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We show that a quantum-beat system with incoherent pump or coherent driving produces an entangled
sub-shot-noise laser that operates well above threshold. The numerical results and physical analyses are pre-
sented using the combination modes of the lasing fields. The relative mode is decoupled from the active
medium and thus remains in its vacuum state, while the sum mode operates well above threshold and has
sub-shot-noise. The quantum beat and the sum mode intensity noise reduction combine to yield entanglement
between two bright beams and sub-Poissonian photon statistics of the respective beams.
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Atomic coherence leads to many novel effects, among
them correlated spontaneous emission lasers �CELs� �1–12�,
lasers without inversion �13–27�, and generation of squeezed
light from them �7–12,25–27�. In a quantum-beat laser �1–7�
�a particular form of CEL�, a beam of three-level atoms in V
configuration emits photons into two modes. The atomic up-
per levels are initially prepared in a coherent superposition or
are coupled by a coherent field. The normally ordered vari-
ances of two Hermitian operators corresponding, respec-
tively, to the relative phase and the relative amplitude vanish.
That is, the noise is reduced to the vacuum noise level. In a
two-photon CEL �7–12�, a beam of three-level atoms in cas-
cade configuration is employed. The top and bottom states
are initially prepared in a coherent superposition. The phase
noise is reduced below the vacuum noise level by 50%. In a
laser without inversion, laser gain is established by using
atomic coherence. At the same time, the coherence leads to
noise squeezing �25–27�. The fluctuations of the laser inten-
sity are suppressed up to 50% below the shot noise. We also
note that noise squeezing is possible even when neither ini-
tial coherence nor an external coherent field is used. This is
caused by a dynamic noise reduction mechanism �28–31�.
Combining the quantum-beat laser operation and the above
quantum noise squeezing mechanisms, we predicted that the
two lasing modes and the sum mode would exhibit intensity
noise squeezing �32,33�.

Most recently, it was shown that a two-mode correlated
spontaneous emission laser can be used as an entanglement
amplifier �34–36�. In a linear theory these authors showed
that the amplifier yields continuous variable entanglement
for a short time. However, the entanglement tends to vanish
as time goes on and the laser intensity increases. Steady state
analyses were also presented but no nonlinear effects were
included �37�. It was also shown that four-wave mixing as a
form of quantum-beat operation can lead to two-mode con-
tinuous variable entanglement �38�. Li et al. �39� showed
that, with the help of the clock transition in a three-level
system, the entanglement is enhanced and the mean intrac-
avity photon number is increased compared with the two-
level case. Pielawa et al. �40� showed that an Einstein-
Podolsky-Rosen �EPR� state can be obtained by using an

atomic reservoir engineering based on four-wave mixing. It
is well known that four-wave mixing is an optical parametric
process, in which the pump field is converted into the output
signal �41�. The conversion is determined by the third-order
susceptibility of the medium. Since the atomic dynamics is
saturated by the strong pump field, the third-order suscepti-
bility is very small. In sharp contrast, a laser oscillator as an
active device yields, via resonance-stimulated amplification,
a bright source of light. The linear gain is determined by the
first-order susceptibility �42�, which is much larger than the
third-order susceptibility. Well above threshold, the laser in-
tensity is much larger than the saturation intensity. It is de-
sirable to devise an entanglement laser as an active device
that operates well above threshold and that produces en-
tangled light in a long time regime.

Here we reinterpret the results found in �32,33� to show
that it is possible to generate entangled sub-shot-noise lasers
using a quantum-beat scheme together with incoherent pump
or coherent driving. Entanglement between two modes, re-
duction of the intensity fluctuations of the respective modes,
and lasing well above threshold are compatible with each
other. This device produces two bright beams of entangled
sub-Poissonian light.

In order to analyze whether the entanglement appears be-
tween the two Gaussian state lasing modes a1,2, we use a
sufficient criterion for continuous variable entanglement pro-
posed in Refs. �43,44�. According to the criterion, the two
lasing fields are entangled if the sum of the variances of two
EPR-like operators u and v of the two modes satisfies

M � ���u�2� + ���v�2� � 2. �1�

Here u=X1+X2, v= P1− P2, and Xl= �1 /�2��ale
−i�l +al

†ei�l�,
Pl= �−i /�2��ale

−i�l −al
†ei�l� are the quadrature operators for

the two modes al, where �l are chosen �45� so that Xl and Pl
are the amplitude and phase quadratures corresponding to the
field al around its steady state value, l=1,2.

It is convenient to use a combination mode approach �5�
to describe the quantum-beat laser or CEL. The combination
modes are defined as

A =
1
�2

�a1e−i�1 + a2e−i�2�, B =
1
�2

�− a1e−i�1 + a2e−i�2� ,

�2�

where �1,2 are two constants, which are determined by the
external field parameters. The Hermitian operators corre-*Corresponding author. xmhu@phy.ccnu.edu.cn
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sponding to the sum amplitude and sum phase are propor-
tional to the real and imaginary parts of the annihilation op-
erator A. Similarly, the real and imaginary parts of the
annihilation operator B determine the Hermitian operators
corresponding to the relative amplitude and relative phase
�5�. Because of these correspondences, the mode A is called
the “sum mode” and the mode B the “relative mode.”

The biggest advantage of using the combination modes
lies in the fact that, for a CEL, the relative mode B is usually
decoupled from the active medium and simply undergoes
absorption by the vacuum reservoir, while the sum mode A is
amplified and runs well above threshold, as will be shown
below. This implies null amplitude for the relative mode B,
�B�=0. Consequently, we have �a1�e−i�1 = �a2�e−i�2. This indi-
cates that the phase difference of modes a1 and a2 is locked
to �1−�2=�1−�2. The choice of the phase �1 or �2 may be
made by injecting a weak signal such that it hardly changes
the steady state amplitudes but leads to locking of the respec-
tive phases to fixed values �46�.

The operators u and v are expressed in terms of the
operators A and B as u=Ae−i��1−�1�+A†ei��1−�1�,
v= i�Be−i��1−�1�−B†ei��1−�1��, which are the amplitude and
phase quadratures corresponding to the sum mode A and the
relative mode B, respectively. The decoupling from the me-
dium implies that the mode B stays in its vacuum state, i.e.,
the variance in the quadrature operator v drops to its vacuum
noise level �5,32,33�, ���v�2�=1. For a laser far above thresh-
old, the fluctuation in the amplitude is negligibly small com-
pared with the amplitude itself. Under these circumstances,
the variance of quadrature u is related to Mandel factor Q
through the relation ���u�2�=1+Q, where Q= �:��I�2 : � / �I�
and I=A†A. Here 1 stands for the vacuum noise level, and
the Mandel factor Q is the normally ordered normalized vari-
ance of the sum mode intensity and measures the deviations
from Poissonian statistics. It is well known that Q is zero for
a coherent state �Poissonian photon statistics� and turns
negative for a nonclassical state of an intracavity field �sub-
Poissonian photon statistics�. Using the Q factor, we obtain
the normally ordered part of the output fluctuation spectrum

S��� = 2	0
�d� cos�����:i�t + �� ,

i�t�:/�i�t�� = 2Q�2�/	�	2/�	2 + �2� .

Here i�t�=�A†�t�A�t� corresponds to the output photon flux
operator and the inverse laser intensity correlation time 	 is
proportional to the differential gain. As is well known,
S���=0 corresponds to shot noise and 0
S����−1 to sub-
Poissonian photon statistics.

Using the above relations we obtain the output spectrum

M��� = 2 + S��� , �3�

which indicates that the two lasing fields are entangled if
sub-Poissonian statistics in the sum mode is existent. It
should be emphasized that the relation �3� is valid only when
the correlated emission takes effect and the system operates
sufficiently far above threshold.

Using the variances in the sum and relative modes we
obtain the Mandel factors Q1,2 for the respective intensities
Il=al

†al=
1
2A†A �l=1,2� as Q1,2=Q /2, which indicates that

sub-Poissonian statistics for the sum mode and for the re-
spective modes are compatible with each other. The amount
of the noise reduction for the respective modes is half of that
for the sum mode. Correspondingly, the normally ordered
parts of the output fluctuation spectra for the respective
modes are expressed as Sl���=S��� /2. Quadrature squeez-
ing in the respective modes a1,2 occurs when sub-Poissonian
statistics in the sum mode is existent �S����0�.

It can be easily deduced from the above that entanglement
between two modes �M����2� and squeezing in the respec-
tive modes are based on the combined effect of the correlated
spontaneous emission ����v�2�=1� and the sum mode inten-
sity noise reduction �S����0�. In what follows we give two
model systems, for which analyses of the intensity fluctua-
tions were presented using a nonlinear theory in Refs.
�32,33�.

Entangled sub-shot-noise lasers via a quantum-beat
scheme with conventional pump. An ensemble of N four-
level atoms �Fig. 1�a�� is placed in a two-mode cavity. For
simplicity, we assume that the rates of spontaneous decay
from level 
3� to levels 
1� and 
2� are equal to �1, and the
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FIG. 1. �Color online� �a� Atom-field coupling scheme for a
quantum-beat laser with incoherent pump. �b� Equivalent system in
the picture dressed by the microwave field. �c� The zero-frequency
output spectrum M�0� as a function of  for �1=0.02 �solid�, 0.03
�dotted�, and 0.05 �dashed� and C=200. The steady state intensities
�I1,2� �in units of �2

2 /g2� are shown in the inset. All rates are in units
of �2.
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rates of decay from the levels 
1� and 
2� to 
0� are equal to
�2. The rate of incoherent pumping from level 
0� to 
3� is
equal to . An external microwave field of frequency �� is
resonantly coupled to the 
1�↔ 
2� transition with Rabi fre-
quency ��e−i��, where �� and �� are the real amplitude and
phase. Two lasing modes a1,2 of frequencies �1,2 are respec-
tively coupled to the 
1,2�↔ 
3� transitions of resonance fre-
quencies �3l with equal coupling constant g. We assume that
the microwave field is strong, i.e., ��� �g�al� , ,�l�, l
=1,2. By tuning the lasing modes such that �l=�3l−

1
2��

and neglecting the fast-oscillating terms such as e�i��t, we
write the interaction Hamiltonian as �32�

H = i�g�
j=1

N

�A†�
 + ��3
� j − A�
3��+ 
� j� , �4�

where we have used the atomic dressed states 
� �
= �1 /�2���e−i��/2
1�+ei��/2
2��, and the sum mode A with
�1=−�2= 1

2�� �Eq. �2��. It is clear that the mode B is decou-
pled from the interaction system while the mode A is coupled
to the 
+ �↔ 
3� transition �Fig. 1�b��.

In our numerical calculation we scale the incoherent
pump rate , the atomic decay rate �1, and the cavity loss
rate � �the cavity loss rates for the two modes are assumed to
be equal to �� in units of �2. The cooperativity parameter is
defined as C=2g2N / ��2��. In Fig. 1�c� we plot the zero-
frequency output spectrum M�0� as a function of  for �1
=0.02 �solid�, 0.03 �dotted�, and 0.05 �dashed� and C=200.
For large cooperativity parameter �C�1� the system oper-
ates sufficiently far above threshold �29,42�. Plotted in the
inset are the intensities �I1�= �I2� in units of �2

2 /g2. It is seen
from Fig. 1�c� that the output spectrum M�0� first decreases
and then increases gradually as the incoherent pump rate
increases. At the same time, the intensity rises with the inco-
herent pump rate. On the other hand, the intensity increases
and the output spectrum M�0� decreases as the decay rate �1
decreases. In the limiting case ��1→0 and rate matching
�28–31��, the spectrum M�0� reaches its minimal value 3

2 .
That shows that the entanglement criterion is satisfied when
the quantum-beat laser works well above threshold. In addi-
tion, the output spectra for the respective modes have their
minimal value Sl�0�=− 1

4 , which corresponds to 25% noise
reduction. Two factors are responsible for entanglement and
squeezing. The first is the correlated spontaneous emission.
Only the sum mode A is coupled to the medium while the
relative mode B is decoupled from the system. The second is
the dynamical noise reduction. For �1��2, , the population
in state 
�� is negligible. Then the four-level system in Fig.
1�b� is reduced to a three-level system �
0�, 
��, and 
3��. In
the reduced system, the succession of the transition

+ �↔ 
3� and the two-step incoherent process 
+ �→ 
0�
→ 
3� recycles the active laser electron from 
�� through 
0�
to 
3�, which regularizes the laser electrons. The above two
factors combine to cause entanglement and squeezing.

Entangled sub-shot-noise lasers via a quantum-beat
scheme with coherent driving. Placed in the two-mode cavity
is an ensemble of N four-level atoms as shown in Fig. 2�a�.
The rates of decay from levels 
1� and 
2� to 
3� �
0�� are
equal to �1 ��2�. The rates of incoherent pump from level 
0�

to 
1� and 
2� are equal to . Two coherent fields of frequen-
cies �1,2 are applied to the transitions 
1,2�↔ 
3� with Rabi
frequencies �1,2, respectively. A microwave field of fre-
quency �� is resonantly coupled to the 
1�↔ 
2� transition
with Rabi frequency ��e−i��. The two lasing modes a1,2 of
frequencies �1,2 are respectively generated from the

0�↔ 
1,2� transitions. By tuning the coherent driving fields
�l=�l3+ 1

2�� and setting the cavity fields �l=�3l+
1
2��, we

write the interaction Hamiltonian as �33�

V = i�g�
j=1

N

�A†�
 + ��0
� j − A�
 + ��0
� j�

+
�

2 �
j=1

N

���
3��+ 
� j + �*�
 + ��3
� j� , �5�

where we have used �= �1 /�2���1e−i��/2+�2ei��/2� and the
sum mode A with �1=−�2=− 1

2� �Eq. �2��. We have also as-
sumed equal coupling constant g for the two cavity modes.
Equation �5� shows that the B mode is no longer mediated
into the interaction, and both the mode A and the effective
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FIG. 2. �Color online� �a� Atom-field coupling scheme for a
quantum-beat laser with coherent driving. �b� Equivalent system in
the picture dressed by the microwave field. �c� The zero-frequency
output spectrum M�0� versus the cooperativity parameter C for

�
=2.0 �dashed�, 2.5 �dotted�, and 3.0 �solid� and �1=4.0, 
=0.5. Shown in the inset are the steady state intensities �I1,2�
�in units of �2

2 /g2�. Rabi frequency and all rates are in units of �2.
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driving field � are resonantly coupled to the active medium
�Fig. 2�b��.

Plotted in Fig. 2�c� is the zero-frequency output spectrum
M�0� as a function of the cooperativity parameter C
=2g2N / ��2�� �equal cavity loss rate � for two modes� for

�
=2.0 �dashed�, 2.5 �dotted�, and 3.0 �solid�, �1=4.0, and
=0.5. Such a choice of the parameters ���1� indicates
that the system operates without population inversion
�25,33�. We have scaled the parameters �1, , �, and � in
units of �2. The intensities �I1�= �I2� in units of �2

2 /g2 are
plotted in the inset. The output spectrum M�0� decreases as
the cooperativity parameter C or the effective Rabi fre-
quency 
�
 increases. For the limiting case ��2��1 and laser
operation well above threshold �24,25,33��, the spectrum ap-
proaches M�0�= 3

2 . The output intensity fluctuation of each
mode is also 25% below the shot-noise limit. Through the
incoherent and coherent channels 
0�→ 
� �→ 
3� and 
3�

→ 
+ �→ 
0�, the electrons are recycled and the sum mode
intensity fluctuations are suppressed. Also, it is the combina-
tion of the correlated spontaneous emission and the sum
mode intensity noise reduction that gives rise to entangle-
ment and squeezing.

In conclusion, we have shown that it is possible to gener-
ate entangled sub-Poissonian light from a quantum-beat laser
with conventional pump or coherent driving. The three char-
acteristic features are compatible with each other. �i� The
quantum-beat lasers as active devices operate well above
threshold and provide bright sources. �ii� Each of the two
bright beams exhibits sub-Poissonian photon statistics. �iii�
Continuous variable entanglement occurs between these two
bright beams.

This work is supported by National Natural Science Foun-
dation of China under Grant Nos. 10574052 and 60778005.

�1� M. O. Scully, Phys. Rev. Lett. 55, 2802 �1985�.
�2� M. O. Scully and M. S. Zubairy, Phys. Rev. A 35, 752 �1987�.
�3� J. Bergou, M. Orszag, and M. O. Scully, Phys. Rev. A 38, 768

�1988�.
�4� M. P. Winters, J. L. Hall, and P. E. Toschek, Phys. Rev. Lett.

65, 3116 �1990�.
�5� N. Lu, Phys. Rev. A 45, 8154 �1992�.
�6� U. W. Rathe and M. O. Scully, Phys. Rev. A 52, 3193 �1995�.
�7� I. Steiner and P. E. Toschek, Phys. Rev. Lett. 74, 4639 �1995�.
�8� M. O. Scully, K. Wodkiewicz, M. S. Zubairy, J. Bergou, N.

Lu, and J. Meyer ter Vehn, Phys. Rev. Lett. 60, 1832 �1988�.
�9� N. Lu and S. Y. Zhu, Phys. Rev. A 40, 5735 �1989�.

�10� N. Lu and S. Y. Zhu, Phys. Rev. A 41, 2865 �1990�.
�11� J. Bergou, C. Benkert, L. Davidovich, M. O. Scully, S. Y. Zhu,

and M. S. Zubairy, Phys. Rev. A 42, 5544 �1990�.
�12� H. J. Kim, A. H. Khosa, H. W. Lee, and M. S. Zubairy, Phys.

Rev. A 77, 023817 �2008�.
�13� S. E. Harris, Phys. Rev. Lett. 62, 1033 �1989�.
�14� M. O. Scully, S. Y. Zhu, and A. Gavrielides, Phys. Rev. Lett.

62, 2813 �1989�.
�15� A. Imamoğlu, J. E. Field, and S. E. Harris, Phys. Rev. Lett. 66,

1154 �1991�.
�16� G. Kurizki, M. O. Scully, and C. Keitel, Phys. Rev. Lett. 70,

1433 �1993�.
�17� B. Sherman, G. Kurizki, D. E. Nikonov, and M. O. Scully,

Phys. Rev. Lett. 75, 4602 �1995�.
�18� A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O.

Scully, V. L. Velichansky, and H. G. Robinson, Phys. Rev.
Lett. 75, 1499 �1995�.

�19� G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E.
Nikonov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 76,
2053 �1996�.

�20� O. Kocharovskaya, Phys. Rep. 219, 175 �1992�.
�21� M. O. Scully, Phys. Rep. 219, 191 �1992�.
�22� P. Mandel, Contemp. Phys. 34, 235 �1993�.
�23� J. Mompart and R. Corbalan, J. Opt. B: Quantum Semiclassi-

cal Opt. 2, R7 �2000�.
�24� K. M. Gheri and D. F. Walls, Phys. Rev. Lett. 68, 3428 �1992�.

�25� K. M. Gheri and D. F. Walls, Phys. Rev. A 45, 6675 �1992�.
�26� G. S. Agarwal, Phys. Rev. Lett. 67, 980 �1991�.
�27� Y. F. Zhu and M. Xiao, Phys. Rev. A 48, 3895 �1993�.
�28� A. M. Khazanov, G. A. Koganov, and E. P. Gordov, Phys. Rev.

A 42, 3065 �1990�.
�29� H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, Phys.

Rev. A 44, 3361 �1991�.
�30� T. C. Ralph and C. M. Savage, Opt. Lett. 16, 1113 �1991�;

Phys. Rev. A 44, 7809 �1991�.
�31� D. L. Hart and T. A. B. Kennedy, Phys. Rev. A 44, 4572

�1991�.
�32� X. M. Hu and J. S. Peng, Opt. Commun. 154, 152 �1998�.
�33� X. M. Hu and J. S. Peng, J. Phys. B 31, 5393 �1998�.
�34� H. Xiong, M. O. Scully, and M. S. Zubairy, Phys. Rev. Lett.

94, 023601 �2005�.
�35� H. T. Tan, S. Y. Zhu, and M. S. Zubairy, Phys. Rev. A 72,

022305 �2005�.
�36� S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, Phys.

Rev. A 77, 062308 �2008�.
�37� S. Tesfa, Phys. Rev. A 74, 043816 �2006�; E. Alebachew, ibid.

76, 023808 �2007�.
�38� M. Ikram, G. X. Li, and M. S. Zubairy, Phys. Rev. A 76,

042317 �2007�.
�39� G. X. Li, H. T. Tan, and M. Macovei, Phys. Rev. A 76, 053827

�2007�.
�40� S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, Phys.

Rev. Lett. 98, 240401 �2007�.
�41� N. Bloembergen, Nonlinear Optics �Benjamin, New York,

1964�; R. W. Boyd, Nonlinear Optics �Academic Press, Bos-
ton, 1992�.

�42� M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Phys-
ics �Addison-Wesley, Reading, MA, 1974�.

�43� L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 84, 2722 �2000�.

�44� R. Simon, Phys. Rev. Lett. 84, 2726 �2000�.
�45� L. Davidovich, Rev. Mod. Phys. 68, 127 �1996�.
�46� M. D. Reid and D. F. Walls, Phys. Rev. A 28, 332 �1983�.

BRIEF REPORTS PHYSICAL REVIEW A 78, 045801 �2008�

045801-4


