
Generation and conversion of optical vortices in long-period helical core optical fibers

Constantine N. Alexeyev* and Maxim A. Yavorsky
Taurida National V. I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea, Ukraine

�Received 25 August 2008; published 30 October 2008�

We theoretically study generation and conversion of optical vortices �OVs� in long-period helical core fibers
�HCFs� produced by drawing from a perform with an eccentric core. Solving scalar waveguide equation in the
helical coordinates we demonstrate that in such fibers topologically induced corrections to scalar propagation
constants lead to convergence of spectral curves. At their intersection points a resonance coupling takes place
between the fundamental and the vortex modes, as well as the coupling between OVs, whose topological
charges differ by unity. This coupling leads to energy exchange between the coupled modes, which is mani-
fested either in conversion of the input fundamental mode into an OV or transformation of an OV into the OV
with higher by 1 �or lower, depending on core’s helicity� value of the topological charge. This effect can be
used for creation of all-fiber generators of singular beams from regular input beams. We also study effect of
ellipticity of the core’s form on transformation properties of HCFs and show that this leads to splitting of
resonance fiber’s parameters, at which conversion of left and right circularly polarized input regular beams into
OVs occurs. We prove that in long-period HCFs one can neglect this effect due to reduction of polarization
mode dispersion in twisted fibers.

DOI: 10.1103/PhysRevA.78.043828 PACS number�s�: 42.25.Bs, 42.81.Qb, 42.81.Bm

I. INTRODUCTION

Quite counterintuitively, in optics—the science of
light—a number of phenomena are closely connected just
with its absence. One such optical phenomenon that has re-
cently drawn the attention of both theoreticians and experi-
menters are the optical vortices �OVs�—three-dimensional
threads of darkness where the amplitude of the light field
equals zero �1–3�. Although vortex phenomena are wide
spread in nature and, in principle, could have been traced
back in earlier research in optics, it was not realized until the
paper by Nye and Berry �4� that vortices in electromagnetic
fields are strongly connected with phase discontinuities or
singularities. It has been noted that for a scalar field � near
the lines of zero amplitude defined as Im �=Re�=0 the
lines of constant phase feature the presence of phase dislo-
cations. Near the dislocation centers the phase gradient lines,
which the energy flows along, were found to form closed
vortexlike structures. Circulation of energy flow around the
phase singularity point gives rise to a localized orbital angu-
lar momentum �OAM� associated with the OV �5,6�. In gen-
eral, pure OVs as the states with well-defined OAM are very
promising information carriers, in which information can be
encoded in the OAM state �7–10�. In addition, since the field
intensity of an OV has a pronounced dip in the center, the
OV can be used for particle trapping and manipulation �11�.
Using OVs one can overcome the Rayleigh diffraction limit,
which finds its application in space research �12� and in sin-
gular beam microscopy �13�. The concept of the phase sin-
gularity proves to be seminal also for x rays �14�. One should
also mention significance of OVs for creation of vortex states
in Bose-Einstein condensate �BECs�, which can be used for
information storage �15�, as well as generation of plasmon
polaritons by OVs �16�. It is remarkable that, although vortex

phenomena have been first demonstrated for the systems de-
scribed by nonlinear equations, electromagnetic vortices are
generic to the field governed by linear Maxwell’s equations.
Despite the differences in the governing equations, they fea-
ture common properties, even in such complicated cases as
the case of random fields �17�. Moreover, being a six-
component vectorial field, the electromagnetic field can pos-
sess of other types of singularities not present in purely sca-
lar fields. Examples are vectorial or polarization
singularities, whose presence is connected with the Stokes
parameters field �18,19�. In addition, the presence of singu-
larities is reported for the Poynting vector’s field �20�.

The growing range of application of OVs calls for reliable
methods of their generation. To date, several techniques of
OV generation have won general recognition, such as the
generation of vortex-bearing beams from Hermite-Gaussian
�HG� beams by lens converters �21�; generation of OVs from
Gaussian beams �GBs� by spiral phase plates �22�, and cre-
ation of OVs by computer-generated holograms �23�. Re-
cently, other methods of OVs creation have been suggested.
One of them concerns generation of OVs through spatial
light modulation by liquid crystal cells �24�. OVs also appear
in the process of light diffraction on dielectric wedges �25�.
One should also mention application of metamaterials for
generation and control of OVs �26�. All the described tech-
niques, however, give birth to a free-space propagating OV.
Meanwhile, to transmit the OV over distance by an optical
fiber one has to couple such a free-space OV to the fiber.
Although this problem can be solved �27�, it is sometimes
preferable to use the methods of direct excitation of OVs in
fibers eliminating the free-space stage.

Some of such methods incorporate basic principles, on
which the generation of free-space OVs is grounded. For
example, the method of generation of OVs from the input
HG beams by stress-applied optical fibers �28� exploits the
similarity between astigmatic anisotropic fibers and lens con-
verters. The other scheme of OV generation with the use of a
phase mask �29� clearly resembles the spiral phase plate*alexeyev@ccssu.crimea.ua
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method �22�. However, certain methods of OV creation in
fibers have no direct analogies among the free-space meth-
ods. Examples are methods concerning the use of twisted
birefringent fibers, in which due to a specific helical depen-
dence of the refractive index the modes are represented by
pure OVs �30�. In our opinion, such “fiber-based” methods
of OV generation are somewhat more convenient for the pur-
poses of optical communication by fiber lines since a vortex
created in the fiber is more easily coupled to another fiber
than a vortex initially created in a free space.

In this paper we study theoretically generation and con-
version of OVs by weakly guiding helical core fiber �HCFs�.
Such a type of fiber has been under consideration since the
paper of Poole et al. on a mode coupler based on a fiber
wrapped in a coiled wire of a constant pitch �31�. As is
known, periodical microbendings induce the so-called path-
length optical gratings in fibers �32�, in which the optical
path is periodically changed due to geometrical variations
produced by bending. A sinusoidal bending proves to induce
in the fiber the coupling between LP01 and LP11 modes �lin-
early polarized fiber modes where the first index stands for
the orbital number and the second one- for the radial number
of the mode� if the grating pitch equals to the intermodal beat
length. For a special kind of a helical path-length grating,
which is produced by winding a wire over a fiber, at certain
conditions a resonance coupling takes place, at which the
fundamental mode gets coupled to the combination of LP11
modes known at present as the OV. First reported in Ref.
�31�, this effect has also been demonstrated for helical fiber
gratings �33�. In general, chiral fibers represent a special
class of one-dimensional photonic crystals with a wide area
of practical application �34,35�. For pitch values comparable
with the wavelength they feature the presence of the spec-
trum gap �30�, which causes their unique properties concern-
ing OV transmission �36�. In the present paper we will focus
our attention on long-period HCFs, which possess the prop-
erty of transforming the incident GB into an OV. In particu-
lar, we will study another type of HCF, which has recently
evoked much amount of interest in researchers. Two novel
types of such fibers are manufactured via drawing from a
specially designed perform �35� and by writing the helical
core in the fiber by a CO2 laser �37�. As has been emphasized
in our recent paper �36�, the HCFs described in Ref. �35� are
characterized by the refractive index distribution that essen-
tially differs from the one present in the bending-created he-
lical gratings. For the time being, no experiments on the
vortex generation in these types of HCFs have been reported,
which explains our interest in the study of such fibers.

The aim of the present paper is to study theoretically the
possibility of OV generation from the fundamental modes in
HCFs produced by drawing from a specially tailored per-
form. We demonstrate that at certain values of the helix pitch
a resonance coupling between the fundamental and the vor-
tex modes occurs in such fibers. This wavelength-dependent
coupling leads to a periodic conversion of the fundamental
mode into the OV, and vice versa, which can be used for
generation of an OV from the input fundamental mode. We
also study the influence of the core’s ellipticity on the split-
ting of resonance wavelengths, at which conversions of right
and left circularly polarized fundamental modes into OVs

takes place. We show that the resonance splitting is strongly
reduced due to the effect of polarization mode dispersion
�PMD� reduction in twisted-core fibers.

II. WAVEGUIDE EQUATION IN THE HELICAL
COORDINATES

Historically, helical path-length fiber gratings were first
created by periodically bending the fiber in orthogonal
planes �31�. This particular type of perturbation generates in
the fiber the following distribution of the refractive index n
�36�:

n��,�,z� = ñ����1 +
�

rb
cos�� − qz�� , �1�

where rb is the radius of bending and �� ,� ,z� are the cylin-
drical polar coordinates. Here and throughout a tilde denotes
an axially symmetric function. This method of creation of
helical gratings, in spite of its relative simplicity, has the
main drawback concerned with the difficulty of maintaining
the regularity of the grating �37�. In addition, the mechanical
stress effects that accompany the creation of such a grating in
the method suggested strongly interfere with the purely geo-
metrical ones and can alter the picture of light propagation in
such fiber gratings. From a computational point of view, the
expression �1� comprises a phenomenological parameter rb,
whose order is very difficult to assess, nothing to speak of its
precise evaluation within the frameworks of the model. This
makes theoretical evaluation of the grating performance in a
sense unreliable. Moreover, at present this method of cre-
ation of HCFs seems to be obsolete. Drawing a HCF from a
perform with an off-centered core allows more effective con-
trol of the helix parameters �35,38,39�. A schematic view of
the HCF obtained by this method is given in Fig. 1.

The HCFs produced by drawing are characterized by the
refractive index distribution other than given by Eq. �1�. For
the step-index fiber the plots of n in the transverse cross
section for the described models are represented in Fig. 2. As
is obvious, for perform-drawn HCFs the analytical treatment
suggested in Ref. �36� is no longer suitable. A natural way
seems to be using the helical coordinates �r ,� ,s� �Fig. 3�.
Connection between these coordinates and the Cartesian
ones is given by �40�

x = R cos Ks − r cos � cos Ks + rv sin � sin Ks ,

y = R sin Ks − r cos � sin Ks − rv sin � cos Ks ,

FIG. 1. �Color online� The model of a helical core fiber manu-
factured by drawing from a perform with an off-centered core.
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z = vs + rRK sin � . �2�

Here K=2� / �H2+ �2�R�2�1/2, v=HK /2�, R is offset and H
is the helix pitch. In these coordinates the vector wave equa-
tion in the electric field E �41�:

��� 2 + k2n2�x,y,z��E�x,y,z� = − �� �E�x,y,z� · �� ln n2�x,y,z�� ,

�3�

where n2�x ,y ,z�=nco
2 �1−2�f�x ,y ,z��, �= �nco

2 −ncl
2 � /2nco

2 ,
nco, and ncl are the values of the refractive index in the core

and cladding, respectively, �� = �� /�x ,� /�y ,� /�z�, k=2� /�,
and � is the wavelength, can be written with the help of the
standard formulas of differential geometry �42�. First, one
has to use the relation for an arbitrary vector field A:

�� 2A = �� �� · A − �� 	 �� 	 A , �4�

in which the differential operators have to be recast using the
known relations

divA =
1

�G

�

�xi�Ai�G

gii
	, ��� 
�k = �gkkg

ki�


�xi ,

��� 	 A�i =�gii

G � �

�xj
�gkn

An

�gnn
	 −

�

�xk
�gjn

An

�gnn
	� . �5�

Here

gij = 
1 0 0

0 r2 r2�

0 r2� g33
�

is the metric tensor, g33= �1−r� cos ��2+r2�2, G=det gik, �

= 4�2R
H2+�2�R�2 is the curvature of the central line of the fiber, �

= 2�H
H2+�2�R�2 is its torsion, “det” stands for determinant. In the

expression for �� �i , j ,k�= �1,2 ,3� and all their circular per-
mutations.

The equations in Er, E�, Es essentially simplify for the
weakly coiled fiber approximation, at which r0�1 �r0 is the
core’s radius� �43�. Also at �1 one can disregard the cou-
pling between transversal components Er,� and the longitu-
dinal component Es. The latter condition, generally speaking,
ensures a paraxial propagation of light in waveguides and
usually makes it possible to disentangle longitudinal and
transversal field components �44�. It is remarkable that de-
spite small offset value �R�r0� the pitch of the studied heli-
cal grating proves to be such that the condition of weak
coiling is still justified. In addition, we will also disregard the
term on the right of Eq. �3�. This term is essential for the
coupling of modes with the same orbital number l �41�, but
its influence on the process of conversion of modes with
different l is negligible. In this way, the waveguide equation
will be treated in the scalar approximation. The approxima-
tions made enable us to essentially simplify the set of equa-
tions in electric field components, which otherwise would
have looked much more cumbersome. Since the obtained
equations prove to be translation invariant in s, their solu-
tions can be factorized as Er,��r ,� ,s�=er,��r ,��exp�i�s�,
where � is some propagation constant.

In a matrix form the obtained set of equations in transver-
sal components can be written as

(a)

(b)

FIG. 2. Refractive index distribution in the transverse cross sec-
tion z=0 for the models of �a� helical core-step-index fiber pro-
duced by drawing from a perform; �b� helical core fiber produced
by bending the ideal step-index fiber. The fibers’ parameters are �a�
nco=1.48, �=0.01, R=1.5r0; �b� nco=1.48, �=0.01, rb=103r0.

FIG. 3. Local helical coordinates �r ,� ,s� in the Frenet frame
� ,� ,�, where � is the unit vector of the principal normal, � is the
unit vector of the binormal, � is the unit vector in the tangent
direction.
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�Ĥ0 + V̂0 + V̂1 + ¯ ��
h = �2�
h, �6�

where �
h��
er�r,��
e��r,�� � and er,� are the components in the local

basis nr, n�, which is specified by the subscript h. The op-

erator Ĥ0 describes the propagation of light in a straight ideal
fiber �in the local basis of cylindrical-polar coordinates�:

Ĥ0 = � �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2 −
1

r2 + k2ñ2�r�	�̂0 +
2i

r2

�

��
�̂2,

�7�

where �̂i is the Pauli matrix. The perturbation operators V̂i
are obtained as decomposition over certain small parameters
and have the form

V̂0 � − 2i���� �, �8�

V̂1 � − 2r��2 cos � . �9�

The perturbation operator is organized in such a way as to
separate the terms that in effect provide coupling between
the groups of modes, which have the same difference be-
tween the total angular momentum numbers M = l+�. So, the

operator V̂i couples the modes with ��M�= i. In Eqs. �8� and
�9� we have retained only the main terms of the decomposi-
tions. Analogously, in Eq. �6� we have restricted our consid-
eration to the cases i=0,1, although, in principle, i has no
upper limit. Equation �6� is the desired waveguide equation
in the helical coordinates.

III. RESONANCE MODE COUPLING

Mathematically, Eq. �6� is an eigenvalue equation with a
pronounced hierarchy of small parameters, so it can be
solved using the methods of perturbation theory �45�. As is
easily demonstrated, at �l��1 the spectrum of the zero-

approximation equation Ĥ0�
h= �̃l
2�
h, where �̃l is the sca-

lar propagation constant, is fourfold degenerate. There are

four eigenvectors that correspond to the eigenvalue �̃l
2 �46�:

�1,lh = ei�l+1���1

i
	Fl�r�, �1,− lh = ei�1−l���1

i
	Fl�r� ,

�− 1,− lh = ei�−l−1��� 1

− i
	Fl�r�, �− 1,lh = ei�l−1��� 1

− i
	Fl�r� ,

�10�

where the radial function Fl�r� satisfies the equation �41�

� �2

�r2 +
1

r

�

�r
+ k2ñ2�r� −

l2

r2 − �̃2	Fl�r� = 0. �11�

In the Frenet basis �, � �see Fig. 3� the same vectors have a
more recognizable form of circularly polarized OVs with to-
pological charge �l:

�1,l = eil��1

i
	Fl�r�, �1,− l = e−il��1

i
	Fl�r� ,

�− 1,− l = e−il�� 1

− i
	Fl�r�, �− 1,l = eil�� 1

− i
	Fl�r� .

�12�

Here the first index of a ket vector stands for polarization and
the second index indicates its topological charge. In what
follows we will present the final expressions written in the
Frenet frame, though all the calculations are carried out in
the local helical basis. Here and throughout the absence of
subscript at a vector means its representation over the Frenet
frame �
��

e��r,��
e��r,�� �.

Whereas for straight fibers the eigenvalues �̃l
2 are degen-

erate, at nonzero torsion the spectrum branches, which cor-
respond to OVs with different topological charge, are well
spaced. To study this effect consider the first-order correc-
tions to the scalar propagation constant. In our case the larg-

est contribution is given by the operator V̂0. Since �� , l
=ei�l+���� 1

i� �Fl�r�, if one defines the scalar product as

�
�� = �
0

� �
0

2�

�

r
* 


�
*���r

��
	rdrd� , �13�

the correction to �̃l that corresponds to the forward-
propagating zero-approximation solution �� , l can be found:

���,l = �� + l�� . �14�

This remarkably simple result describes the topological ef-
fect that accompanies propagation of OVs along curved tra-
jectories �47�. In addition to the term �� that corresponds to
Berry’s phase of spinning photons, it also comprises the con-
tribution l�, which arises due to photon’s intrinsic OAM. The
latter term is essentially the manifestation of the so-called
orbit-orbit interaction. The effect of such topologically in-
duced corrections is twofold. First, the initial degeneracy is
partially �or completely, as for l=0 and l�1 modes� lifted.
Secondly, for certain values of torsion � another kind of de-
generacy may appear. Indeed, in Fig. 4 the torsion-induced
splitting of “energy levels” is shown for l=0,1 spectral
branches. Since

��,l��� = �̃l + �� + l�� , �15�

� coordinates of the intersection points �a� and �b� prove to

be the same: �a=�b= �̃1− �̃0, whereas �c=�a /3. In these
points of the so-called accidental degeneracy there may oc-
cur the coupling of the corresponding zero-approximation
modes �� , l. Note that the branch that corresponds to �1,
−1, �−1,1 OVs remain double degenerate. As is known,
this degeneracy is lifted by the gradient term on the right of
Eq. �3� �41�, however, we disregard this effect.

Near these points it is necessary to take account of the

higher-order perturbation operators V̂i to lift the degeneracy.
It should be emphasized that in such points a type of cou-
pling becomes possible that hybridizes the modes with dif-
ferent orbital numbers. Such coupled modes strongly interact
with each other enabling various processes of energy redis-
tribution from one of the modes to another. Such situation is
usually described within the frameworks of the coupled
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mode theory; however, this can be also done using the per-
turbation theory. To do this one has to build the matrix H of
the total Hamiltonian Ĥ0+�V̂i over the states that represent
the converging spectral branches and solve the eigenvalue
problem for the obtained matrix �36�. In our case the largest
operator, which provides the desired coupling of modes with

�M =1, is V̂1. Comparison with the model of bend-induced
HCFs �36�, in which a helicoidal bending gives rise to the
analogous perturbation term −2 r

rb
k2ñ2 cos �, establishes

complete coincidence of the corresponding perturbation op-
erators at rb=1 /�. In this way a phenomenological bend pa-
rameter rb, introduced in Ref. �36�, is analogous to the cur-
vature radius of the helix in our model.

This analogy enables us to take advantage of some of
results obtained in Ref. �36� concerning the coupling of
forward-propagating modes. Near �a� the eigenvalue equa-
tion for the matrix H built over the vectors �1,0 and �1,−1
has the form analogous to Eq. �17� of Ref. �36�:

��̃0
2 − �� − ��2 A

A �̃1
2 − �2

	xa = 0, �16�

where xa= �a ,b�T stands for the field ��=a�1,0+b�1,−1.
The coupling constant is given by A
=r0�k2nco

2 �0
�x2F0�x�F1�x�dx /�N0N1, where the normalization

factor is defined as Ni=�0
�xFi

2�x�dx. Decomposition of Eq.

�16� near the point ��̃1− �̃0 , �̃1� gives, in the same manner,
the modification of the spectral dependence

�1,2 = �̃1 − �̃0 +
1

2
�� − �a � ��� − �a�2 + Q2� , �17�

where Q�A / �̃ �it is assumed that for weakly guiding fibers

�̃1� �̃0� �̃�. The spectra �20� also feature the so-called re-
pulsion of energy levels �45�. The hybrid modes have the
form

��1a = C+�1,0 + C−�1,− 1, ��2a = C−�1,0 − C+�1,− 1 ,

�18�

where C�= 1
�2

�1�sgn��−�a��1+Q2 / ��−�a�2�−1/2.
It is sometimes necessary to have the expressions for

modes in the laboratory Cartesian frame. This, generally,

FIG. 4. Torsion-induced splitting of “energy levels” ��,l��� for
l=0,1 zero-approximation modes �� , l. The type of the mode is
indicated near the spectral branch. Positions of the intersection
points �a�–�c� where the mode conversion takes place are marked
with black dots. Insets show repulsion of spectral curves due to
hybridization of corresponding modes.

FIG. 5. The energy W stored in the vortex vs wavelength detun-
ing ��=�−�0 in the process of conversion of the fundamental
mode into the OV. The fiber length is optimal: s=s0; other fiber
parameters are �=0.03, r0=6.323 �m, R=0.5r0, H=0.18 mm, �0 is
the wavelength of a He-Ne laser.

FIG. 6. Torsion-induced splitting of spectral branches for l
=1,2 zero-approximation vortex modes. Positions of the intersec-
tion points �d�–�e�, where the mode conversion takes place are
marked with black dots.
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rather cumbersome transition, can be easily done in our par-
ticular case. Indeed, since R�r0 and near the intersection

point H� ��̃1− �̃0�−1, one has H�R, so that the tangent vec-
tor � is almost parallel to the z axis. Therefore, approxi-
mately, the Frenet frame merely rotates about the z axis. The
rotation angle � linearly depends on z:

� =
2�

H
z , �19�

where z is the coordinate of the point on the central line of
the helical core. This leads to the following connection be-
tween the azimuthal angle �F measured in the Frenet frame
and the corresponding angle �C measured in the Cartesian
frame �F=�C−�−�. Finally, the expression for an OV
�� , lF written in the Frenet frame can be represented through
the expression for the same OV �� , lC given in the Cartesian
frame, as

��,lF = ��,lCe−i��+l���+��. �20�

Of course, the vector �� , lC should depend on �C, which is
achieved by a formal substitution in Eq. �13�: �→�C. In
addition, it is also necessary to pass everywhere in the phase
exponentials exp�i�s� to the z coordinate using the connec-
tion

z =
Hs

�H2 + �2�R�2
. �21�

Expressions �19�–�21� should be used for the transition to the
Cartesian basis. Of course, certain modifications should also
be made in the radial functions Fl�r� allowing for the shift of
origin: r→r+R. However, the latter transformation is not
that crucial as the transformations over the phase dependence
of the modes and is quite obvious.

In the same manner, one can treat the mode hybridization,
which takes place near the point �b�, where the partial fields
�−1,0 and �−1,−1 get coupled. The resulting eigenvalue
equation reads

��̃0
2 − �� + ��2 A

A �̃1
2 − �� + 2��2

	xb = 0, �22�

where xb=col�a ,b� stands for ��=a�−1,0+b�−1,−1. The
spectra are described by the following expressions:

�3,4 = 2�̃0 − �̃1 +
1

2
�− 3�� − �a� � ��� − �a�2 + Q2� ,

�23�

which also feature repulsion of spectral branches. Modes in
the Frenet frame are

��3b = C+�− 1,0 + C−�− 1,− 1 ,

��4b = C−�− 1,0 − C+�− 1,− 1 . �24�

In this model of a HCF one additional type of mode cou-
pling is possible: the coupling between �−1,−1 OV and the
fundamental mode �1,0, which occurs near the point �c�.
However, the operators V̂0 , V̂1 �see Eqs. �8� and �9�� prove

unable to provide this kind of coupling. One has to study the

next terms of decomposition into V̂i. One can show that the

desired coupling is provided by the operator V̂3. The main
term that contributes to this effect can be represented as

V̂3 �
1

2
cos � sin 2�r�3�0 1

0 0
	 . �25�

Being combined with V̂0, this operator generates the follow-
ing matrix equation:

��̃0
2 − �� − ��2 U

U �̃1
2 − �� + 2��2

	xc = 0. �26�

Here U=r0�3�0
�x2F0�x�F1�x�dx /�N0N1 and the vector xc

=col�a ,b� stands for the field ��=a�1,0+b�−1,−1. This
resonance occurs at �c= 1

3�a. The repulsion of spectral curves
is described by

�3,4 =
1

3
�2�̃0 + �̃1� +

1

2
�− �� − �c� � �9�� − �c�2 + Q̃2� ,

�27�

where Q̃=U / �̃. The structure of hybrid modes near this
point is described by analogous expressions

��5c = C̃+�1,0 − C̃−�− 1,− 1 ,

��6c = C̃−�1,0 + C̃+�− 1,− 1 , �28�

where C̃�= 1
�2
�1�sgn��−�c��1+ Q̃2 / �3�−3�c�2�−1/2. Note

that since near the intersection point U
A =

r0
2��̃1−�̃0�2

k2nco
2 � �1, the

width of the effective coupling zone in this case is much less
than for previously considered cases.

IV. GENERATION AND TRANSFORMATIONS OF
OPTICAL VORTICES

Topologically induced coupling between fiber modes
leads to energy exchange between the constituting fields,
which is manifested in mode conversion. The most practi-
cally important type of such conversion is the transformation
of the fundamental modes into OVs. Consider, as an ex-
ample, conversion of the �1,0 mode into the OV �1,−1. If at
the input end �s=0� of the HCF one excites the fundamental
mode �1,0 �details of the experimental technique can be
found in �31�� then it evolves in the fiber as

�
�s� = ��cos�0.5s��2 + Q2�

+
i�

��2 + Q2
sin�0.5s��2 + Q2���1,0

+
iQ

��2 + Q2
sin�0.5s��2 + Q2��1,− 1�

	exp�i��̃1 + 0.5��s� , �29�
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where �=�−�a. The structure of this expression has much in
common with the corresponding formula for LP01 mode con-
version obtained in Ref. �31� with the coupled mode theory.
However, there is no detailed coincidence since in Eq. �29�
the local basis is used. Complete transformation of �1,0
mode into �1,−1 OV takes place at �=0, or at �= �̃1− �̃0. In
this case at sn= �2n+1�� /Q the cosine term vanishes and
�
�sn�� �1,−1. The last relation conveys the conversion of
the fundamental mode into the OV with topological charge
−1. For example, for a fiber with nco=1.48, �=0.01, and R
=1.5r0 one has s0=4.2	10−4 m.

Effectiveness of the energy transformation into the vortex
state in this case is 100%, however, it is true only for a
unique wavelength of the incident beam, at which ����=0. If
this does not take place, for a constant torsion of the helix the
�1,0 mode would not be totally converted into the vortex by
the fiber. The energy W �in relative units� stored in the vortex
is

W =
Q2

�2 + Q2 sin2�0.5s��2 + Q2� . �30�

For a fiber of an optimal length �for example, s=s0� the
energy of the output vortex changes with � as

W��,s = s0� =
Q2

�2 + Q2 sin2� �

2Q
��2 + Q2	 . �31�

Although it is natural to describe this process in terms of
detuning �, experimentally, one not always has the ability to
change the value of helix’s torsion for the prepared HCF.
Such may be the case where the fiber is used as a torsion or
temperature sensor, for example. In other cases, especially
where a broadband source of light is used, the fiber param-
eters are assumed to be constant, whereas the wavelength
changes. In these cases one can describe the HE11 mode
transformation through transmittance spectrum. If at certain
wavelength �0 the fiber totally transforms the fundamental
mode into an OV, i.e., s=sn, the energy imparted to the vor-
tex at the other wavelength will be

W��� =
Q2

�2��� + Q2 sin2���n +
1

2
	�1 +

�2���
Q2 	 , �32�

where ����= ��̃1��0�− �̃1����− ��̃0��0�− �̃0����. The conver-
sion characteristics for n=0 is given in Fig. 5. If the fiber
length is not optimal at �0, the conversion would be less
effective.

This situation is quite the same for conversion of �−1,0
mode into the OV �−1,−1, which occurs near �b�. Since �b
=�a the HCF can equally effective perform both these trans-
formations, that is the conversion performance is polariza-
tion insensitive. The third type of conversion, which takes
place near �c�, for a fiber with constant parameters will be
registered at another wavelength as a narrow peak in OV
generation �or a deep in HE11 mode transmission�. For a
fixed wavelength since �c=�a /3 the pitch of the core’s helix
should be tripled to satisfy the resonance condition. As is
obvious from these examples, in the resonance area the fiber
lowers the value of the topological charge of the incident

beam by 1. For the opposite core’s helicity the charge of the
beam would be increased by 1. In this way such fibers enable
operation with the topological charge of the signal, which
might be useful for information purposes.

Quite analogously, such fibers can transform the topologi-
cal charge of l=1 OVs. To demonstrate this, consider the
coupling of l=1 and l=2 OVs. In the zero approximation the

spectral curves have the form ����= �̃1,2+ �l+��� �see Fig.
6�. Mode conversion can occur only in the intersection
points, however, the most effective conversion is provided by

the operator V̂1 given by Eq. �9�, which couples the OVs
with the same polarization and �l=1. So, effective mode
coupling takes place only in the points �d� and �e�. The cor-
responding eigenvalue equation for these points has the form

��̃1
2 − �2 G

G �̃2
2 − �� + ��2

	xd = 0 �33�

and

��̃1
2 − �� + 2��2 G

G �̃2
2 − �� + 3��2

	xe = 0, �34�

where xd belongs to the space spanned over �1,−1 and
�1,−2 vectors and xe is decomposed over �−1,−1 and
�−1,−2 OVs. The coupling constant is G=

−
r0�k2nco

2

8�N1N2
�0

�x2F1�x�F2�x�dx. In the same manner one can show
that the structure of hybrid modes is given by the formulas
analogous to Eqs. �18�, �24�, and �28�. Naturally, such hy-
bridization also implies conversion of OVs, whose length for
optimal torsion �d,e is

�d = �e = �̃2 − �̃1, �35�

is determined as sn= �2n+1���̃ /G. Typical values of conver-
sion length in this case for weakly guiding fibers are less
than one millimeter. So, for a fiber with nco=1.48, �=0.01,
and R=1.5r0 one has s0=2	10−4 m. It is interesting to note
that, according to the above analysis, at different values of
torsion parameter � the fiber may differently react to the
input beam. So, at �=�a the fiber would transform the inci-
dent �1,−1 vortex into the fundamental mode �1,0, whereas
at �=�d the same OV would be converted into the higher-
order OV �1,−2. In the same way such fibers can change by
unity topological charges of OVs with higher orbital num-
bers. Of course, the fiber has to support the propagation of
modes with large enough values of l, that is, the waveguide
parameter should enable guided propagation of generated
higher-order vortex. For example, to generate an OV from
the fundamental mode one should use the fiber with V
�2.4; charge-2 OV can be generated in fibers with V�3.8,
and so on.

Analysis shows, that intermodal conversions can affect
both orbital and spin state of the input mode. The nature of
this transformation strongly depends on the explicit form of

the coupling operator V̂i. If this operator affects only the

orbital state, as in the case of V̂1 operator, the polarization
state of the transforming mode would not be changed. Ex-
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amples of such behavior are provided by the coupling near
the points �a� and �b� on Fig. 4. Such transformations do not
involve spin-orbit coupling �not presented in the operator

V̂1�, therefore one cannot control the state of the OAM of the
outgoing beam by flipping the spin of the incoming field. In

contrast to V̂1 the operator V̂3 changes both spin and orbital
state of a vector, thus providing near the point �c� �Fig. 4� the
transformation of spin and orbital AM of the incoming beam.
However, since the point �c� does not have any “counter-
part,” such as, say, point �a�, this effect also cannot be used
for controlling the orbital state through the spin state control.

It should be stressed that the coupling of partial fields
��i , li and ��k , lk occurs if the torsion satisfies the condition

�̃i − �̃k = �Mk − Mi�� , �36�

which should be treated as a generalization of an ordinary
coupling condition �i−�k=q that is fulfilled in straight fibers
for the grating with the lattice vector q. In our case, being
induced by a topological effect, this coupling is sensitive to
the index M of the mode’s total angular momentum.

The final remark concerns modifications of the obtained
results for different relations between the scalar propagation
constants. For simplicity we have assumed that �0��1 and
�1��2. If one of these relations is wrong, one can show that
in the corresponding expressions for mode coupling one has
to invert the signs of indices in all the ket vectors: �� , l→ �
−� ,−l. Basically, this is connected with the fact that the
ordering of � assumed in this paper is restored by inversion
of the � axis in Figs. 4 and 6, with simultaneous reflection of
spectral curves about the � axis. The latter is achieves just by
the abovementioned sign inversion.

V. EFFECT OF CORE’S ELLIPTICITY ON THE
SPLITTING OF RESONANCES

As follows from the results of the previous section, there
are two kinds of conversions associated with each resonance
torsion or wavelength, which are related to transformations
of oppositely polarized incident beams. This property of the
system is somewhat desirable since it enables conversion of
linearly polarized beams, which can be considered as a su-
perposition of circularly polarized fields. However, as was
mentioned in Ref. �35�, while manufacturing the HCFs the
custom fiber perform, which the fiber is drawn from, have an
eccentric elliptical core. It is therefore desirable to study the
influence of ellipticity on mode transformations in HCFs.

Within the frameworks of our model, the easiest way to
introduce ellipticity is to add to the left-hand side of Eq. �6�
the following term �46�:

V̂ell = − 2k2nco
2 ��r f̃r� cos 2��̂0, �37�

where �1 is the parameter of ellipticity connected with the
ellipse’s eccentricity e as e=2�� / �1+��. This term is ob-
tained through decomposition of elliptically deformed profile
function f̃(x�1+�� ,y�1−��), where f̃�x ,y�= f�r�. It is easily
verified that since V̂ell couples OVs with the same polariza-
tion and �l=2, it gives zero contribution to the eigenvalue
equations �16�, �22�, �26�, and �33�. However, it is possible to
modify the previously used effective scheme of obtaining
those equations to include the effect of ellipticity.

Following Ref. �36�, consider the matrix H of the total
Hamiltonian Ĥ built over the vectors

�1 = �1,0, �2 = �− 1,0, �3

= �1,1, �4 = �1,− 1,5 = �− 1,− 1, �6 = �− 1,1 .

�38�

The eigenvalue equation that corresponds to this matrix is



�̃0

2 − �� − ��2 0 A A 0 0

0 �̃0
2 − �� + ��2 0 0 A A

A 0 �̃1
2 − �� − 2��2 D 0 0

A 0 D �̃1
2 − �2 0 0

0 A 0 0 �̃1
2 − �� + 2��2 D

0 A 0 0 D �̃1
2 − �2

�x = 0, �39�

where the ellipticity-induced constant reads for a step-index
fiber D=−k2nco

2 ��F1
2�r=r0� /N1. To reduce this equation to

the previously considered case it is proposed to make a par-

tial diagonalization of H so that 2	2 matrix blocks Ĥii that
stand on the principal diagonal of the corresponding block
matrix become diagonal. Such diagonalizing matrix has the
form

Ŝ = 
1̂ 0̂ 0̂

0̂ Ĉ2 0̂

0̂ 0̂ Ĉ3

� , �40�

where Ĉi diagonalizes matrix blocks Ĥii, so that if H is rep-
resented as
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H = 
Ĥ11 Ĥ12 Ĥ13

Ĥ21 Ĥ22 Ĥ23

Ĥ31 Ĥ32 Ĥ33

�
the matrices Ĉ2Ĥ22Ĉ2

−1 and Ĉ3Ĥ33Ĉ3
−1 are diagonal.

To carry out this program, consider diagonalization of the

block matrix Ĥ22

Ĉ2Ĥ22Ĉ2
−1 = diag��1,�2� , �41�

where formal eigenvalues of Ĥ22 are

�1,2 = �̃1
2 − �� − ��2 − �2 � �4�2�� − ��2 + D2 �42�

�note their dependence on �� and

Ĉ2 =

�

��2 − ��1 − ��2

�1 − �

��2 − ��1 − ��2

�

��2 − ��2 − ��2

�2 − �

��2 − ��2 − ��2
� , �43�

with �= �̃1
2− ��−2��2. To obtain the zero-approximation

spectral curves one has also to solve the equation �i���=0,
which gives for forward-propagating zero-approximation
modes

�̄1,2 = � + ��2 + �̃1
2 � �4�2�̃1

2 + D2. �44�

At D=0 these curves go over into the straight lines depicted
in Fig. 4. Along with the changing of the spectral curves, the

form of the basic vectors, which correspond to the spectra

�44�, also changes. For example, whereas Ĥ22 is built over
the basis of purely vortex modes � �1.1

�1.0 −1 �, upon diagonaliza-

tion the basic vectors change for Ĉ2� �1.1
�1.0 −1 � and represent in

this way certain combinations of OVs. In essence, this trans-
formation corresponds to renormalization of the ground state
�zero-order operator� and the transition to the description in
terms of “quasi particles” with renormalized dispersion law,
which in our case coincide with the modes of twisted ellip-
tical fibers �48�.

Being torsion dependent, otherwise rather cumbersome

expressions for Ĉi greatly simplify near the intersection

points. One can show that at such values of torsion �a�̃1
�D and the expressions �44� get simplified:

�̄�1,1 � �̃1 + 2� + 2�a�2, �̄�1,−1 � �̃1 − 2�a�2, �45�

where �=D /4�a�̃1
2 and the subscript at �̄ specifies an ap-

proximate type of the mode. Comparison with Eq. �15�
shows that the presence of ellipticity leads to shifts of spec-
tral curves near intersection points. In the same approxima-
tion, one obtains for the diagonalizing matrices

Ĉ2��� = Ĉ3�− �� =
1

�1 + �2� 1 �

− � 1
	 . �46�

Finally, one obtains the desired modification of Eq. �39�:



�̃0

2 − �� − ��2 0 A+ A− 0 0

0 �̃0
2 − �� + ��2 0 0 A− A+

A+ 0
�̃1

2 − �� − 2��2

+ �̃�
0 0 0

A− 0 0
�̃1

2 − �2

− �̃�
0 0

0 A− 0 0
�̃1

2 − �� + 2��2

+ �̃�
0

0 A+ 0 0 0
�̃1

2 − �2

− �̃�

�x� = 0, �47�

where A�= 1��
�1+�2 .

Comparing this equation with Eq. �39�, one can
conclude that ellipticity leads to renormalization of the
coupling constant A, which leads to certain change in the
width Q of the area, where mode hybridization is essential.

The other effect of elliptic shape of the core is the modifica-

tion of the basis vectors, over which the matrix ŜHŜ−1

is built. For example, the vector x�=col�x1 , . . . ,x6� stands
for the field ��=x1�1,0+x2�−1,0+x3��3+x4��4+¯,
where
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��3 = k1�1,1 + k2�1,− 1, ��4 = − k2�1,1 + k1�1,− 1 ,

�48�

and k1=1 /�1+�2, k2=� /�1+�2. This modification, however,
is not critical since �1 so that one has approximately
��3��1,1 and ��4��1,−1, as in the case of a nonper-
turbed core. The last effect consists in the shift of the spectral
curves, given near the intersection points by Eqs. �45�. This
leads to the splitting of the resonance critical value �a, at
which the strongest hybridization takes place. Indeed, the
other two spectral branches that change are

�̄�−1,−1 � �̃1 − 2� + 2�a�2, �̄�−1,1 � �̃1 − 2�a�2. �49�

Since the spectra for l=0 branches do not renormalize, one
can obtain from Eqs. �45� and �49� the novel positions of the
intersection points. The first point corresponds to intersection

of �̄�1,−1 and �̄�1,0 curves

�a1 = �a − 2�a�2, �50�

whereas the curves �̄�−1,−1 and �̄�−1,0 intersect in the point

�a2 = �a + 2�a�2. �51�

This splitting is schematically shown in Fig. 7.

It should be emphasized that this effect is rather small in
comparison with form birefringence in straight elliptical fi-
bers

�a2 − �a1 = 2
D

4�a�̃

D

2�̃
. �52�

Here the factor D /2�̃ is the form birefringence �difference in
propagation constants of LP11 modes with opposite oddity�
in a straight elliptical fiber. The factor D /4�a�̃ conveys the
so-called twisting-induced suppression of PMD. Using the
definition of �a, one readily obtains for relative splitting

�a2 − �a1

�a
=

D2

4��̃1 − �̃0�2�̃2
. �53�

For example, for the fiber with strong ellipticity, mentioned
in Ref. �35�, with major and minor axes 6 and 3 �m, respec-
tively, one obtains a significant splitting. Rough estimates
give ��a /�a�0.2 �at �=0.33�. However, for HCFs with
small ellipticity the splitting rapidly decreases: at �=0.05
one has ��a /�a=2.9	10−3. The phenomenon of PMD re-
duction is well known in fiber optics both for the fundamen-
tal and higher-order modes �49�. If one does not allow for
that effect, one may arrive at a wrong conclusion on a linear
in D splitting of the resonance points. In particular, this mis-
take was made in Ref. �31�, where the expressions for form
birefringence of straight fibers �41� had been applied for
twisted geometry.

VI. CONCLUSION

In the present paper we have theoretically studied genera-
tion and conversion of OVs in long-period helical core fibers
produced by drawing from a perform with an eccentric core.
We have shown that this type of HCF possesses analogous
properties to the HCFs produced by periodic bending. We
have shown that in such fibers topologically induced phase
corrections lead to convergence of spectral curves, and at the
intersection points a resonant coupling between the funda-
mental and the vortex modes occurs, as well as coupling
between OVs, whose topological charges differ by unity.
This coupling leads to energy exchange between the coupled
modes, which brings forth various conversion phenomena
�e.g., fundamental mode-OV, OV-OV� and the like. We have
studied transmittance spectra for conversion of the funda-
mental mode into an OV and shown that this effect can be
used for creation of all-fiber generator of OVs from GBs. We
have also demonstrated that such fibers can be used for rising
or lowering the topological charge of the input OV by unity.
In addition, we have studied effect of elliptic deformation of
the preform’s core on transformation properties of HCFs and
shown that this leads to splitting of resonance torsions �or
wavelengths� for conversion of left and right circularly po-
larized input beams. We have emphasized that one can ne-
glect this effect in long-period HCFs because of PMD reduc-
tion in twisted fibers.

FIG. 7. Splitting of the resonance critical value �a �marked by
the cross on the � axis� into �a1 and �a2 critical points for right and
left circularly polarized l=0,1 coupled modes, respectively. Posi-
tions of zero-approximation spectral branches for round-core HCFs
are shown in dashed lines. Shifts of zero-approximation branches
are indicated with thick arrows; thin arrows show displacement of
intersection points �a� and �b� of round-core helical fibers �see Fig.
4�.
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