 − PgFmF/�D1
� + �2 + PgFmF/�D2

��I�r� ,

�3�

where �D1
and �D2

are the frequency differences from the D
lines, �= ��D1

+�D2
� /2, 
= �
D1

+2
D2
� /3, and P= �1,0

for optical �� ,� polarization.
Using a Born-Oppenheimer-type approximation �21�, the

internal and external degrees of freedom of the atom can be
decoupled as long as the kinetic energy of the atoms is much
less than the energy spacing of the dressed levels. This is the
case for typical �rf, although Landau-Zener losses may oc-
cur as a result of this condition being weakly violated, as
discussed below. Under this approximation, the eigenvalues
of the above matrix give the potential energy of the atoms in
the corresponding dressed eigenstate. The rf coupling be-
tween the magnetic substates gives rise to avoided crossings,
as shown in Fig. 1.

We calculate the one-dimensional Wannier functions for
the lowest eigenstate of the Hamiltonian �Eq. �2��, corre-
sponding to the local ground state of the atoms. We diago-
nalize the Hamiltonian of a single potential period and so
find the eigenfunctions of the dressed potential by using
Bloch’s theorem. We find the maximally localized Wannier
functions at the lattice sites by recursively rephasing the
eigenstates �22� before summing over quasimomentum.
From the lowest-band Wannier functions we calculate the
Bose-Hubbard parameters

U = 2as	�
�1
�2� 
w0�x�
4dx , �4�

J =
1

Nq
�

q

Eqeiqxr, �5�

with 
�1,2 the trapping frequencies in the perpendicular di-
rections, q the quasimomentum, Eq the energy of the eigen-
state with quasimomentum q, xr the separation between
neighboring lattice sites, and as the scattering length in the
dressed state �for 87Rb, approximately equal to the undressed
scattering length as as�at �23��. The photon scattering rate
is calculated from the Wannier functions and details of the
dressed potential.

We compare the on-site interaction energy between
dressed and undressed potentials for a certain value of Hub-
bard J. We choose J /h=Jlim /h=25 Hz so that the tunneling
time �tun=h /2zJ is �tun=10 ms �z being the coordination
number�. We choose this value as this is around the limit
where slow interwell dynamics still occurs on a typical ex-
perimental time scale; as J is decreased further, the phase
transition will go from being an adiabatic to a nonadiabatic
process. Interwell dynamics then ceases, with the final purity
of the Mott insulator depending on Ulim, the value of U when
J=Jlim.

The first potential we consider is given in Fig. 1�a�, the
“truncated sinusoidal” potential. This is an optical lattice at
the 87Rb, F=1, mF=0 tune-out wavelength of 790.06 nm
�24�. The magnetic field magnitude and direction are chosen
so that the mF= +1 state is detuned well above the other two
states by the nonlinear Zeeman effect. Experimentally plau-
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FIG. 1. �Color online� The types of rf-dressed potentials consid-
ered in this paper. Dressed potentials are solid black lines; un-
dressed potentials are dashed lines �mF= +1 and −1 �green and red
dashed lines�, 0 �blue dash-dotted lines��. The Wannier functions for
the lowest state are displayed below the potentials for two of the
wells. The mF= +1 state of �a� is at an energy substantially higher
than the states shown. The optical lattices of �a� and �b� have �+

polarization. The recoil energy is defined as Er=h2 /2m
2. Param-
eters: �a� 
=790.06 nm, B0=300 G, �rf =213.65 MHz, �rf /2�
=70 kHz, P=32 mW, w0=50 �m, ��1,2=30 kHz; �b� 

=790.06 nm, B0=4 G, �rf =3.295 MHz, �rf /2�=270 kHz, P
=35 mW, w0=50 �m, ��1,2=30 kHz; �c� 
=800 nm, B0=4 G,
�rf =2.78 MHz, �rf /2�=25 kHz, P=25 �W, w0=1 �m, ��1,2

=30 kHz, �x=0.6w0.
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sible parameters are chosen. The lowest parts of the
mF=−1 potential intersect the flat mF=0 potential. Once
dressed, the lowest adiabatic potential differs greatly from a
sinusoidal shape, with “pockets” of strong confinement sepa-
rated by an almost flat potential. There is typically only a
single bound state at each site. The enhancement of Ulim, for
the chosen value of Jlim, in this potential is given in Fig. 2�a�
for �rf =2��70 kHz and 2��10 kHz; the maximum in-
creases we find are around 70% and 80%, respectively. The
enhancement factor is only weakly dependent on �rf for a
large range of rf power.

The second potential we consider is given in Fig. 1�b�, the
“interpolated sinusoidal” potential. Optically, it is very simi-
lar to the truncated sinusoid, but at a much lower magnetic
field of a few gauss, so the mF= �1 states are approximately
symmetrical around the mF=0 state. In this case the rf dress-
ing doubles the number of wells in the lattice. The enhance-
ment of Ulim in this potential is given in Fig. 2�b�; the typical
increase is around 150%.

The last dressed potential �Fig. 1�c�� we consider is based
on an array of independently addressable dipole traps.1 We
choose neighboring dipole traps to have the same intensity
but opposite � polarization. Due to the rf dressing, the bar-
rier between the potential minima can be considerable even
when neighboring Gaussian spots are optically unresolvable.
The enhancement of Ulim is shown in Fig. 2�c�; the maxi-
mum enhancement due to the dressing is around 80%. Note
that, for potentials �b� and �c�, the atomic spin adiabatically
flips when a single atom tunnels from one site to its neigh-
bor, enabling sublattice addressability and readout.

The results of these calculations show that the dressed
Ulim is largely independent of the optical power, but is de-
pendent on the dressing scheme. The results for the truncated
sinusoidal potential show that radically altering the shape of
the periodic potential, to confine more tightly while still al-
lowing tunneling, but without changing the distance between
wells, can only increase Ulim by a modest amount. However,
Ulim becomes substantially larger if atoms are confined in the
interpolated sinusoidal potential, with neighboring wells
separated by 
 /4. The interpolation method would therefore
seem the most promising way to increase Ulim by rf dressing
an optical lattice.

The results show that the on-site interaction energy of
atoms confined in a focused Gaussian array can also be in-
creased by the interpolation technique. The typical values of
Ulim in this case are not greatly less, for our chosen param-
eters, than for atoms in an undressed three-dimensional �3D�
counterpropagating lattice. This raises the prospect of site-
addressable highly number squeezed states in a hybrid fo-
cused Gaussian two-dimensional optical lattice apparatus,
with a comparable on-site interaction energy per atom to that
observed in a Mott insulator in a 3D optical lattice �2�.

Even a modest increase in Ulim could be useful, though, as
the number of imperfections is likely to be a strong function
of Ulim. Estimates of the thermal excitations would be nth
�Ae−U/kT �the J�U, kT�U limit of the Bose-Einstein dis-
tribution� and of nonadiabatic excitations nna�Be−CU2

; the
latter from the form of the Landau-Zener avoided the cross-
ing transition probability �25� in the limit J�U��01, where
�01 is the energy difference between the ground and first
excited states of the many-body system.

We briefly consider how atoms may be loaded into the
potentials �when J�U�. Adiabatic loading of the truncated
sinusoidal potential can be seen to be accomplished by sim-
ply ramping the rf frequency, once atoms are trapped in the
bare lattice. Adiabatic loading of the interpolated sinusoidal
potential and Gaussian array may be accomplished by ramp-
ing the laser intensity �with the rf already on�, but the mecha-
nism is less obvious. In effect, during the final stages of the
ramping of the lattice intensities, the atoms adiabatically de-
localize between the two sets of potential minima as long as
the rate of change of the offset between the two sublattices,
�i, is much less than the other Hamiltonian parameters.

It is important to note that spin-changing collisions and

1To use Wannier functions we assume that the region of interest is
far enough away from the edge of the array that we can neglect the
finite array size.
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FIG. 2. �Color online� Calculated properties of atoms in the
ground state of the dressed potentials. The optical power P is the
independent variable; dressing parameters �rf and �rf are chosen
subject to the conditions that the neighboring wells are the same
depth and that the tunneling parameter J /h is 25 Hz. These condi-
tions specify �rf and �rf for �b� and �c�. For �a� the conditions only
specify �rf, so �rf can be chosen arbitrarily; two choices are shown.
The dashed horizontal line gives the undressed U for comparison, a
single value calculated for J /h=25 Hz in the undressed �+ or �−

potential. The scattering rates are from the dressed lattice beams
only. Aside from P, �rf, and �rf, the parameters of the potentials are
as given in Fig. 1.
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other two-body collisional loss rates are greatly suppressed
for atoms trapped in the lowest eigenstate �11,26,27�. This is
because a collision which changes the internal states of these
atoms needs an input of energy which is significantly greater
than the energy available from kinetic or potential energy �of
order J or U�. The other loss mechanism is Landau-Zener
losses arising from atomic motion at the avoided crossings,
which have dominated the only rf dressed optical potential
experiment carried out to date �10�. However, Landau-Zener
losses become negligible when the atoms are trapped in the
lowest eigenstate, as the transition from the lower to the
upper dressed level needs energy which is required to come
from the kinetic energy of the atoms; this kinetic energy �J
is typically very much less than �rf, so Landau-Zener losses
can be expected to be negligible for atoms in the lowest
trapped state �28�.

A remaining loss mechanism, specific to the truncated lat-
tice, is the coupling of weakly bound states to the continuum.
This can only occur when the highest-energy state in the
lowest band becomes greater than the binding energy of the
site. When niU and J are significantly less than the binding
energy of the site, as is the case in the examples given above
�assuming around one atom per site�, this loss mechanism is,
to a large extent, suppressed; however, with higher numbers
of atoms per site there is a chance that some atoms will be
ejected from the lattice.

The calculations shown do not specify whether tunneling
is proceeding in the perpendicular �spin-independent� direc-
tions; J along the dressed lattice direction is independent of J
in the other directions. The lattice parameters in the other
directions only influence U through a multiplicative factor in
Eq. �4�. Therefore, when there is tunneling in all directions in
such a lattice, the enhancement factor for U arising from
dressing along a single direction will be the same whether or
not there is also tunneling in the perpendicular directions.
Thus this technique may be used in a 3D lattice �composed

of one-dimensional �1D� spin-dependent and two-
dimensional �2D� spin-independent lattices� to enhance Ulim

by the same factor as in purely 1D lattices.
If spin-dependent potentials are present along more than

one direction, the 2D or 3D rf-dressed potential cannot be
simply expressed as a sum of 1D potentials; one conse-
quence is that the potential minima may occur along lines or
surfaces rather than at points. A short discussion may be
found in Ref. �14�; we do not consider these cases further in
this Rapid Communication.

A practical complication with this scheme, in common
with other rf-dressed optical potential schemes, lies in the
use of magnetic-field-sensitive transitions. The typical mag-
netic field drift in a laboratory environment is of order
�1 mG �29�; this would manifest as a sublattice-dependent
energy offset of order �1 kHz. Clearly we need this site-
dependent offset to be less than U; practically, this would
mean using a magnetic-shielding technique such as mu-metal
cladding, which can decrease these ambient fields by a factor
of around 100 �30�.

In conclusion, we show that substantial enhancement of
on-site interactions may be achieved by rf dressing optical
potentials. We study three cases of interest and show that it is
possible to enhance nonlinear parameters by more than a
factor of 2, with negligible Landau-Zener losses, which
should greatly improve the purity of the resulting Mott insu-
lator state. We find that decreasing the distance between
neighboring wells has a greater effect on the limiting on-site
interaction than modifying the form of the potential between
existing wells. In summary, the techniques described have
the potential to make complex quantum states with neutral
atoms purer and faster.
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