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Starting from Maxwell equations in curved space, we derive the field equations of light when constrainted
to a curved surface via a possible nonlinear waveguide. We show that surfaces with constant extrinsic curva-
ture, in particular minimal surfaces, allow solutions with a well-defined polarization. We derive a generalized
nonlinear Schrödinger equation and solve the linear propagation for surfaces of revolution with constant
positive and negative Gaussian curvature.
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I. INTRODUCTION

Recent years have witnessed extensive theoretical studies
on analog models of general relativity �GR� �1–7�. Moreover,
there are experimental attempts to find analogous effects, for
example, the Hawking effect in the laboratory. Promising
candidates for the experimental realizations of these analog
models focus mainly on Bose-Einstein condensates or optics
�5�.

A few groups have considered also the case of a quantum
mechanical particle, which is confined on a curved surface
�8–11�. These works show some connections to a particle in
a two-dimensional curved space if the effective model is
used that was developed in �8�. As shown in �9,10�, this
effective model shows quantitative agreement with the exact
results. One can also consider these as analog models of GR.
These studies are not only of theoretical interest, since one
can construct complex nanostructures with new properties
�12,13� due to localization of electrons or light around a
curved surface.

In optics we have the possibility to study the effects of
curved space if we abandon one spatial dimension and con-
fine light simply on a curved surface. Experimentally, this
can be achieved by a film waveguide on such a surface. As
long as the principal curvatures are not too large compared to
the wave number in the waveguide, light will remain on the
surface. As an example, it was theoretically shown �14,15�
that one can find topological Bloch oscillations, where the
change of the refractive index is given by the change of
geometry.

In the present work, starting from the coordinate-
independent Maxwell equations, we develop an effective
theory that describes the propagation of light on a general
curved surface. As discussed, the confinement could be
achieved by a film waveguide which is attached to the
curved surface of a three-dimensional body. Similarly to the
flat case, we derive a generalized nonlinear Schrödinger
equation which describes the propagation of light in a curved
nonlinear waveguide. Furthermore, we study the linear
propagation of an initially Gaussian profile on surfaces of
revolution with constant Gaussian curvature.

II. FIELD EQUATIONS

Let us consider the propagation of a monochromatic wave
with frequency �=k0c in a general curved waveguide, i.e., a
film waveguide on a curved surface S. To describe the full
evolution of the electromagnetic field on such a surface, we
consider Maxwell’s equations written in general coordinates
�16�,

�ijk� jEk +
1

c

�Bi

�t
= 0,

1
�g

�i
�gBi = 0, �1�

and

�ijk� jHk −
1

c

�Di

�t
= 0,

1
�g

�i
�gDi = 0. �2�

The indices i,j,k run from 1 to 3 and �g�ijk=�ijk is the co-
variant generalization of the completely antisymmetric Levi-
Cività tensor �123=1. The electric displacement field is given
through Di=Ei+ Pi, where the polarization Pi can also be
nonlinear in the electric field Ei. Here gij are the coefficients
of the induced metric

ds2 = gijdxidxj �3�

with respect to the curvilinear coordinates x1, x2, x3, and g
=det�gij�. From this we can derive the wave equation for the
electric or magnetic field. We focus on the electric field,
since for a monochromatic wave the magnetic field can al-
ways be derived by using the first equation of �1�. The wave
equation takes the form

− �gEi +
1
�g

� j
�ggik�kE

j +
1

c2

�2Ei

�t2 = −
1

c2

�2Pi

�t2 , �4�

where �g is the well-known covariant Laplace operator

�g =
1
�g

� j
�ggjk�k �5�

with respect to the metric tensor �17�. The second term in �4�
is an extra term, which is not present in the case of a scalar
field �8–10,14,15�. In Cartesian coordinates this is the usual
divergence term, which is zero for homogeneous materials
due to the Gaussian constraint. This is not the case in curved
coordinates, since curved space acts like an effectively inho-
mogeneous medium �16�.
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Now, following �8� we introduce a local set of coordinates
in the vicinity of the surface S given by

r�x1,x2,x3� = f�x1,x2� + x3��x1,x2� , �6�

with r= �X ,Y ,Z�T and � the normal vector to the surface.
Hence, x1 and x2 are parametrizing the surface S where x3

defines the distance to it �see Fig. 1�a��. In these coordinates
the coefficients of the metric are readily found to be

gab = �ab − 2habx3 + hachb
c�x3�2,

g33 = 1, g3a = 0. �7�

The latin indices a ,b ,c , . . . take the values 1 and 2. The
metric coefficients are expressed in terms of the coefficients
�ab of the intrinsic metric and hab the coefficients of the
second fundamental form of the surface �17,18�. Also one
needs the determinant of the metric

�g = ���, � = 1 − 2Hx3 + K�x3�2, �8�

which depends on the Gaussian or intrinsic curvature K and
the extrinsic curvature H of the surface �see Fig. 1�b��. Next
we assume that a dielectric waveguide is attached to the
curved surface. Furthermore, the index of the guiding layer
n0 is constant and homogeneous with respect to the coordi-
nates x1, x2, and x3.

Now we are able to derive the wave equations in the wave
guiding layer. To find these equations we express the wave
equation and the divergence constraint in these coordinates.
Since light is confined near S we consider the narrow layer
limit x3→0. Note that this limit has to be taken at the end of
the calculation �8�. Further more we introduce the new field

Êi=��Ei. This is necessary to get the right volume measure
on the surface after we separated the x3-dependent part of the
electric field �8�. Following this procedure, we find the
Gaussian law

1
��

�a
��Êa + �3Ê3 − HÊ3 = 0. �9�

The Laplace operator is found to be of the form �8�

− �gEi = − ��Êi − �3
2Êi − �H2 − K�Êi. �10�

Using �9� and �10� we can deduce the Helmholtz equation

− ��Ê3 − �3
2Ê3 + H2Ê3 = k0

2n0
2Ê3 − ��bH�Êb −

1

c2

�2P̂NL
3

�t2

�11�

for the component perpendicular to surface S. Here �� is the
Laplace operator �5� now with respect to the intrinsic surface
metric �ab. In a similar way, using again �9� and �10� the
following equations for the components tangential to S can
be derived:

− ��Êa − �3
2Êa − �H2 − K�Êa + ��c�

ab��bÊc

− �ab��b�c ln ���Êc

= k0
2n0

2Êa − 2�hab�bÊ3 + �ab��bH�Ê3� −
1

c2

�2P̂NL
a

�t2 .

�12�

Equation �11� and �12� are the final equations which describe
the propagation of light in a nonlinear waveguide confined
on a general curved surface. In all these equations the narrow
layer limit x3→0 is assumed to be valid. Here we follow
�9,10� and consider these equations as an approximation to
the full three-dimensional problem.

Note that the normal component does not couple in the
usual way to the surface �11�, since the additional surface
potential is only H2 instead of −H2+K �8�.

The coupling between the normal and tangential compo-
nents is mainly given by the change of the extrinsic curva-
ture along the surface. For a special class of surfaces it is
possible to decouple �12� and �11�. Let us consider surfaces

x1

x2

x3

S

R1
R2

P

S

(a) (b)

FIG. 1. �a� illustrates the chosen coordinates �6� for a general surface S which is parametrized by r= f�x1 ,x2�. �b� illustrates the definition
of the intrinsic and extrinsic curvature. With ��1�=1 /R1 and ��2�=1 /R2 we have K=�1�2 and H= �1 /2���1+�2� for an arbitrary point P on
a surface S. If the corresponding tangent circle bends away from the normal vector, the sign of �1 and �2 is defined as positive. Note that
in the case shown the signs of �1 and �2 are different.
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with H=0. A surface with H=0 is called a minimal surface,
since it minimizes for fixed boundary the volume or area of
all possible surfaces when varied in normal direction. An
example of such a surface would be the famous catenoid
�18�. For these special class the tangential components of the

TE field Ê= �Ê1 , Ê2 ,0� satisfy

− ��Êa − �3
2Êa + KÊa + ��c�

ab��bÊc − �ab��b�c ln ���Êc

= k0
2n0

2Êa −
1

c2

�2P̂NL
a

�t2 , �13�

where again a=1,2.
Now for simplification we assume that also for a general

surface �aH is small when compared to k0
2n0

2 and can there-
fore be neglected. This is a valid approximation as long as
the extrinsic curvature H varies on scales large compared
with the wavelength only. For most cases this is well satis-
fied. Furthermore, we will focus on wave numbers of the
order k0

2�10−4 nm−2 whereas K�H2�10−14 nm−2. This
means the wavelengths are in the visible range and the cur-
vature of the considered surface is of the order of centime-
ters. Therefore we can neglect the term −H2+K and �aH in

�12� and find for TE polarization Ê��Ê1 , Ê2 ,0� the equa-
tions

− ��Êa − �3
2Êa + ��c�

ab��bÊc − �ab��b�c ln ���Êc

= k0
2n0

2Êa −
1

c2

�2P̂NL
a

�t2 �a = 1,2� . �14�

Note that these equations are still coupled due to the coordi-
nate dependence of the metric. For the decoupling of �14� we
consider surfaces with an additional symmetry, namely, sur-
faces of revolution. To fix the notation we briefly review
some important properties of these surfaces.

III. SURFACES OF REVOLUTION

A possible and convenient parametrization of surfaces of
revolution is given by

f�z,	� = „r�z�cos�	�,r�z�sin�	�,h�z�… , �15�

where x1=z and 	 is the angle of rotation. It is always pos-
sible to choose a parametrization such that �dr /dz�2

+ �dh /dz�2=1. For this parametrization we find the metric

ds2 = dz2 + r2�z�d	2 = �zzdz2 + �		d	2. �16�

We will call these coordinates warped coordinates, because
the metric has the form of a warped product. As usual the
elements of the inverse metric are denoted by �zz=�zz

−1 and
�		=�		

−1 . A special class of surfaces of revolution are sur-
faces with constant Gaussian curvature K. These will be con-
sidered next.

A. Surfaces with constant K
0

In this case there are three different surfaces �Fig. 2�.
They all have the same intrinsic curvature but different ex-
trinsic curvature. These are parametrized by r�z�
=R0 cos�z /R�. For R=R0 one gets the sphere, for R0�R a
spindle type, and for R0
R a bulge type surface. The Gauss-
ian or intrinsic curvature is then given by K=1 /R2. If we
define the x2=x variable through x=R0	, one gets for these
surfaces the metric

ds2 = dz2 + cos2	 z

R

dx2, x � �− �R0,�R0� . �17�

For R0R we have �z���R /2, whereas in the other case z
varies only in the limited range �z��R arcsin�R /R0�. We
have �zz=1 and �xx=cos2�z /R� and we find the Laplace op-
erator

�� = �z
2 −

1

R
tan	 z

R

�z +

1

cos2�z/R�
�x

2. �18�

(a) (b) (c)

FIG. 2. �Color online� Surfaces of constant positive Gaussian curvature K=1 /R2: the sphere �a�, the spindle type �b�, and the bulge type
�c�. The color �online� or grayscale �print� illustrates the value of the arclength in the z direction, from −�R /2 to �R /2 or −R arcsin�R /R0�
to R arcsin�R /R0�.
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B. Surfaces with constant K�0

As in the positive case there are three distinguishable sur-
faces. In contrast to the case K
0 each surface has now a
different parametrization. To show the similarities to the
positive curvature case, we focus on the hyperboloid type
surface given by f�z�=R0 cosh�z /R� with K=−1 /R2 �Fig. 3�.
Again we define x=R0	 for R0
0. Therefore the metric has
the form

ds2 = dz2 + cosh2	 z

R

dx2, x � �− �R0,�R0� . �19�

The coordinate z is also limited. It varies now in the range
�z��R arcsinh�R /R0�. In this case �zz=1 and �xx
=cosh2�z /R�. The Laplace operator is then given by

�� = �z
2 +

1

R
tanh	 z

R

�z +

1

cosh2�z/R�
�x

2. �20�

Note that all three surfaces are locally isometric �17,18�. This
means that locally one can always find a coordinate transfor-
mation which brings the metric into the form �19�.

C. Helmholtz equation for surfaces of revolution

In the warped coordinates �16� we are now able to de-

couple �14� if we choose the polarization Ê= �0,� ,0�. This is
due to the fact that the metric does not depend on the second
coordinate x. Note that this polarization is exact in the case
of minimal surfaces �H=0�. Therefore we find that the com-
ponent in the x direction � of the electric field satisfies the
scalar equation

− ��� − �3
2� + VNL��� = k0

2n0
2� . �21�

Here VNL is a nonlinear potential. For the standard Kerr non-
linearity it is given by VNL���=−3k0

2��3,1����2� �19�. For
separating the normal part we use the ansatz ��x ,z ,x3�
=��x ,z���x3�, and following �20� we finally find

− ��� + VNL��� = k2� , �22a�

− �3
2� − k0

2n0
2� = − k2� , �22b�

where k2 is the constant of separation and now VNL���
=−����2�. The effective nonlinear coefficient is defined as
�=3k0

2���3,1����4d�x3� /����2d�x3�. Note that only the second
equation �22b� depends on the actual layer. Hence the mode
structure and the propagation constant k have to be deter-
mined for the respective index structure.

IV. NONLINEAR SCHRöDINGER EQUATION
IN CURVED SPACE

If we restrict ourselves to optical wavelengths we can
assume an effective wave number of the order of k2

�10−4 nm−2. If we now consider surfaces where K and H2

are much smaller than 10−4 nm−1, we would expect that the
envelope of the field varies slowly compared to the phase. As
in flat space �20� we can try to find a paraxial or slowly
varying envelope approximation of �22a�. However, in a
curved space this is not as straightforward as in flat space.
We need to make sure that the fast oscillating phase, which is
separated, is close to the actual phase of the field. Here we
consider only surfaces of revolution in warped coordinates.
The general case is discussed in Appendix A.

As a guiding road we review the flat case. In Euclidean
space the phase is simply given by S�z�=kz, when propaga-
tion is in the z direction. Now S�z� is just the flat Hamilton-
Jacobi function, which satisfies in the flat case

��zS�2 + ��xS�2 = k2 �23�

for kz=�zS=k and kx=�xS=0. Thus, in comparison to this, it
is natural to assume that the fast oscillating phase on a
curved surface is given by the Hamilton-Jacobi function in
this curved space, which now satisfies

�ab�aS�bS = �zz��zS�2 + �xx��xS�2 = k2. �24�

In general S is a function of both variables, but if we con-
sider surfaces of revolution it separates. This agrees with the
flat case and we can readily integrate �24�,

S�x,z� = �z

��zz�k2 − �xxkx
2�dz� + kxx . �25�

Due to the rotational symmetry kx=�xS is still constant. Now
there are two possible cases: the propagation is in the z or x
direction. Here we consider only propagation in the z direc-
tion. The other case is analyzed in Appendix A. For the first
case we can simply set kx=0. Therefore the phase is given by
S�z�=k�z��zzdz�=kz, which is k times the proper length in
the z direction.

A. Nonlinear Schrödinger equation for constant K
0

Regarding the discussion in the above section we use the
following ansatz:

FIG. 3. �Color online� Hyperboloid type surface with negative
Gaussian curvature K=−1 /R2. The color �online� or grayscale
�print� illustrates the value of the arclength in the z direction, from
−R arcsinh�R /R0� to R arcsinh�R /R0�.
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��x,z� =
1

�cos�z/R�
u�x,z�eikz, �26�

where the field is also rescaled. Due to this rescaling the
first-order derivative term in �18� vanishes and the analogy to
the standard flat nonlinear Schrödinger equation becomes ex-
plicit. Inserting �26� in �22a� and assuming that the envelope
u is slowly varying with respect to the phase,

 �2u

�z2  � 2k �u

�z
 , �27�

we finally get

2ik
�u

�z
= −

1

cos2�z/R�
�2u

�x2 − Veffu −
��u�2

cos�z/R�
u . �28�

The effective potential is found to be

Veff =
1

4R2	1 +
1

cos2�z/R�
 . �29�

B. Nonlinear Schrödinger equation for constant K�0

This case is analogous to the positive curvature case. With
the ansatz

��x,z� =
1

�cosh�z/R�
u�x,z�eikz, �30�

we find the nonlinear Schrödinger equation

2ik
�u

�z
= −

1

cosh2�z/R�
�2u

�x2 − Veffu −
��u�2

cosh�z/R�
u . �31�

Now the effective potential is given by

Veff = −
1

4R2	1 +
1

cosh2�z/R�
 . �32�

We see that in the flat limit R→� Eqs. �28� and �31� become
the usual nonlinear Schrödinger equation. Note that these
equations show some interesting similarities to dispersion
management in optical fibers.

V. LINEAR PROPAGATION

In this section we consider the linear case �=0 and solve
�28� and �31� in the case of an initially Gaussian profile.

A. Solution for K
0

As the initial profile we use

u�x,z = 0� = u0 exp	−
l2�x,0�

2�0
2 
 , �33�

with the initial width �0. Note that the exponent depends on
the proper length in the x direction l�x ,z�=cos�z /R�x for
constant z=0. Due to the translation symmetry in the x di-
rection, we can set a possibly constant x0=0. After separating
the phase

u�x,z� = v�x,z�exp	 i

2k
�

0

z

Veff�z��dz�
 �34�

and performing the coordinate transformation z→��z�
=R tan�z /R�, we find that v satisfies the standard flat
Schrödinger equation, which can be solved easily.

In an experiment we would, for example, measure the
energy density on these surfaces, which is proportional to
���2. In the slowly varying envelope approximation we find

T00 � ���2 = �0
2 �0

��K
0��z�
exp	−

l2�x,z�
��K
0�

2 �z�
 , �35�

with the effective or space-dependent width for positive cur-
vature

��K
0��z� = �0�1 − 	1 −
�S

4

�0
4
sin2	 z

R

 . �36�

Obviously the width of the Gaussian beam oscillates �see
Fig. 4�. In the case of a sphere, the beam refocuses after each
half of a round trip. The phase of the oscillations is deter-
mined by the initial width �0 and �S=�R /k. Only for �0
=�S do the oscillations vanish. The diffraction and the effect
of curvature compensate each other, and a stationary solution
is formed. Note that in an experiment one would not measure
the energy density in terms of the coordinate x when propa-
gating in the z direction. This coordinate is not natural in the
sense that it does not correspond to a proper length on the
surface. A more natural possibility is to measure the energy
density in terms of the proper length l�x ,z�=cos�z /R�x.
Therefore ��K
0��z� is the actually measured width.

Another possibility in the experiment would be to choose
coordinates such that the field is propagating along the equa-
tor z=0. In the vicinity of the equator both coordinates are
nonsingular and valid. This can now be achieved using the
symmetries of these surfaces. All three surfaces have the
same metric as the sphere and therefore the same symme-
tries. We might use the rotational symmetry of the sphere to
find a solution that is now propagating along the equator. The
coordinate transformation which corresponds to such a rota-
tion is

x/R0

z/R

|φ|
2
/φ

2 0

−0.01

0

0.01
0

π/2

π

3π/2

2π0

0.2

0.4

0.6

0.8

1

FIG. 4. �Color online� ���2 /�0
2 for K
0, R=R0, �0=�S /2, and

�Rk=103 /3.
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sin�z/R� = cos�z�/R�sin�x�/R� ,

sin�x/R� =
sin�z�/R�

�1 − sin2�x�/R�cos2�z�/R�
. �37�

In the slowly varying envelope approximation, the rotational
symmetry is of course not preserved in a strict sense. How-
ever, one could argue that we found a solution in this limit
and the rotated solution should also be a valid solution of the
wave equation in the slowly varying envelope approxima-
tion. The validity of the transformation could be quantified
by demanding

�
−�

�

���x,z��2��dx = �
−�

�

����x�,z���2���dz�, �38�

where � is now the total field, x�=x��x ,z�, and z�=z��x ,z�.
This means that for every constant z slice or x� slice the
partial energy density must remain the same. Therefore we
need to have the right transformation law for the integral
measure. In general the coordinate transformation �37� does
not satisfy �38�. However, for narrow light beams it is pos-
sible to expand �37� with respect to the new transverse di-
rection z�, i.e.,

z = x� + O	 z�2

R2 
, x =
z�

cos�x�/R�
+ O	 z�3

R3 
 . �39�

Thus up to this order �38� is satisfied. Note that the coordi-
nate transformation of x is the same as expressing x in terms
of the proper length l, but now the proper length l is replaced
with z�, which is indeed the proper length in the new trans-
verse direction.

After transforming the total field we finally get the ex-
pression

T00� � ����2 = �0
2 �0

��K
0��x��
exp	−

z�2

��K
0�
2 �x��
 . �40�

In terms of x� and z� this result agrees with �35� and �36�.
Concerning the energy density, the propagation of light is the
same for all three surfaces and both directions when ex-
pressed in terms of proper lengths. The invariance with re-
spect to the propagation direction reflects the fact that these
surfaces are homogeneous and isotropic, i.e., maximal sym-
metric spaces �21�. Thus in the limit of the slowly varying
envelope approximation this is preserved as well.

B. Solution for K�0

Formally, this case is similar to that of positive Gaussian
curvature. In warped coordinates we have ��z�
=R tanh�z /R�. The form of the energy density is the same as
in �35� with the tangent being replaced by the hyperbolic
one. As for K
0 we express ���2 in terms of the proper
length l�x ,z�=cosh�z /R�x and find

T00 � ���2 = �0
2 �0

��K�0��z�
exp	−

l2�x,z�
��K�0�

2 �z�
 , �41�

with the effective width

��K�0��z� = �0�1 + 	1 +
�S

4

�0
4
sinh2	 z

R

 . �42�

One can immediately see that there are neither oscillations
nor a stationary solution �see Fig. 5�. Also, the field spreads
more if compared to the flat case. For R→� we find the
usual flat solution

��K=0��z� = �0�1 +
z2

�0
4k2 , �43�

and therefore ��K�0��z� /��K=0��z��exp�z /R�, which grows
exponentially with the propagation distance. Note that we
also find �43� for R→� in the positive curvature case �36�.
For comparison of the three cases K
0, K=0, and K�0,
see Fig. 6.

For positive curved surfaces we used the rotational sym-
metry to find a solution that is propagating along the equator.
The same can be done for the negative case if we recall that
similar symmetries are present. The symmetry transforma-
tion which transforms the z direction into the new x� direc-
tion and vice versa is then

sinh�z/R� = cosh�z�/R�sinh�x�/R� ,

FIG. 5. �Color online� ���2 /�0
2 for K�0, R=R0, �0=�S /2, and

�Rk=103 /3.

x/R0

σ
(x

)/
σ

0

K > 0

K = 0

K < 0

0 π/2 π 3π/2 2π
0

10

20

30

40

50

FIG. 6. �Color online� Evolution of the width for the three dif-
ferent cases K
0, K=0, and K�0. The parameters are R=R0, �0

=�S /2, and �Rk=103 /3.
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sinh�x/R� =
sinh�z�/R�

�1 + sinh2�x�/R�cosh2�z�/R�
. �44�

It can be shown easily that this is a symmetry of the metric
�19�. Furthermore, we see that there are no singular points
and the coordinate transformation is well defined in the given
parameter range. In the sense of �38� this is a valid coordi-
nate transformation only as long as z��R. However, now the
field is always spreading. In this approximation we find for
the propagation along the equator �z�=0� the energy density

T00� � ����2 = �0
2 �0

��K�0��x��
exp	−

z�2

��K�0�
2 �x��
 , �45�

now with the effective width

��K�0��x�� = �0�1 + 	1 +
�S

4

�0
4
sinh2	 x�

R

 . �46�

For the negative curved surface we also find invariance with
respect to the propagation direction.

VI. CONCLUSION

The problem of light confined to a general curved surface
via a nonlinear film waveguide was described theoretically.
For each component of the electromagnetic field a wave
equation was derived. We showed that surfaces of constant
extrinsic curvature, in particular minimal surfaces, allow de-
coupling of the tangential and normal components. We de-
rived a generalized nonlinear Schrödinger equation for sur-
faces of revolution.

As an example, we analyzed the linear propagation on
surfaces with constant Gaussian curvature, positive and
negative. Furthermore, we showed that in the slowly varying
envelope approximation the isotropy with respect to the
propagation direction is preserved. In principle, the methods
presented can be used for a general curved surface.

APPENDIX A: NONLINEAR SCHRÖDINGER EQUATION

We assume that the metric of a surface is of the form

ds2 = �zz�z�dz2 + �xx�z�dx2. �A1�

The Hamilton-Jacobi function satisfies

�ab�aS�bS = k2. �A2�

In this case we are able to readily integrate �A2� and find

S�x,z� = �z

��zz�k2 − �xxkx
2�dz� + kxx , �A3�

where kx is constant.

1. Propagation along the z direction

For this propagation direction we simply set kx=0. There-
fore the phase is given by S�z�=k�z��zzdz�, which is k times
the proper length in the z direction.

In flat space the Hamilton-Jacobi function is proportional
to the coordinate. To carry this forward to curved space, we
now make a coordinate transformation and use S�z� as the
new coordinate, i.e., we use the proper length. Next we make
the ansatz ��x ,z�= �pq�−1/2u�x ,z�exp�iS�z��, where q=�zS
and p=���zz. Under the assumption that the envelope u is
slowly varying with respect to the phase

 �2u

�S2 � 2k �u

�S
 , �A4�

we finally get

2ik��zz�u

�z
= − �xx�2u

�x2 − Veffu − ���xx�u�2u , �A5�

the nonlinear Schrödinger equation in curved space. Here we
already transformed back to the original coordinate z. The
effective potential is then found to be

Veff = H2 − K − �zz	1

2
��z ln p�2 − p1/2�z

2p−1/2 − q1/2�z
2q−1/2
 .

�A6�

2. Propagation along the x direction

For this case it is not possible to set kz=�zS equal to zero
and kx=k. However, if we assume that in the given propaga-
tion area the metric does not change too quickly around
some point z0, we can expand S�x ,z� and find to first order
kx�k��xx�z0�. In this case, kz is almost zero and the fast
phase is given by S�x�=k��xx�z0�x. This is k times the proper
length in the x direction for fixed z=z0. Now here we can still
use the coordinate x. Therefore we use the ansatz ��x ,z�
= p−1/2u�x ,z�exp�iS�x�� where p=���zz. Following the same
steps as before, we find for this direction

2ikx�
xx�u

�x
= − �zz�

2u

�z2 − Veffu − ���zz�
xx�u�2u , �A7�

where the effective potential is now given by

Veff = H2 − K − �zz	1

2
��z ln p�2 − p1/2�z

2p−1/2
 − �xxkx
2 + k2.

�A8�

Interestingly, these nonlinear Schrödinger equations in
curved space show some similarities to Bose-Einstein con-
densates in external potentials and dispersion management in
optical fibers.
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