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In this paper, various extensions of the design strategy for transformation media are proposed. We show that
it is possible to assign different transformed spaces to the field strength tensor �electric field and magnetic
induction� and to the excitation tensor �displacement field and magnetic field�, respectively. In this way, several
limitations of standard transformation media can be overcome. In particular, it is possible to provide a geo-
metric interpretation of nonreciprocal as well as indefinite materials. We show that these transformations can be
complemented by a continuous version of electric-magnetic duality and comment on the relation to the comple-
mentary approach of field-transforming metamaterials.
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I. INTRODUCTION

In the field of metamaterials, artificial electromagnetic
materials, the use of spacetime transformations as a design
tool for new materials has been proved very successful re-
cently �1–3�. The basic idea of this concept is that a metama-
terial mimics a transformed, but empty space. The light rays
follow the trajectories according to Fermat’s principle in this
transformed �electromagnetic� space instead of laboratory
space. This allows one to design in an efficient way materials
with various characteristics such as invisibility cloaks
�1,2,4�, perfect lenses �3�, magnification devices �5�, an op-
tical analogue of the Aharonov-Bohm effect, or even artifi-
cial black holes �3�. Still the media relations accessible in
this way are rather limited, in particular nonreciprocal or
indefinite media �materials exhibiting strong anisotropy� are
not covered. But these types of material also have been
linked to some of the mentioned concepts, in particular per-
fect lenses �6,7� and hyperlenses �8�. This raises the question
whether there exists an extension of the concept of transfor-
mation media such as to cover those materials as well and to
provide a geometric interpretation thereof.

In this paper we propose an extension of this type. As in
Refs. �1–3� our concept is based on diffeomorphisms locally
represented as coordinate transformations. Therefore many
of our results allow a geometric interpretation similar to the
one of Refs. �3,9� as opposed to another recently suggested
route to overcome the restrictions of diffeomorphism trans-
forming media �10,11�. The starting point of our consider-
ations is Maxwell’s equations in possibly curved but vacuous
space:1

�iB
i = 0, �0Bi + �ijk� jEk = 0, �1�

�iDi = �, �ijk� jHk − �0Di = ji. �2�

Here, �i is the covariant derivative in three dimensions

�iA
i = ��i + �ij

i �Aj =
1
��

�i���Ai� , �3�

with the space metric �ij and its determinant �.
For many manipulations it will be advantageous to use

relativistically covariant quantities. Therefore, Eqs. �1� and
�2� are rewritten in terms of the field strength tensor F��, the
excitation tensor H��, and a four-current J� �see the Appen-
dix�:

�������F�� = 0, D�H�� = − J�, D�J� = 0. �4�

The four-dimensional covariant derivative D� is defined
analogously to �3�, whereby the space metric is replaced by
the spacetime metric g�� and its volume element �−g.

We wish to analyze these equations of motion from the
point of view of transformation media. All transformation
materials have in common that they follow as a transforma-
tion from a �not necessarily source-free� vacuum solution of
the equations of motion, which maps this solution onto a
solution of the equations of motion of the transformation
material.2 The crucial ingredient in the definition of transfor-
mation media then is the class of transformations to be con-
sidered. As space of all transformations we restrict ourselves
to all linear transformations in four-dimensional spacetime.
Consequently, all media exhibit linear constitutive relations,
which may be written within the covariant formulation as
�12�

H�� =
1

2
	����F��. �5�

In vacuum one obtains3

*Luzi.Bergamin@esa.int
1Here and in the following we use Einstein’s summation conven-

tion, in which a summation over all repeated indices is assumed:
AiBi=�iA

iBi. For latin indices this sum runs over the values 1,2,3
�spatial indices�, while for greek indices it runs from 0 to 4 with
x0= t being time.

2Strictly speaking this applies to transformations which are regu-
lar everywhere, only. Several singular transformations have been
proposed in the literature in the context of metamaterials, e.g., the
invisibility cloak �1,2,4�. In this case a careful study of the global
solution is indispensable, as has been done for the case of the cloak
in Ref. �23�.

3Throughout the paper, natural units with �0=�0=c=1 are used.
Notice that the corresponding relation in Ref. �3� differs from the
one used here. According to our conventions F��=H�� in vacuum,
while there �−gF��=H��.
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	���� =
1

2
�g��g�� − g��g��� , �6�

such that the standard results E� =D� and B� =H� emerges.
These transformations and the ensuing media properties

�5� have the advantage of being relativistically invariant and
thus very easy to handle. However, they do not include any
frequency dependence and remain strictly real, which per-
haps is the most severe restriction that follows from the co-
ordinate transformation approach. As long as the linear trans-
formations are seen as transformations of spacetime �rather
than of the fields� this restriction is not surprising, though.
Indeed, from energy conservation it follows that it is not
possible to model a process of absorption by the medium as
a local transformation of spacetime �notice that the space-
time itself is not dynamical and thus cannot contribute to the
energy�.

II. DIFFEOMORPHISM TRANSFORMING
METAMATERIALS

Obviously, the concept of transformation materials as
sketched above is related to symmetry transformations, as
those are by definition linear transformations that map a so-
lution of the equations of motion onto another one. Therefore
it is worth working out this relation in some more detail.

A symmetry is a transformation which leaves the
source-free4 action of the theory, here

S =� d4x�− gF��H��, �7�

invariant, whereby surface terms are dropped. It straightfor-
wardly follows that a symmetry transformation applied on a
solution of the equations of motion still solves the latter. In
the above action a general, not necessarily flat, spacetime is
considered. The symmetries of this action are well known:
these are the U�1� gauge symmetry of electromagnetism and
the symmetries of spacetime �diffeomorphisms�. The gauge
symmetry cannot help in designing materials as the media
relations are formulated exclusively in terms of gauge-
invariant quantities. However, diffeomorphisms change the
media relations, as is pointed out, e.g., in Ref. �13� and as it
has been applied to metamaterials in Ref. �3�. Thus one way
to define transformation media is the following.

Definition 1. A transformation material follows from a
symmetry transformation applied to a vacuum solution of
Maxwell’s equations. This vacuum solution need not be
source-free.

The space of all possible transformation materials of this
kind has been derived in Ref. �3�; here we briefly want to
summarize the result of that paper. The starting point is the
observation that a curved space in Maxwell’s equations looks
like a medium. Indeed, in empty but possibly curved space

the constitutive relation among the electromagnetic fields is
found by exploiting

F0i = �g00gij − g0jgi0�H0j + g0kgilH
kl, �8�

Hij = 2gi0gjkF0k + gikgjlFkl, �9�

which in terms of the space vectors reads

Di =
gij

�− g00

Ej −
g0j

g00
� jilHl, �10�

Bi =
gij

�− g00

H j +
g0j

g00
� jilEl. �11�

Thus empty space can appear like a medium with permeabil-
ity and permittivity �ij =�ij =gij /�−g00 and with bianisotropic
couplings 
ij =−�ij =�lijg0l /g00.

Now, as the basic idea of Ref. �3�, if empty space can
appear like a medium, a medium should also be able to ap-
pear as empty space. One starts with electrodynamics in
vacuo; we call these fields F�� and H�� with flat metric g��.
Now we apply a diffeomorphism, locally represented as a
coordinate transformation x�→ x̄��x�. As the equations of
motion by definition are invariant under diffeomorphisms, all
relations remain the same with the fields F, H and the metric
g�� replaced by the new barred quantities. As a last step one
reinterprets in the dynamical equations �1� and �2� the coor-
dinates x̄� as the original ones x�, while keeping ḡ�� in the
constitutive relation. To make this possible some fields must
be rescaled in order to transform barred covariant derivatives
�containing ḡ� into unbarred ones �containing g.� The situa-
tion of diffeomorphism transforming metamaterials is illus-
trated in Fig. 1, which also summarizes our notation. As a
more technical remark it should be noted that this manipula-
tion is possible as we consider just Maxwell’s theory on a
curved background rather than Einstein-Maxwell theory
�general relativity coupled to electrodynamics.� In the former
case the metric is an external parameter and thus this ma-
nipulation is possible as long as none of the involved quan-
tities depends explicitly on the metric.

To keep the whole discussion fully covariant the fields are
transformed at the level of the field strength and excitation
tensor �rather than at the level of space vectors as was done

in Ref. �3��. To transform the covariant derivatives D̄� into
the original D� we have to apply the rescalings

H̃�� =
�− ḡ
�− g

H̄��, J̃� =
�− ḡ
�− g

J̄�. �12�

In addition the transformation x�→ x̄��x� may not preserve
the orientation of the manifold, which technically means that

4Sources are external parameters and thus should be set to zero for
a symmetry transformation. Even together with sources the symme-
try can be restored, if an appropriate transformation rule of the
sources is defined.

FIG. 1. Diffeomorphism transforming metamaterials according
to Ref. �3�.
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the Levi-Cività tensor changes sign �3�. This is corrected by
introducing the sign ambiguity

F̃�� = � F̄��, �13�

with the plus sign for orientation-preserving and the minus
for nonpreserving transformations. These new fields again
exist in the original space with metric g��, but now the space
is filled with a medium with

	̃���� = �
1

2

�− ḡ
�− g

�ḡ��ḡ�� − ḡ��ḡ��� , �14�

or, in terms of space vectors,

D̃i = s
ḡij

�− ḡ00

��̄

��
Ẽj −

ḡ0j

ḡ00

� jilH̃l, �15�

B̃i = s
ḡij

�− ḡ00

��̄

��
H̃ j +

ḡ0j

ḡ00

� jilẼl, �16�

with s= �1 being the sign in �13� and �14�. As can be seen,
the media properties are restricted to reciprocal materials ��
=�T, �=�T, �=	T�, which, in addition, obey �=�. This re-
sult has been obtained in Ref. �3� in a slightly different way
and encompasses the transformations in Refs. �1,14�. We do
not want to go into further details of this approach but refer
to the review �9�, where its geometric optics interpretation is
discussed in detail. Indeed, light travels in transformation
media of this type along null geodesics of the electromag-
netic space x̄�, which allows �with some restrictions to be
discussed in Sec. V� a simple and intuitive interpretation of
the transformation.

III. TRIPLE SPACETIME METAMATERIALS

Despite the variety of applications of diffeomorphism
transforming metamaterials some results suggest a search for
extensions. Indeed, there exist, e.g., designs of super- and
hyperlenses that make use of indefinite materials �strong an-
isotropy� �6–8�. Although both concepts should be perfectly
understandable in terms of transformation media, the specific
material relations used in these works do not fall under the
class of diffeomorphism transforming metamaterials.

To understand a possible route to generalize the concept
of diffeomorphism transforming media we have to consider
again their basis, namely symmetry transformation. The con-
cept of symmetries is used to identify different solutions of
the equations of motion that effectively describe the same
physics. By means of reinterpretation in the last step of Fig.
1, such symmetry transformations can be used as a simple
tool to derive within a restricted class of constitutive rela-
tions new media properties in a geometrically intuitive and
completely algebraic way.

Nonetheless, within the concept of metamaterials it is not
important that the transformed solution in principle describes
the same physics as the original one. Still, one may want to
keep the possibility of mapping source-free solutions onto
other source-free solutions in a straightforward way, as only

in this way do we have an effective control over passive
media and do not risk introducing exotic sources such as
magnetic monopoles. Furthermore, a geometric interpreta-
tion of the transformations is kept, which is advantageous in
many applications. To weaken the conditions on transforma-
tion materials while keeping the advantages of symmetry
transformations we thus propose the following definition.

Definition 2. Consider the set of all transformations T
which map a source-free solution of the equations of motion
�1� and �2� onto another source-free solution. A transforma-
tion material is a material obtained by applying a transfor-
mation T onto a �not necessarily source-free� vacuum solu-
tion.

There are two types of extensions contained in this defi-
nition compared to the previous section.

�1� There exist transformations that leave the equations of
motion invariant, but change the action by a constant and
thus are not symmetry transformations. A transformation of
this type is the so-called electric-magnetic duality. Its effect
will briefly be discussed in Sec. III A.

�2� We do allow for transformations which leave all Max-
well’s equations �1� and �2� invariant, but change the media
relations �5�. This indeed generalizes the concept in an im-
portant way.

To see the origin of the second extension it is important to
realize that the equations of motion of electrodynamics sepa-
rate into two different sets �Eqs. �1� and �2�, respectively�
with mutually exclusive field content. This characteristic is
not just an effect of our notation, but as has been shown, e.g.,
in Refs. �15,16�, the equations of motion of electrodynamics
can be derived from first principles without using explicitly
the constitutive relation H=H�F�. As the two sets of equa-
tions are separately invariant under diffeomorphisms it
should be possible to assign different transformed spaces to

H= �D� ,H� � and F= �E� ,B� �. In other words, it must be possible
to distort the spaces �or the coordinates� of the field strength
tensor and the excitation tensor separately, whereby the re-
sulting transformation material per constructionem satisfies
all conditions of the Definition 2. The ensuing constitutive
relation as well as the solutions of the equations of motion
still follow �almost� as simple as in the case of Ref. �3�.

To prove the potential of this method we have to extend
the notation compared to the previous section: as before
laboratory space has metric g��, its fields in vacuo are

H= �D� ,H� � and F= �E� ,B� �; the fields of the transformation
material �existing in the space with metric g��� are again
labeled with a tilde. The transformed space of the field

strength tensor has metric ḡ�� and fields F̄= �Ē� , B̄� �, the one of

the excitation tensor g��� and H� = �D�� ,H�� �. This new transfor-
mation is illustrated in Fig. 2. Applying the two transforma-
tions

x̄� = x̄��x�, x�� = x���x� �17�

to the constitutive relation �5� with 	 being the vacuum re-
lation �6� yields
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H� �� =
1

2

�x��

�x


�x��

�x� �g
�g�� − g
�g���
�x̄�

�x�

�x̄�

�x� F̄��. �18�

Introducing the notation

g�� �̄ =
�x��

�x�

�x̄�

�x�g�� = g����x̄�

�x��
=

�x��

�x̄�
ḡ��, �19�

the relation may be written as

H� �� =
1

2
�g�� �̄g�� �̄ − g�� �̄g�� �̄�F̄��. �20�

It should be noted that g�� �̄ in Eq. �19� is no longer a metric,
in particular it need not be symmetric in its indices and it
need not have signature �3, 1�.

To derive the new constitutive relations in the original
�laboratory� space we proceed analogously to the previous
section. All fields have to be rescaled in order to obey the
equations of motion in the original space with metric g��,
which implies

F̃�� = � F̄��, H̃�� =
�− g�

�− g
H� ��, J̃� =

�− g�

�− g
J��. �21�

Thus the constitutive relation becomes

H̃�� = 	̃����F̃�� = �
1

2

�− g�

�− g
�g�� �̄g�� �̄ − g�� �̄g�� �̄�F̃��,

�22�

where the sign refers to the possible change of orientation in
the transformation x�→ x̄�. For the equivalent relation in
terms of space vectors the notation

����� = s̄
�− g

�− ḡ
�̄���� = s�

�− g

�− g�
������ �23�

is used, where s̄ and s� are the respective signs due to the
change of orientation in the transformations to laboratory
space. Now it easily follows from �A17�–�A20� that

Aij = − s̄
�− g�

��
�g0� 0̄gi� j̄ − g0� j̄gi�0̄� , �24�

Bij = − s�
��

�− ḡ
�g0� 0̄gi� j̄ − g0� j̄gi�0̄� , �25�

C
i
j = −

s̄

2

�− g�

��
�ikl�gk� 0̄gl� j̄ − gk� j̄gl�0̄� , �26�

D
i
j =

s̄

2

�− g�

��
� jkl�g0� k̄gi�l̄ − g0� l̄gi�k̄� , �27�

which are the defining tensors of the Boys-Post relation. Af-
ter some algebra the Tellegen relation

D̃i = − s̄
�− g�

��g0̄0�
gi� j̄Ẽ j − s̄s�

�− ḡ�− g�

�g0̄0�
gi�k̄g0� l̄�klmgm̄j�H̃ j , �28�

B̃i = − s�
�− ḡ
��g0̄0�

gīj�H̃ j + s̄s�
�− ḡ�− g�

�g0̄0�
gīk��klmgl�0̄gm� j̄Ẽ j �29�

is found, which in the limit of g���= ḡ�� is equivalent to Eqs.
�15� and �16�. An important comment is in order: due to the
different transformations applied to H�� and F��, respec-
tively, the constitutive relation �22�, or �28� and �29�, relates
fields from different spacetime points in the original space,

e.g., Ẽi(x̃= x̄�x�) refers the field Ei�x� at a different point x� in

the original space than D̃i(x̃=x��x�) does.
Let us comment on the more technical parts of this result.

In Sec. II we saw that transformation materials derived from
symmetry transformations are restricted to reciprocal materi-
als with �=�. These restrictions can be overcome partially
with the above result.

�a� As gi� j̄ = �gj̄i��T it follows that the permittivity and per-
meability are related as

s��− g��ij = s̄�− ḡ� ji. �30�

It should not come as a surprise that permittivity and perme-
ability cannot be independent, as by virtue of the definition
of the relativistically covariant tensors F�� and H�� such
transformations cannot act independently on E� and B� or D�
and H� , respectively. A possible route to relax this restriction
is discussed in Sec. VI.

�b� Permittivity and permeability need no longer be sym-
metric. Therefore it is possible to describe nonreciprocal ma-
terials, or, in the language of Eq. �A23�, the skewon part
need not vanish. This happens if the mapping between the
two electromagnetic spaces, �x̄� /�x��, is not symmetric in �
and �, e.g., for a material with mapping x̄=x−z, x� =x+z.

�c� The generalized transformations yield many more pos-
sibilities considering the signs of the eigenvalues of permit-
tivity and permeability. Within the method of Ref. �3�, � and
� are essentially determined by the spatial metric of the elec-
tromagnetic space �cf. Eqs. �15� and �16� and recall the rela-
tion gij =�ij�. However, a spatial metric by definition must
have three positive eigenvalues, a characteristic that cannot
be changed by any diffeomorphism. Thus it follows that in
any medium of this type the eigenvalues of � and � are all of
the same sign.

Within the generalized setup of “triple spacetime metama-
terials,” however, the signs of the eigenvalues in � can be
chosen freely, as the metric is multiplied by a transformation
matrix,

FIG. 2. Illustration and notation of the generalized “triple space-
time metamaterials.” Notice that the diffeomorphism I acts only on

the fields E� and B� , while diffeomorphism II acts on D� and H� .
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gi� j̄ = g� i� �x̄j

�x��
, �31�

and no restrictions on the signs of the eigenvalues of the
transformation matrix exist. In this way indefinite materials
�6,7� can be designed as a result of different space inversions
in the two different mappings. As an example the mapping
z̄=−z, z� =z �with all other directions mapped trivially� yields
�ij =diag�−1,−1,1�, �ij =diag�1,1 ,−1�.

Furthermore the relative sign between the eigenvalues of
� and those of � can be chosen as a consequence of the
factor s� in Eq. �30�. This change in the relative sign may be
interpreted as a partial reversal of time as can be seen in the
following list �space maps trivially here and all media are
assumed to be homogeneous�:

t̄ t� � �

I t t 1 1

II t −t −1 1

III −t t 1 −1

IV −t −t −1 −1

We note that all eight classes of materials discussed in
Ref. �6� allow a geometric interpretation within the setup of
“triple spacetime metamaterials.”

�d� More complicated than permittivity and permeability
are the bianisotropic couplings. With the standard assump-
tion of g0i=0 in laboratory space it follows from


ij = − s̄s�
�− ḡ�− g�

�g0̄0�
gi�k̄g0� l̄�klmgm̄j� , �32�

�ij = s̄s�
�− ḡ�− g�

�g0̄0�
gīk��klmgl�0̄gm� j̄ , �33�

similarly to Eq. �15� that all electric-magnetic couplings van-
ish if the transformation does not mix space and time. In this

case the crucial components g0̄l� and g0� l̄ may be written as

g0̄l� =
�x̄0

�x0g00 �x� l

�x0 +
�x̄0

�xi gij �x� l

�xj , �34�

g0� l̄ =
�x�0

�x0g00 �x̄l

�x0 +
�x�0

�xi gij �x̄l

�xj . �35�

Most importantly it is found from these expressions that one
of the two bianisotropic couplings may vanish while the
other one is nonvanishing, which is impossible within the
context of diffeomorphism transforming media. Moreover, in
the latter case the bianisotropic couplings must be symmetric
matrices, which need no longer be the case in the present
context.

�e� Finally, the result �28� and �29� reduces to the relations
�15� and �16� if g�̄�� is a symmetric matrix of signature �3, 1�,
and, in addition, �−ḡ=�−g� . This does not necessarily imply

x̄�=x�� but rather that there exists yet a different space which
describes the same media properties in terms of the transfor-
mations of Sec. II.

A. Electric-magnetic duality and rotation

Finally, we should ask whether Eqs. �28� and �29� indeed
describe the most general media fulfilling Definition 2. Taken
separately, the two sets of equations in �1� and �2� do not
exhibit more symmetries than diffeomorphisms. However,
there exists the possibility of transformations that mix F��

and H��. Indeed a transformation of this type is known as
electric-magnetic duality, which has important implications
in modern theoretical high-energy physics �17�. It represents
the fact that under the exchange

F��↔ 1
4�����H�� �36�

or in terms of space vectors

Bi → − Di, Hi → − Ei, �37�

Ei → Hi, Di → Bi, �38�

the source-free equations of motion do not change �the action
changes by an overall sign.� Of course, this duality transfor-
mation is problematic when applied to a solution with
sources, as it transforms electric charges and currents into
magnetic charges and currents and vice versa. In the remain-
der of this section we thus restrict to source-free solutions or
should allow the possibility of artificial magnetic monopoles.
Then it can be checked straightforwardly that electric-
magnetic duality applied to the result �20�, or �28� and �29�,
does not yield media relations not yet covered by diffeomor-
phisms alone.

However, as far as the equations of motion �1� and �2� are
concerned, electric-magnetic duality can be promoted to a
continuous U�1� symmetry with transformation5

B̃i = cos �Bi − sin �Di, D̃i = cos �Di + sin �Bi, �39�

Ẽi = cos �Ei + sin �Hi, H̃i = cos �Hi − sin �Ei. �40�

These transformations comply with Definition 2 and thus
their action onto a medium with general constitutive relation
�A13� should be studied. The result

D̃i = �cos2 �� + sin2 �� + sin � cos ��� + 
��ijẼj

+ �cos2 �� − sin2 �
 + sin � cos ��� − ���ijH̃ j ,

�41�

B̃i = �cos2 �� + sin2 �� − sin � cos ��� + 
��ijH̃ j

+ �cos2 �
 − sin2 �� + sin � cos ��� − ���ijẼj �42�

shows that the transformation acts trivially if �=� and

5Notice that under the continuous transformation the action be-
haves as S→ �cos2 �−sin2 ��S and thus for �=� /4 transforms to
zero. Therefore at the level of the action only the discrete duality
transformation can be considered.
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=−�, in particular in vacuo and consequently for all diffeo-
morphism transforming media �15�. However, they yield new
media relations when acting on a solution of the type �28�
and �29�. Therefore these new relations are part of the mate-
rials covered by Definition 2. They are derived here for com-
pleteness, though their geometric interpretation is not imme-
diate. The coordinate lines x̄��x� and x���x� could be
understood as the electromagnetic spaces of the linear com-

binations �Ẽ� , B̃� � and �D̃� ,H̃� � as given in �39� and �40�, respec-
tively. Still, one should be careful with this interpretation: as
the transformation of spacetime does not commute with the
electric-magnetic rotation one cannot modify the situation in
Fig. 3 in such a way that the two electromagnetic spaces x̄�

and x���x� are identified with certain linear combinations of

�E� ,B� � and �D� ,H� �, respectively; rather the electric-magnetic
rotation acts upon the fields after the transformation of
spacetime.

IV. PERFECT LENS FROM INDEFINITE MATERIAL: AN
EXAMPLE

To provide a better understanding of the formalism devel-
oped in the previous section a concrete example is demon-
strated. To keep things simple we show how a proposal taken
from the literature can be given a geometric interpretation.

In Ref. �6� it has been pointed out that two slabs of in-
definite material �media with strong anisotropy� can form a
perfect lens. Since, in constrast to standard diffeomorphism
transforming media, strong anisotropy is available in triple
spacetime metamaterials the question appears whether a geo-
metric interpretation of the lens proposed in Ref. �6� can be
given �see Ref. �18� for a related discussion.� We consider
the lens to be an infinite slab in the x-y plane with a certain
thickness in the z direction. In its simplest form the lens
consists of two slabs of equal thickness d, where the media
properties of the first slab are

�ij = �ij = diag�1,1,− 1� , �43�

while in the second slab

�ij = �ij = diag�− 1,− 1,1� . �44�

To provide a geometric interpretation we start with the ob-
servation that a standard perfect lens with �=�=−1 may be
produced by two different transformations, either a space

inversion z̄=−z, or a time reversal t̄=−t. From Eqs. �15� and
�16� it follows straightforwardly that these two transforma-
tions yield the same media properties. Within triple space-
time metamaterials we now may ask the question of what
happens if space inversion is applied to one set of the fields,
while time reversal is applied to the other set. For concrete-

ness, space inversion is applied to the fields E� and B� and thus

z̄ = − z + Z1, �45�

where Z1 is an unimportant constant necessary to meet the
boundary conditions. All other fields x̄� are mapped trivially.

The second set of fields, D� and H� , transform according to

t� = − t + T1 �46�

with all other fields transformed trivially. Consider now these
two transformations in Eqs. �28� and �29�. From �19� one
finds

gīj� = gi� j̄ = diag�1,1,− 1� . �47�

Furthermore, s̄=s� =−1 as both tranformations are orientation
changing. Furthermore, g0̄0� =1 �remember our convention
g0̄=−1�, such that indeed the media properties �43� are found
in this slab.

This single slab of indefinite material does not establish a
perfect lens, as can be seen easily when studying how a
world-line s���= (t��� ,x��� ,y��� ,z���) is mapped onto the
two deformed spaces. For simplicity time may be interpreted
with the parametrization variable t���=� and furthermore we
can assume without loss of generality z���=�= t.6 The situa-
tion is illustrated in Fig. 4. As can be seen the mappings do
not agree after the first slab, both trajectories are at the same
point z=0, but they differ in time. This must be corrected in
the second slab. In our example we have chosen a com-

pletely trivial mapping for D� and H� , so these fields propa-

gate in the second slab as in free space. E� and B� , however,
are transformed as

6“Time” t here is just a variable to parametrize the world-line, this
choice does not make any statements about the speed of light.

FIG. 3. Illustration and notation of the generalized “triple space-
time metamaterials” complemented by electric-magnetic rotation.
The electric-magnetic rotation must act after the transformation of
spacetime as these two steps do not commute.

FIG. 4. �Color online� Mapping of the world-line s�t�= (t ,z�t�)
in the original space onto the deformed spaces by means of the two
different transformations. Blue lines indicate the trajectory outside
the lens �trivial mapping of all x��, the red line represents the first
slab, and the green line the second slab. The parametrization of the
world-line in the original space is assumed to obey z�t�= t.
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t̄ = − t + T2, z̄ = − z + Z2, �48�

which actually reverses the transformation �45� and at the
same time applies �46�. Not surprisingly, the two trajectories
now meet at the same point again and the perfect lens is
established. Again it is immediate that this transformation
establishes the media relations �44�. Therefore, triple space-
time metamaterials indeed can provide a geometric interpre-
tation of the lens of Ref. �6�. It should be noted, that this
specific lens has focal length zero, it shrinks the effective
width of the device from 2D to zero, but not to a negative
value as is necessary for a real lens.

V. ENERGY, MOMENTUM, AND WAVE VECTOR

So far we have studied solutions of Maxwell’s equations
which—up to rescalings—are equivalent to certain vacuum
solutions. Still we did not ask up to what point these trans-
formation materials really are “media that look like empty
space.” To do so it is not sufficient to consider the transfor-
mation of the fields and sources, but equally well we should
look at the conservation laws, summarized in the conserva-
tion of the stress-energy-momentum �SEM� tensor. While in
the generic situation of electrodynamics in media, the defi-
nition of the “SEM tensor of electrodynamics” is not unique
�19,20�, we do not have to deal with these subtleties in the
present situation as our �idealized� media are lossless and
dispersion free and thus allow for a definition of a complete
action �cf. Eq. �7�� without any reference to “matter.” There-
from we immediately derive the covariant SEM tensor

T�� = −
1

4�
�F��g�	
�H	�
� +

1

4
g��F��H��� , �49�

D�T�� = 0. �50�

The advantage of this tensor over the canonical SEM tensor
is the simple behavior under diffeomorphisms: being a real
tensor field, T�� transforms exactly in the same way as the
metric.

Let us now look at the materials as described in Sec. II.
Thanks to its transformation properties the SEM tensor in the
electromagnetic space follows immediately as

T̄�� = −
1

4�
�F̄��ḡ�	�
H̄	�
� +

1

4
ḡ��F̄��H̄��� . �51�

But how about T̃��? Of course one could define an “induced
SEM tensor” from the electromagnetic space as �cf. Eqs. �12�
and �13��

T̃I
�� = �

�− g

�− ḡ

1

4�
�F̃��ḡ�	�
H̃	�
� +

1

4
ḡ��F̃��H̃��� , �52�

but obviously this tensor is not conserved in laboratory

space, D�T̃I
���0, since it depends explicitly on the metric

ḡ��. In other words, the crucial trick to re-interpret in the
dynamical equations the coordinates in electromagnetic
space, x̄�, as those in laboratory space, x�, works in the equa-
tions of motion �1� and �2�, but does not work for the SEM
tensor and its conservation.

Of course, the correct SEM tensor in laboratory space
immediately follows from �49� as

T̃�� = −
1

4�
�F̃��g�	�
H̃	�
� +

1

4
g��F̃��H̃��� . �53�

Clearly, requiring equivalence of the two tensors would not
even allow for conformal transformations. But even when
looking at integrated quantities �total energy and momentum
flux in the material�,

P� =� d3x��T0�, �54�

the induced tensor does not yield the correct quantity in labo-
ratory space. Of course, the situation is even more compli-
cated for triple spacetime metamaterials: since the transfor-
mation of the explicit metrics appearing in Eq. �49� is not
defined, an induced SEM tensor cannot even be defined.

Instead of the correct, directly evaluated SEM tensor �53�,
a slightly different tensor is considered in the following. To
see its advantage we make the standard assumption that our
laboratory space metric has g00=−1 �x0 is our laboratory
time� and g0i=0 �the measure of distances is time indepen-
dent.� Then it is straightforward that the quantity

M�� = − g��F��H�� �55�

contains the Poynting vector and the direction of the wave
vector,

Si = M0i = �ijkEjHk, �56�

ni = Mi0 = �ij� jklDkBl � ki. �57�

We recall that the original fields obey the constitutive rela-
tions of vacuous space and thus trivially M0i=Mi0. From the
transformation rules �21� the transformed tensor is found as

M̃�� = − s̄
�− g�

�− g
g��F̄��H� ��

= − s̄
�− g�

�− g
g���x


�x̄�
F
�

�x�

�x̄�

�x��

�x�H�� �x��

�x� . �58�

The transformation law of M�� encodes in a geometric lan-
guage how energy flux and phase velocity behave in a me-
dium. For simplicity let us now concentrate on media with-
out bianisotropic couplings, in other words we allow for
general spatial transformations as well as stretchings and re-
versal of time, but keep ḡ0i=g�0i=0. Then we find for the
transformed space vectors �see Eqs. �A9�–�A12��:

S̃i = M̃0i = − s̄s���
�− g�00

g00

�x0

�x̄0�ijk�xm

�x̄j Em
�xn

�x�kHn, �59�

ñi = M̃i0 = �̄
�− g���̄

��

�x�0

�x0�ij� jkl
�x�k

�xmDm �x̄l

�xnBn. �60�

The transformation of the Poynting vector may be abbrevi-
ated as
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S̃i = TijkEjHk, �61�

and it is then easily seen that ni transforms as

ñi = �̄s̄�� s�
��� �̄

2�
g00

�x�0

�x0

�x̄0

�x0UikjD
jBk, �62�

where Uijk is the inverse of Tijk in the sense of

UijkT
ljk = �i

l. �63�

While these formulas might look cumbersome, their geomet-
ric interpretation actually is quite straightforward. In the case
of diffeomorphism transforming materials, ḡ��=g���, Eq.
�59� states that Si behaves under purely spatial transforma-
tions as a covector �1�, while ni from Eq. �60� behaves as a
vector:

S̃i = s̄
�− ḡ

�− g00
�− g

�x0

�x̄0

�x̄i

�xj S
j , �64�

ñi = s̄�− ḡ
�x̄0

�x0

�xj

�x̄i nj . �65�

Of course, the relative orientation of Si and ni is preserved

under the diffeomorphisms, but this is no longer true for S̃i

and ñi, since indices are raised or lowered by the space met-
ric �ij in laboratory space as opposed to �̄ij in electromag-
netic space.

For triple spacetime metamaterials no linear transforma-

tion S̃i=Ti
jS

j exists. This makes the interpretation a little bit
more complicated, but at the same time is the source of the
numerous additional possibilities within this generalized
setup. In general, the value of the element Tijk defines the
component of the Poynting vector in direction xi as generated
by electric and magnetic fields that point in the original
space in the directions xj and xk, respectively. In this way it is
easy to engineer the direction of the Poynting vector in the
medium for a given polarization of the incoming wave in
vacuum. Similar conclusions apply for the transformation
matrix Uijk, with the notable restriction that ñi can be parallel

or antiparallel to ki. Whether �D̃i , B̃j , k̃l� form a right- or left-
handed triple can be deduced from

�ijkD̃ jB̃k =
k̃i

�̃
Ẽj�

jkẼk = − s̄
�− g�

��g0̄0�

k̃i

�̃
Ẽj�

j�k̄Ẽk. �66�

A. Wave vector and dispersion relations

While the above relations correctly reproduce the direc-
tion of the Poynting and the wave vector, they cannot distin-
guish between propagating and evanescent modes. Consider
as an example the following transformation:

x̄0 = x0, x̄i = xi, x�0 = − x0, x� i = xi. �67�

From Eqs. �15� and �16� it is found that this is a homoge-

neous material with �=−1 and �=1. As fields in vacuo, E�

=D� and B� =H� , we consider a monochromatic wave

E� = e�ei�k�·x�−�t� + c.c., k� · e� = 0, �68�

B� = b�ei�k�·x�−�t� + c.c., b� =
1

�
k� � e� . �69�

After the transformation the fields Ẽ� , B̃� and D̃� , H̃� refer to the
original fields at different time instances:

Ẽ� „x̃� = x̄��x�… = E� �x�,t� , �70�

B̃� „x̃� = x̄��x�… = B� �x�,t� , �71�

D̃� „x̃� = x���x�… = − D� �x�,− t� , �72�

H̃� „x̃� = x���x�… = − H� �x�,− t� . �73�

Of course, Maxwell’s equations are satisfied by the new
fields by construction. Still, the partial exchange of positive
and negative angular frequencies has important implications
in the dispersion relation as any propagating wave in vacuo
becomes evanescent in the medium, and vice versa.

Although this behavior may not appear immediate when
transforming the monochromatic wave �68� and �69� with
�70�–�73�, it can be made explicit from geometric quantities
as well. Indeed, from the relativistic wave equation �12�

D�	����D�A� = − J� �74�

it follows straightforwardly that “triple-space metamaterials”
in the absence of charges and currents and in the limit of
approximate homogeneity obey the dispersion relation

g�� �̄k�k� = 0, k� = ��,k�� . �75�

In our example the partial reversal of time yields g0� 0̄=1 and
thus �2+k�2=0.

VI. NONINVARIANT TRANSFORMATIONS

Within the approaches to transformation media discussed
so far invariant transformations of the equations of motions
were used exclusively. This means that the transformations
do not introduce charges or currents; in other words, the
transformation medium based on a source-free vacuum solu-
tion will be source-free as well. What happens if this restric-
tion is abandoned? Still insisting on a constitutive relation of
the form �5� this suggests the following definition.

Definition 3. A transformation medium is defined by an
arbitrary linear transformation applied to a �not necessarily
source-free� vacuum solution of Maxwell’s equations. The
linear transformation constitutes the media properties as well
as charges and currents of the transformation medium.
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Although not in its most general form, this approach was
proposed in �10,11�. Starting from the vacuum relation �6�
the most general linear relation can be achieved by the field
transformations7

H̄�� = ���
��H��, F�� = ���

��F̄��, �76�

with the transformed 	̄,

	̄���� = ��	������. �77�

The original fields F�� and H�� by assumption are solutions
to the equations of motion. If we allow besides the standard
electric four-current J� also a magnetic four-current JM

� , any
transformation of the type �76� can be mapped on a solution

of the new equations ��̂��
�� is the inverse matrix

�̂��

��
�

��= ���
� ��

�−��
���

�� /2�

D�H̄�� = J̄� = D�����
��H��� , �78�

�������F̄�� = J̄M
� = ���������̂��

�
F�
� , �79�

provided appropriate currents are introduced. These transfor-
mations in general are not symmetry transformations and
accordingly a source free solution is no longer mapped on
another source free solution. The transformations �76� and
the ensuing equations of motion �78� and �79� are the rela-
tivistic form of the transformations proposed in Refs.
�10,11�.

We recover the invariant transformations of Sec. III by
introducing the restrictions

���
�� = S�

�S�
�, ���

�� = T�
�T�

�. �80�

Let us first count the degrees of freedom in the transforma-
tions. 	���� is a rank-4 tensor, antisymmetric in �� ,�� and
�� ,��, and thus has 36 independent components �20 compo-
nents of the principal part, 15 of the skewon part, and one
axion coupling�. The same applies to the transformation ma-
trices � and �. Restriction to diffeomorphisms according to
Eq. �80� reduces this number to six parameters for each �
and �; the electric-magnetic rotation of Sec. III A adds an-
other parameter in the form of a rotation angle. Here, another
important difference between a transformation material ac-
cording to Definitions 2 and 3 emerges. In both cases the
transformation yielding certain media properties is not
unique. In the former case, however, different transforma-
tions are physically equivalent as they are connected by sym-
metry transformations �isometries of the laboratory metric
g���. In the more general case of Eq. �76� the different trans-
formations need not be physically equivalent. As is immedi-
ate from Eq. �76� a certain medium exhibiting sources due to
noninvariant transformations can be designed using electric
charges and currents, magnetic charges and currents, or both,

which clearly characterizes physically different situations
with the same media properties 	.

Does there exist the possibility of a geometric interpreta-
tion of Eq. �76�? If this shall be possible space must be
transformed differently for different components of F�� and
H��. In fact, the most general linear transformation can be
interpreted as a separate transformation of spacetime for each
component of the two tensors. Let us provide a simplified
example, where independent spatial transformations are ap-

plied to E� , B� , D� , and H� . Laboratory space is denoted by xi,
the electromagnetic spaces by xE

i , xB
i , xD

i , and xH
i , respec-

tively. Under time-independent spatial transformations all
four fields transform as �co�vectors and thus Eqs.
�A9�–�A12� suggest the interpretations

Ẽi = sE
�xj

�xE
i Ej, B̃i =

��B

��

�xB
i

�xj Bj , �81�

D̃i =
��D

��

�xD
i

�xj D
j, H̃i = sH

�xj

�xH
i H j , �82�

yielding for the permittivity and permeability

�ij = sE

��D

��

�xD
i

�xk �kl�xE
j

�xl , �83�

�ij = sH

��B

��

�xB
i

�xk �kl�xH
j

�xl . �84�

As is seen from �1� and �2�, Gauss’s law for B̃i and D̃i

remains unchanged, while Faraday’s and Ampère’s laws are
changed according to

��E

��B

�xE
i

�xB
j �0B̃j + �ijk� jẼk = 0, �85�

�ijk� jH̃k −
��H

��D

�xH
i

�xD
j �0D̃ j = 0, �86�

making the electric and magnetic currents

ji = − �� j
i −

��H

��D

�xH
i

�xD
j ��0D̃ j , �87�

jM
i = �� j

i −
��E

��B

�xE
i

�xB
j ��0B̃j �88�

necessary. For completeness it should be mentioned that the
transformations �81� and �82� allow a straightforward inter-
pretation since each of the four Maxwell’s equations still can
be transformed as a whole. Taking even more general trans-
formations, e.g., transforming each component of the electric
and magnetic fields separately, no longer allows this manipu-
lation in a simple way and thus will make the derivation of
the necessary media parameters more complicated.

7Alternatively, one could start from a relation of the form

H̄�� = A��
��H�� + B����F��

but the form �76� appears more transparent to us.
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VII. CONCLUSIONS

In this paper we have introduced a generalization of the
concept of diffeomorphism transforming media, the basis of
transformation optics �1–3�. As the basic idea we have found
that spacetime can be transformed differently for the field

strength tensor �containing E� and B� � and the excitation tensor

�encompassing D� and H� �. This extension allows design of
nonreciprocal media, in particular the permittivity and per-
meability need not longer be symmetric. Furthermore, this
approach permits a geometric interpretation of indefinite me-
dia �6,7�.

Diffeomorphism transforming media are motivated by the
wish to produce a medium that looks like a transformed but
empty space. The basis of this interpretation is Fermat’s prin-
ciple applied to these media �9�: indeed, it is found that in a
transformation medium the light rays travel along trajectories
as if the medium was a transformed, empty space. Still, the
transformation medium in general is quite different from
transformed empty space, if the conservation laws from the
stress-energy-momentum tensor are considered. This aspect
is even more important within the extension proposed here,
as there exist two different transformed �electromagnetic�
spaces and light rays do not follow the geodesics of any of
them. We have shown that one can make a virtue out of
necessity: the geometric approach does not just provide a
tool to design the path of light in a medium, but equally well
it may be used to design the behavior of �parts of� the stress-
energy-momentum tensor, e.g., the direction of the Poynting
vector, and/or the behavior of the wave vector. Here the pro-
posed generalization offers many more possibilities com-
pared to the known diffeomorphism transforming media. In
particular, we have derived the geometric relations that de-
scribe the transformation of the Poynting vector and of the
direction of the wave vector as well as the dispersion rela-
tion.

Finally we have commented on a different route to gen-
eralize the notion of transformation media �10,11�. These
field-transforming media are not based on invariant transfor-
mations of the equations of motion, and consequently
source-free solutions of the original configuration are not
mapped onto source-free solutions of the new medium. We
have shown that also this approach may be covered by a
generalized concept of coordinate transformations. Still,
there remains a fundamental difference between the ap-
proach of Refs. �10,11� and the one discussed here: While in
the former case the transformations are ultralocal �the trans-
formed fields at the point x� are defined in terms of the
original fields at this point�, in the latter they are essentially
nonlocal, as the transformed fields at x̃� are related to the
original fields at some x�� x̃�. The preferable approach de-
pends on the specific problem at hand; also a combination of
the two is conceivable.
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APPENDIX: COVARIANT FORMULATION

In this appendix we present our notations and conventions
regarding the covariant formulation of Maxwell’s equations
on a possibly curved manifold. For a detailed introduction to
the topic we refer to the relevant literature, e.g., �12,13�.
Throughout the whole paper natural units with �0=�0=c=1
are used.

Greek indices � ,� ,� , . . . are spacetime indices and run
from 0 to 3, latin indices i , j ,k , . . . space indices with values
from 1 to 3. For the metric we use the “mostly plus” con-
vention, so the standard flat metric is g��=diag�−1,1 ,1 ,1�.
If we interpret x0= t with �laboratory� time the space metric
can be obtained as �13�

�ij = gij, �ij = glk −
g0ig0j

g00
, �ij� jk = �k

i . �A1�

This implies the relation between the determinant of the
spacetime metric, g, and that of the space metric, �,

− g = − g00� . �A2�

The four-dimensional Levi-Cività tensor is defined as

����� = �− g������, ����� = −
1

�− g
������ , �A3�

with �0123�=1. Therefore the reduction of the four-
dimensional to the three-dimensional tensor reads

�0ijk = �− g00�ijk, �0ijk = −
1

�− g00

�ijk. �A4�

An additional complication when in the definition of �̄ijk and
�� ijk, since the orientation of the spacetime manifold may
change without changing the orientation of space �e.g., by a
mapping t̄=−t.� Therefore the corresponding relations should
be written as

�̄0ijk = �̄�− ḡ00�̄ijk, ��0ijk = �� �− g�00�� ijk, �A5�

where �̄= +1 if space and spacetime have the same orienta-
tion, and �̄=−1 otherwise.

The field strength tensor F�� encompasses the electric
field and the magnetic induction, the excitation tensor H��

the displacement vector and the magnetic field with the iden-
tification

Ei = F0i, Bi = −
1

2
�ijkFjk, �A6�

Di = − �− g00H
0i, Hi = −

�− g00

2
�ijkH

jk. �A7�

Finally, electric charge and current are combined into a four-
current J�= �� /�−g00, ji /�−g00�. F�� and H�� are tensors,
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thus under the transformations of Sec. III they behave as

F̄�� =
�x�

�x̄�
F��

�x�

�x̄�
, H� �� =

�x��

�x� H�� �x��

�x� . �A8�

This implies for the transformed space vectors in laboratory
space

Ẽi = s̄
� �x0

�x̄�

�xj

�x̄i −
�x0

�x̄i

�xj

�x̄0�Ej −
�xj

�x̄0

�xk

�x̄i � jklB
l� , �A9�

B̃i = �̄
��̄

��

�x̄i

�xj B
j − s̄�ijk�x0

�x̄j

�xl

�x̄kEl, �A10�

D̃i =
�− g�

�− g

� �x�0

�x0

�x� i

�xj −
�x�0

�xj

�x� i

�x0�D j +
�x�0

�xj

�x� i

�xk� jklHl� ,

�A11�

H̃i = s���
�− g�00

�− g00

�xj

�x� i H j +
�− g�

�− g
�ijk

�x� j

�x0

�x�k

�xl D
l. �A12�

We characterize the general linear, lossless media usually
by means of the Tellegen relations

Di = �ijEj + �ijH j, Bi = �ijH j + 
ijEj . �A13�

In terms of field strength and excitation tensor the media
relations become the Boys-Post relation

H�� =
1

2
	����F��, �A14�

where 	 must be invertible with inverse

	̂��
�	

��� = ���

� ��
� − ��

���
�� . �A15�

By virtue of Eqs. �A6� and �A7�, Eq. �A14� may be written
as

�Hi

Di � = �Ci
j

Bij

Aij D
i
j
��Ej

Bj � , �A16�

with

Aij = − �− g00	
0i0j , �A17�

Bij =
1

8
�− g00�ikl� jmn	klmn, �A18�

Ci
j = −

1

2
�− g00�ikl	

kl0j , �A19�

D
i
j =

1

2
�− g00� jkl	

0ikl. �A20�

The Tellegen and Boys-Post formulations are related by

�ij = �A − DB−1C�ij, �ij = �DB−1�ij , �A21�

�ij = �B−1�ij, 
ij = − �B−1C�ij . �A22�

Finally, we mention that the rank-4 tensor 	���� may be
decomposed as �15,16�

	����=�1�	���� + ���
���S

��� − ���
���S


��� + ������,

�A23�

where the principal part �1�	���� has no part completely an-
tisymmetric in its indices and is symmetric under the ex-
change �� ,��↔ �� ,��. The principal part has been discussed
extensively in �12�. S�

� was introduced in Refs. �15,16� as the
skewon part �related to chiral properties of the material
�16,21��, while � represents the well-known axion coupling
�22�.
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