
Parametric and nonparametric magnetic response enhancement via electrically induced
magnetic moments

Bastian Jungnitsch* and Jörg Evers†

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg
�Received 22 April 2008; revised manuscript received 25 July 2008; published 16 October 2008�

The realization of negative refraction in atomic gases requires a strong magnetic response of the atoms.
Current proposals for such systems achieve a parametric enhancement of the magnetic response by one inverse
power of the fine-structure constant �, but still rely on high gas densities. To enable further enhancement, here
we study in detail the magnetic and electric response to a probe field interacting with three-level atoms in
ladder configuration. In our first model, the three transitions are driven by a control field and the electric and
magnetic components of the probe field, giving rise to a closed interaction loop. In a reference model, the
coherent driving is replaced by an incoherent pump field. A time-dependent analysis of the closed-loop system
enables us to identify the different contributions to the medium response and to determine the enhancement
mechanism. Based on these results, we show that in addition to the parametric enhancement of �−1�137, our
system allows for a further nonparametric enhancement of the magnetic response by almost two orders of
magnitude, relaxing the requirement for a high vapor density.
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I. INTRODUCTION

As Veselago pointed out in 1968, materials having both
negative permittivity and negative permeability can acquire a
negative index of refraction �1,2�. Such negative index ma-

terials are also called “left-handed,” since the electric �E� �
and magnetic �H� � components of an electromagnetic wave
traveling through a negatively refracting medium and its
wave vector form a left-handed coordinate system. These
materials offer promising applications �2–4�, such as the pos-
sibility to overcome the diffraction limit with a negatively
refracting, perfect lens, as proposed by Pendry �5�. Therefore
it is not surprising that, in the recent past, left-handed mate-
rials and negative refraction have been studied intensely.
These efforts have been fueled by a multitude of successful
experimental demonstrations of negative refraction and re-
lated effects, mostly relying on metamaterials �6–11�.
Metamaterials are artificial structures with feature size below
the incident radiation wavelength that allow the electromag-
netic response to be controlled to a great extent and at the
same time appear as a bulk medium to the incident radiation.

A different ansatz is the quantum optical realization of
negative refraction in dense atomic gases �12–15�. Negative
refraction, however, typically requires both electric and mag-
netic response at the probe field frequency, which is ham-
pered by the fact that usually the coupling of the magnetic
component of a probe laser field to a magnetic dipole tran-
sition in atoms is strongly suppressed. A simple order-of-
magnitude estimate shows that the suppression factor is pro-
portional to two powers of the fine-structure constant, �2

�137−2. Thus, additional effort is required in order to en-
hance the magnetic response. In the literature, a number of
schemes that allow to achieve a high positive index of re-

fraction with small absorption have been proposed. They are
based on a suitable modification of the electric response of
the medium �see, e.g., �16��. The enhancement, however, is
typically too small such that a direct transfer of these ideas to
magnetic transitions is not straightforward.

Thus, the schemes suggested so far for negative refraction
rely on a different mechanism that is related to an enhance-
ment via chirality �12,14,15,17�. The medium is such that the
magnetic response is influenced by both the electric and the
magnetic component of the probe field and analogously for
the electric response. In essence, this allows to achieve a
parametric enhancement of the magnetic response by one
inverse power of the fine-structure constant. A first interpre-
tation for the case of atomic systems has been given in �12�,
which, however, did not consider the coupling of the mag-
netic probe field component to the atomic system in deriving
the induced magnetic dipole moment. It also focused on the
so-called multiphoton resonance case for the applied fields
and the employed level structure such that the enhancement
could only be predicted for a single probe field frequency. In
contrast, subsequent work reported an enhancement via chi-
ral contributions over a range of probe field frequencies
�14,15�. Nevertheless, more insight into the exact mechanism
of the parametric enhancement via chiral contributions is de-
sirable, not least since it might enable one to further enhance
the magnetic response, for example, via nonparametric en-
hancements independent of the fine-structure constant.

Motivated by this, here we study in detail the enhance-
ment mechanism that is at the heart of current schemes to
achieve negative refraction in atomic gases, and achieve two
main results. First, in a time-dependent analysis beyond the
multiphoton resonance condition used in previous studies,
we identify the physical mechanism leading to the chiral
enhancement. Second, we show that in addition to the para-
metric chiral enhancement by �−1�137, our system can ex-
hibit a nonparametric enhancement of order 102, such that
the total enhancement of the magnetic response is almost of
order �−2. Such a combination of parametric and nonpara-
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metric enhancement could enable negative refraction in
atomic gases at substantially lower densities, thereby facili-
tating the experimental realization.

For this, we reconsider the three-level ladder-type system
studied in �12�, where one transition is driven by a coherent
control field and the other two transitions couple to the mag-
netic and electric component of a probe field. In contrast to
previous studies, we apply a time-dependent analysis of the
medium response that enables us to directly identify the vari-
ous physical processes contributing to the medium response.
These results are compared to a reference system that is ob-
tained by replacing the coherent driving field by an incoher-
ent pumping field. We find that the enhancement of the mag-
netic response occurs since the used level schemes are so-
called closed-loop media. In these systems, the laser fields
applied are such that they form a closed interaction loop. We
identify the scattering process giving rise to the chiral en-
hancement of the magnetic response as a scattering of the
coupling field and of the electric probe field component into
the magnetic probe field component and provide conditions
for this process to take place. Our results explain why, in the
studied three-level systems, the enhancement only occurs at
a single probe field frequency, while in larger level schemes,
the laser fields can be applied in such a way that the enhance-
ment works at arbitrary frequencies of the probe field. Also,
we show that enhancement is possible only for coherently
driven systems.

From our time-dependent analysis, we also obtain an ana-
lytic expression for the chiral scattering contribution giving
rise to the parametric enhancement by �−1. An optimization
of the control field parameters allows us to achieve a further
nonparametric enhancement of the magnetic response by al-
most two orders of magnitude, which could significantly re-
lax the stringent conditions on the vapor particle density.

The paper is organized as follows. In Sec. II, we present
our model systems and derive the equations of motion as
well as expressions for the medium response coefficients. In
Sec. III, we solve the equations of motion, in the time-
dependent case for the closed-loop configuration, for the
time-independent case at multiphoton resonance, and in the
incoherently pumped system. Using these results, in Sec. IV
we compare the different systems, identify the chiral en-
hancement mechanism, and show that further nonparametric
enhancement is possible. Section V discusses and summa-
rizes the results.

II. THEORETICAL CONSIDERATIONS

A. Model

We start by writing down the applied electromagnetic
fields as shown in Fig. 1. Since we treat both systems semi-
classically, we have

E� �r�,t� = E� p�r��ei�e−i�pt + E� c�r��ei�e−i�ct + c.c., �1a�

B� �r�,t� = B� p�r��ei�e−i�pt + B� c�r��ei�e−i�ct + c.c., �1b�

where the subscript p �c� refers to the probe �control� field.

Further, E� p�r��=Epe�peik�p·r�, where Ep is the electric field ampli-

tude, e�p the unit polarization vector of the electric component
of the probe field, k�p the probe field’s wave vector, �p its

frequency, and � its absolute phase. Analogously, E� c�r��
=Ece�ce

ik�c·r�, where Ec is the control field amplitude and e�c its
unit polarization vector. k�c is the wave vector of the control
field, �c its frequency, and � the control field’s total phase.
The magnetic probe field component is defined analogously

as B� p�r��=Bpb�peik�p·r�. Note that the magnetic probe field com-

ponent unit polarization vector is b�p=�� �e�p with unit propa-
gation direction vector �� =k�p /kp.

In the rotating-wave and dipole approximation, we arrive
at the Hamiltonian

H = H0 + HI, �2a�

H0 = �
j=1

3

�� j�j�	j� , �2b�

HI = − ���21e
−i�pt�2�	1� + �32e

−i�pt�3�	2�

+ �31e
−i�ct�3�	1� + H.c.� . �2c�

Note that, in the rotating-wave approximation, the magnetic
control field component can be neglected, because it does not
couple near-resonantly to a magnetic transition. In Eqs. �2�,
the energy of state �i� is ��i �i� 
1,2 ,3�� and the Rabi fre-
quencies are defined as

�21 = ei�B� p�r��	� 21/� , �3a�

�32 = ei�E� p�r��d�32/� , �3b�

�31 = ei�E� c�r��d�31/� . �3c�

The electric dipole moments are defined as d�32= 	3�d� �2� and

d�31= 	3�d� �1�. Analogously, the magnetic dipole moment is

	� 21= 	2�	� �1�. Here, d� and 	� are the electric and magnetic

dipole operators, respectively, and d� ij =d�
ji
*, 	� ij =	�

ji
*, and �ij

=�
ji
*.
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FIG. 1. �Color online� �a� Three-level system driven by coherent
fields in loop configuration. The probe field components �21 and
�32 are denoted by red solid double arrows, the coupling field �31

by purple solid double arrows. Spontaneous emission is indicated
by the wiggly green arrows. The transition �1�↔ �2� couples to the
magnetic component, while transition �2�↔ �3� couples to the elec-
tric component of the same probe field. �b� Reference system ob-
tained by replacing the coherent control field by an incoherent,
bidirectional pumping, indicated by the green dashed double arrow.
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B. Equations of motion

In this section, we derive the equations of motion for a
general system that contains both systems of interest shown
in Fig. 1 as special cases. To this end, we consider a three-
level system that—on transition �1�↔ �2�—combines coher-
ent pumping by a control field and bidirectional incoherent
pumping. Since this system is a closed-loop system, in gen-
eral there is no stationary state in the long-time limit and the
Hamiltonian necessarily has an intrinsic explicit time depen-
dence �18–31�. To simplify this time dependence, we apply
the transformation

V = e�i/���H0+X�t�HI − X�e−�i/���H0+X�t, �4�

where X=
1�1�	1�+
2�2�	2�. Here, we chose the notations

1=�3−�1−�c and 
2=�3−�2−�p for the detunings. By
applying this transformation, we arrive at the following
equations of motions, if we include spontaneous decay in the
Born-Markov approximation:

�

�t
�̃11 = − r1�̃11 + �3�̃22 + ��1 + r1��̃33 + ie−i
t�12�̃21

− iei
t�21�̃12 + i�13�̃31 − i�31�̃13, �5a�

�

�t
�̃12 = − �i�
 − 
3� +

1

2
�r1 + �3�
�̃12 − i�32�̃13

− ie−i
t�12��̃11 − �̃22� + i�13�̃32, �5b�

�

�t
�̃13 = − �i�
 − 
2 − 
3� +

1

2
�2r1 + �1 + �2�
�̃13

− i�13��̃11 − �̃33� − i�23�̃12 + ie−i
t�12�̃23,

�5c�

�

�t
�̃22 = − �3�̃22 + �2�̃33 − ie−i
t�12�̃21 + iei
t�21�̃12

− i�32�̃23 + i�23�̃32, �5d�

�

�t
�̃23 = − �− i
2 +

1

2
�r1 + �1 + �2 + �3�
�̃23 − i�13�̃21

+ iei
t�21�̃13 + i�23��̃33 − �̃22� , �5e�

�̃33 = 1 − �̃11 − �̃22. �5f�

Here, �̃ij �i , j� 
1,2 ,3�� is the density matrix in the interac-
tion picture obtained by transformation of �ij according to
Eq. �4�. One can see that this transformation simplifies the
explicit time dependence on the right-hand side of the equa-
tions of motion to factors of e�i
t in front of the weak mag-
netic probe field Rabi frequency �21 or �12, respectively. �i
are spontaneous emission rates on the different transitions.
Also, we introduced the detuning on the magnetic probe field
transition 
3=�2−�1−�p, as well as the so-called multipho-
ton detuning


 = 
2 + 
3 − 
1, �6�

which for the current system evaluates to


 = �c − 2�p. �7�

By setting the incoherent pumping rate r1=0 in Eqs. �5�, we
arrive at the equations of motion for the system in Fig. 1�a�.
Setting �31=�13=
=0 yields the equations of motion for
the incoherently pumped system shown in Fig. 1�b�.

C. Electric and magnetic responses

Since our aim is to study the magnetic and electric re-
sponses, we require an expression for them in terms of the
density matrix elements governed by Eqs. �5�. We will find
such a relation in this subsection. For this, it is important to
note that electric fields can induce not only electric polariza-
tion, but also magnetization �14,17�. Similarly, magnetic
fields can induce both magnetization and polarization.

For definitiveness, in the following we specialize to a cir-
cularly polarized �
+� probe field and probe field propagation
in z direction, since one then obtains for the probe field po-

larization vectors b�p=−ie�p, i.e., they are parallel. Therefore,
the tensorial structure of the response coefficients in the mac-

roscopic polarization P� and magnetization M� simplifies con-
siderably,

P� �r�,t� =
1

c
�

−�

�

�EH���H� �r�,t − ��d� + �0�
−�

�

�e���E� �r�,t − ��d� ,

�8a�

M� �r�,t� =
1

c	0
�

−�

�

�HE���E� �r�,t − ��d�

+ �
−�

�

�m���H� �r�,t − ��d� , �8b�

and the electric and magnetic susceptibilities �e and �m and
the chirality coefficients �HE and �EH become scalars. While
the susceptibilities determine the electric �magnetic� re-
sponse to the electric �magnetic� probe field component, the
chiralities or cross terms determine the magnetic response to
the electric probe field component, and vice versa. Here, c is
the vacuum speed of light, and 	0 and �0 are the vacuum
permeability and permittivity. Note that, with the notation of
Eqs. �8�, the refractive index in Fourier space is given as �14�

n��� =��̃���	̃��� −
1

4
��̃EH��� + �̃HE����2 +

i

2
��̃EH���

− �̃HE���� , �9�

where

�̃��� = �̃e��� + 1, �10a�

	̃��� = �̃m��� + 1, �10b�

are the permittivity �̃��� and the permeability 	̃��� in Fou-

rier space. Also, �̃EH���, �̃HE���, �̃m���, and �̃e��� are the
Fourier-transformed response coefficients of the correspond-
ing time domain quantities in Eqs. �8�. They satisfy �̃e���*
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= �̃e�−��, and similarly for the other susceptibilities and the
chiralities. For vanishing chirality coefficients, Eq. �9� re-
duces to the well-known relation between the refractive in-
dex and the permittivity and permeability for nonchiral me-
dia �32�.

Let us now continue to find an expression of the response
coefficients in terms of the density matrix elements. Plugging
Eqs. �1� into Eqs. �8�, we arrive at

P� =
�̃EH��p�

c	0
B� p�r��ei��−�pt� +

�̃EH��c�
c	0

B� c�r��ei��−�ct�

+ �0�̃e��p�E� p�r��ei��−�pt� + �0�̃e��c�E� c�r��ei��−�ct� + c.c.,

�11a�

M� =
�̃HE��p�

	0c
E� p�r��ei��−�pt� +

�̃HE��c�
	0c

E� c�r��ei��−�ct�

+
1

	0
�̃m��p�B� p�r��ei��−�pt� +

1

	0
�̃m��c�B� c�r��ei��−�ct� + c.c.

�11b�

Here, we have used B� =	0H� , which strictly speaking only
holds for microscopic local fields. Note that the Rabi fre-
quencies in the equations of motion contain local fields,
whereas Eqs. �8� contain macroscopic internal fields �15�.
However, local field effects are not considered here and
therefore we do not distinguish between internal and local
fields, as is valid for moderate particle densities.

The polarization is also given by P� =Np� , and the magne-

tization by M� =Nm� , where N is the particle density and p� and
m� are the mean polarization and magnetization per atom

�33�. We can express the mean polarization as p� =Tr��d�� and
the mean magnetization as m� =Tr��	� �. These traces can be
written in terms of the transformed density matrix elements
�̃ij �i , j� 
1,2 ,3�� which are given as solutions of the equa-
tions of motion �5�. If the light travels through the medium
over a macroscopic distance, then the magnetic and electric
response is determined by the part of the medium response
that oscillates in phase with the probe field. In order to iden-
tify the relevant parts, we apply another unitary transforma-
tion into a system oscillating in phase with the probe field.
We denote the density matrix in this frame by �̂ij �i , j
� 
1,2 ,3��.

In the incoherently pumped system of Fig. 1�b�, the
Hamiltonian is time independent, and we find

�̂21 = �̃21, �12a�

�̂32 = �̃32. �12b�

On the other hand, in the closed-loop system of Fig. 1�a�, the
coherences �̂32 and �̂21 are given by

�̂21 = ei�pt�21 = e−i��c−2�p�t�̃21, �13a�

�̂32 = ei�pt�32 = �̃32. �13b�

One can see that at multiphoton resonance 
=0⇔�c

=�p /2 �see Eq. �7��, the two reference frames denoted by �̂ij

and �̃ij coincide for the two coherences in Eq. �13�, similar
to the case of incoherent pumping. We will investigate the
multiphoton resonance case further in Sec. III A 2.

We now proceed with the evaluation of the response co-
efficients. Keeping only terms oscillating in phase with the
probe field, we arrive at

�̃e =
N

�0�
d32

2 �̂32
�0,1�, �14a�

�̃m =
N	0

�
	21

2 �̂21
�1,0�, �14b�

�̃HE = − i
Nc	0

�
d32	21e

i��̂21
�0,1�, �14c�

�̃EH = i
Nc	0

�
d32	21e

−i��̂32
�1,0�, �14d�

where �̂ij
�1,0� and �̂ij

�0,1� are expansion coefficients in a Taylor
series of �̂ij �i , j� 
1,2 ,3�� in terms of �32 and �21:

�̂32 = �̂32
�0,0� + �̂32

�0,1��32 + �̂32
�1,0��21 + O��21

2 ,�32
2 ,�21�32� ,

�15a�

�̂21 = �̂21
�0,0� + �̂21

�0,1��32 + �̂21
�1,0��21 + O��21

2 ,�32
2 ,�21�32� .

�15b�

In Eqs. �15�, we call �̂32
�0,1��32 and �̂21

�1,0��21 the “direct
terms,” since they correspond to the susceptibilities, while
�̂32

�1,0��21 and �̂21
�0,1��32 are denoted “cross terms” as they

give rise to the chiralities. Also, in Eqs. �14�, we have intro-
duced the relative phase

� = �32 − �21 �16�

between the scalar dipole moments, which we write as

d�32e�p = d32e
i�32, �17�

	� 21b�p = 	21e
i�21. �18�

Equations �14� give the desired relation between the den-
sity matrix elements and the coefficients that determine the
magnetic response. These can now be used in Eqs. �11� in
order to determine the contribution of the various processes
to the polarization and magnetization. Keeping only the
terms relevant to the probe field response in phase with the
probe field frequency, we find

P� =
N

�
e�pei�k�pr�−�pt+���d32	21Bpe−i��̂32

�1,0� + d32
2 Ep�̂32

�0,1�� + c.c.,

�19a�
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M� =
N

�
b�pei�k�pr�−�pt+���d32	21Epei��̂21

�0,1� + 	21
2 Bp�̂21

�1,0�� + c.c.

�19b�

III. ANALYTICAL RESULTS

We next solve the time-dependent equations of motion �5�
for both our systems. First, we consider the closed-loop sys-
tem for arbitrary multiphoton detuning 
 and derive an ex-
pression for the coherences to first order in the magnetic and
electric probe field Rabi frequencies �21 and �32. Then, we
consider the special cases 
�0 and 
=0. Finally, we solve
the incoherently pumped system.

A. Closed-loop system

The equations of motion for the closed-loop system are
obtained from Eqs. �5�, if we set r1=0. We define the vector

R̃ containing all density matrix elements,

R̃ = ��̃11,�̃12,�̃13,�̃21,�̃22,�̃23,�̃31,�̃32�T. �20�

The equations of motion �5� can be rewritten in terms of R̃ as

�

�t
R̃ = MR̃ + � . �21�

Here, we have eliminated �̃33 via the trace condition Tr��̃�
=1, which is the reason for the appearance of the constant

term � in Eq. �21�. We proceed by splitting both M and R̃ up
into terms with different time dependencies as follows:

M = M0 + M1�21e
i
t + M−1�12e

−i
t, �22�

� = �0 + �1�21e
i
t + �−1�12e

−i
t, �23�

where Mk and �k �k� 
−1,0 ,1�� are time independent.

According to Floquet’s theorem �34�, the solution of R̃
has only contributions oscillating with frequencies that are
integer multiples of 
. Since terms oscillating at higher fre-

quencies are suppressed by powers of the magnetic probe
field Rabi frequency ��21�, we expand R̃ to first order in this
Rabi frequency, and work with the ansatz

R̃ = R̃0 + R̃1�21e
i
t + R̃−1�12e

−i
t + O���12�2� . �24�

From Eqs. �21�–�24�, a comparison of coefficients yields

R̃0 = − M0
−1�0, �25a�

R̃1 = − �M0 − i
�−1�M1R̃0 + �1� , �25b�

R̃−1 = − �M0 + i
�−1�M−1R̃0 + �−1� . �25c�

Since the density matrix element �̂21 oscillating in phase
with the probe field and �̃21 are related as

�̂21 = e−i��c−2�p�t�̃21 = e−i��c−2�p�t�R̃0�4 + �R̃1�4�21

+ e−2i��c−2�p�t�R̃−1�4�12, �26�

one can determine �R̃1�4 as the part of �̂21 oscillating in
phase with the probe field, where the index 4 denotes the

fourth component of R̃1. Likewise, the relevant part of �̂32

can be identified with �R̃0�8.

Note that R̃0, R̃−1, and R̃1 are independent of �21, but do
depend on the electric probe field Rabi frequency �32, which
we did not take into account so far. Since we are interested in
only the linear magnetic and electric response, we still have

to expand the appropriate components of R̃ in �32. We obtain

�̂21 = �R̃1�4�21 + �R̃0�4e−i��c−2�p�t + O��21
2 ,�32

2 ,�21�32� ,

�27a�

�̂32 = �R̃−1�8e−i��c−2�p�t�12 + �R̃0�8 + O��21
2 ,�32

2 ,�21�32� ,

�27b�

where �R̃0�4��23 and �R̃0�8��32, and higher orders of �32
have been neglected. With Eqs. �25� and �27�, an explicit
evaluation yields

�̂21 =
2

B
�8
1

3�3 + 4i
1
2�3�2i
3 + �s� + 
3�8��31�2��2 − �3� − 2��

4��31�2 + �2
3 − i�3��2
1 − 2
3 + i�s�

+
2
1�− 4��31�2��2 − 2�3� + �� − i��4��31�2�2 − ���s − 4��31�2�3

2�
4��31�2 + �2
3 − i�3��2
1 − 2
3 + i�s�


�21

− � 4

B

4��31�2��2 − �3� + �2
1 + i��1 + �2���3�− 2
2 − i�s�
4��31�2 + �2i�
1 − 
2� + �3��− 2i
2 + �s�


e−i��c−2�p�t�31�23, �28a�

�̂32 = � 4

B

4��31�2�− �2 + �3� + �2
1 + i��1 + �2���3�2
1 − 2
3 − i�s�
4��31�2 + �2
3 + i�3��2
1 − 2
3 − i�s�


e−i��c−2�p�t�31�12

− ���31�2
8

B

�2�− 
1 + 
2��2 + i�3�2i
2 + �1 + �3��
4��31�2 + �− 2i
1 + 2i
2 + �3��2i
2 + �s�


�32, �28b�

PARAMETRIC AND NONPARAMETRIC MAGNETIC… PHYSICAL REVIEW A 78, 043817 �2008�

043817-5



where

B = 4
1
2�3 + � + 4��31�2��2 + 2�3� , �29a�

�s = �1 + �2 + �3, �29b�

� = ��1 + �2�2�3. �29c�

Note that, in Eq. �28�, the multiphoton detuning 
 has been
replaced using Eq. �6�. Also, the contributions without ex-
plicit time dependence via an exponential factor are the di-
rect terms, while the other parts are cross terms.

1. Nonzero multiphoton detuning (�Å0)

In the case of nonzero multiphoton detuning, 

�0⇔2�p��c, only the direct terms in Eqs. �28� oscillate
in phase with the probe field. Therefore, only these terms
contribute to the coherences and thus to the magnetic and
electric responses. Then, the cross terms in Eqs. �14� vanish

and therefore the chirality coefficients vanish, �̃EH= �̃HE=0.
This means that the polarization �magnetization� is entirely
determined by the electric �magnetic� probe field component.
It will turn out in Sec. III B that this case is comparable to
the incoherently pumped system, in which there are no cross
terms either.

2. Multiphoton resonance (�=0)

We now focus on the case of multiphoton resonance, i.e.,

=0 or �p=�c /2. Hence, Eqs. �5� become time independent
and we can now solve the linear system Eq. �21� for a time-

independent steady-state solution of R̃ using �
�t R̃=0. Now, all

terms in Eq. �24� contribute, apart from terms that contain
�32 in higher than first order. From Eqs. �13� we also find
that the simplified relations between the two considered ref-
erence frames Eqs. �12� hold as in the case of incoherent
driving.

We again neglect terms of higher order in the probe field
Rabi frequency and arrive at

�̂21 = −
2i

C+D

8i
2

3�3 + 4
2
2�4i
3 − �s��3 − �4
3

2�3 + ���s

+ 4��31�2��2��1 + �2� + �2i
3 + �2��3 − �3
2�

+ 2i
2�− 4��31�2��2 − 2�3� + �

+ 4�3
3�
3 + i�s����21 −
4�31

C+D

4��31�2��2 − �3�

− �2�
2 + 
3� + i��1 + �2���3�2
2 + i�s���23, �30a�

�̂32 = −
4�31

C−D

4��31�2��2 − �3� − �2�
2 + 
3�

+ i��1 + �2���3�2
2 − i�s���12

−
8i

C−D
��31�2�2i
3�2 + �3�2i
2 + �1 + �3���32,

�30b�

where

C� = 4��31�2 + ��2i
3 + �3���2i
2 + �s� , �31a�

D = 4�
2 + 
3�2�3 + � + 4��31�2��2 + 2�3� , �31b�

� = ��1 + �2�2�3, �31c�

�s = �1 + �2 + �3. �31d�

The control field detuning 
1 has been eliminated using the
relation 
1=
2+
3 which follows from Eq. �6� in the case
of 
=0.

We see that both the direct terms and the cross terms
contribute to the coherences and thus to the magnetic and
electric response in this case. Therefore, the chirality coeffi-
cients are nonzero in the resonance case 
=0, see Eqs. �14�.

B. Incoherently pumped system

We now consider the electric and magnetic response in
the incoherently pumped system shown in Fig. 1�b�. It will
serve us as a reference in a comparison to the results of the
closed-loop system in order to determine the exact origin of
the various contributions to the medium response.

In this system, the transformed Hamiltonian is time inde-
pendent. Hence, we can solve for the steady-state solution
just as in the case of multiphoton resonance in Sec. III A 2.
The equations of motion follow from Eqs. �5� with 
1=0 and
�31=�13=0. Instead of the coherent coupling field, they in-
clude an incoherent, bidirectional pump rate r1 on transition
�1�↔ �3�.

Using Eqs. �12�, up to first order in the probe field we find
for the coherences in a reference frame oscillating in phase
with the probe field:

�̂21 =
2i�r1��3 − �2� + ��1 + �2��3�

�2i
3 + r1 + �3����1 + �2��3 + r1��2 + 2�3��
�21

+ O��21
2 ,�32

2 ,�21�32� , �32a�

�̂32 =
2ir1��2 − �3�

�2i
2 + �s + r1����1 + �2��3 + r1��2 + 2�3��
�32

+ O��21
2 ,�32

2 ,�21�32� . �32b�

In this case, the electric �magnetic� probe transition coher-
ence is determined by the electric �magnetic� probe field
component, and no cross terms appear.

IV. COMPARISON OF THE TWO SYSTEMS

We will now proceed with a comparison of the two sys-
tems. To this end, we will discuss the expansion coefficients
�̂32

�a,b� and �̂21
�a,b� �a ,b� 
0,1�� in Eqs. �15�, since they deter-

mine the magnetic and electric responses according to Eqs.
�19�.

It will turn out that the direct terms are similar in many
regards in both systems. These terms describe the establish-
ment of polarization �magnetization� due to the electric
�magnetic� probe field component. But crucial differences
are found for the cross terms, which only appear in the
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closed-loop system for zero multiphoton detuning. These
terms characterize the polarization �magnetization� due to the
magnetic �electric� probe field component.

A. The direct terms

From Secs. III A 1, III A 2, and III B it is clear that direct
terms appear both in the loop system and in the system with
incoherent pumping. In Fig. 2, the corresponding expansion
coefficients for the two cases are compared. Since transitions
�1�↔ �2� and �1�↔ �3� are electrically dipole allowed,
whereas transition �2�↔ �3� is magnetically dipole allowed,
we choose the decay rates as �1=�, �2=�, �3=�2�. For the
incoherent case, the pump rate is set to r1=�, whereas in the
closed-loop configuration, the coherent pump field is set to

1=0, �31=�. All expansion coefficients are plotted against
the respective probe field detunings 
2 or 
3.

We find that in many respects, the direct terms of both
systems behave similarly. Apart from the ac Stark splitting in
the closed-loop system, the general structure is comparable
and in particular the magnitude of the coefficients is of simi-
lar order in both systems.

The similarities become more apparent when considering
the dependence of the direct terms on the coherent pump rate
�31 and the incoherent pump rate r1, as shown in Fig. 3. For
this figure, the direct terms of the loop system are evaluated
at a particular detuning 
2 or 
3, respectively, at which the
absolute value of the imaginary part becomes maximal. At
the same point, the real part vanishes. For the incoherently
pumped system, the corresponding maxima always occur at

3=0 or 
2=0, respectively. This approach allows to com-
pare the two systems independently of the ac Stark splitting
appearing in the closed-loop system only. Due to the growing
splitting with increasing ��31�, a comparison at a fixed detun-
ing would not be meaningful. It can be seen from Fig. 3 that
both systems show a qualitatively similar dependence on the
pumping strength. The shown imaginary part of the coher-
ences characterizes the absorptive behavior of our systems:
positive values stand for absorption and negative values for

amplification of the magnetic or electric probe field compo-
nent.

Interestingly, in both systems it is possible to choose the
respective pump rate in such a way that �̂21 vanishes at all
frequencies. This is the case at the roots of the green long-
dashed lines in Fig. 3. It turns out that, at these points, the
populations of states �1� and �2� are the same such that the
magnetic probe field component can traverse the medium
without attenuation and without experiencing diffraction.

For the interpretation of Fig. 3, we calculate the coher-
ences in terms of the �zeroth-order� populations for arbitrary
detuning. In the case of incoherent pumping, we obtain

�̂21 = 2�21
�̂11

�0� − �̂22
�0�

2
3 − i�r1 + �3�
, �33a�

�̂32 = 2�32
�̂22

�0� − �̂33
�0�

2
2 − i�r1 + �1 + �2 + �3�
. �33b�

The zeroth-order populations are

�̂11
�0� =

�r1 + �1 + �2��3

C
, �34a�

�̂22
�0� =

r1�2

C
, �34b�

�̂33
�0� =

r1�3

C
, �34c�

where C=r1�2+2r1�3+�1�3+�2�3.

−10 −5 0 5 10

−1.0

−0.5

0.0

0.5

1.0

∆3/γ

γ
ˆ̺(1

,
0
)

2
1

a)

−10 −5 0 5 10

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

∆3/γ

γ
ˆ̺(1

,
0
)

2
1

b)

−10 −5 0 5 10

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

∆2/γ

γ
ˆ̺(0

,
1
)

3
2

−10 −5 0 5 10

−0.2

0.0

0.2

0.4

0.6

∆2/γ

γ
ˆ̺(0

,
1
)

3
2

FIG. 2. �Color online� Real �red solid curve� and imaginary
�blue dashed curve� parts of the direct terms in the magnetic and
electric susceptibilities, respectively. The top row shows �̂21

�1,0�, the
bottom row �̂32

�0,1�. �a� Closed-loop system and �b� incoherently
pumped system as shown in Fig. 1.
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FIG. 3. �Color online� Dependence of the expansion coefficients
�̂32

�0,1� in the closed loop �black solid line� and in the incoherently
pumped system �green long-dashed line� as well as �̂21

�1,0� for the
closed-loop �blue dash-dotted� and the incoherently pumped �red
dashed� systems on the strength of the control field and the inco-
herent pump rate, respectively. Shown are only the imaginary parts
of the coefficients evaluated at their absolute maxima. For the in-
coherent configuration, the maximum of Im��̂21

�1,0�� is always at

3=0, and the maximum of Im��̂32

�0,1�� is at 
2=0. The coefficients
are scaled by � to obtain a unitless quantity and �̂21

�1,0� is scaled by
a factor of 10−4. In this figure, negative values indicate amplifica-
tion, positive values absorption.
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Note that in our system �3��2 due to the different mul-
tipolarity of the transitions. Therefore, for small pump rates
r1, from Eqs. �34� one finds �̂11

�0�� �̂22
�0�� �̂33

�0�. As a result,
both probe transitions are absorptive—although for �̂21 only
in a very small range of r1 as compared to �.

For large r1, Eqs. �34� show that �̂11
�0�� �̂22

�0� and �̂33
�0�

� �̂22
�0�. In fact, �̂11

�0�� �̂33
�0� for r1��. Hence, the magnetic

probe transition becomes amplifying, whereas the electric
transition maintains its absorptive character. As expected,
from Eqs. �33�, it follows directly that a population inversion
causes amplification.

As a side note, we would like to mention the fact that Eqs.
�33� imply vanishing �̂32 for �2=�3. This is due to the fact
that from Eqs. �34�, one then finds �̂22

�0�= �̂33
�0�. However, this

case is not of relevance for the current analysis, since �3
��2.

Let us now examine the behavior of the closed-loop sys-
tem with regard to a change of ��31�. In this case, the coher-
ences are given by

�̂21 = 2�21
K1��̂22

�0� − �̂11
�0�� + 4��31�2��̂33

�0� − �̂11
�0��

�4��31�2 + K2�K3
,

�35a�

�̂32 = 2�32
K4��̂33

�0� − �̂22
�0�� + 4��31�2��̂33

�0� − �̂11
�0��

�4��31�2 + K5�K3
,

�35b�

while the populations obey

�̂11
�0� =

�3�K6 + 4��31�2�
K7 + 4�2��31�2 + 8�3��31�2

, �36a�

�̂22
�0� =

4�2��31�2

K7 + 4�2��31�2 + 8�3��31�2
, �36b�

�̂33
�0� =

4�3��31�2

K7 + 4�2��31�2 + 8�3��31�2
�36c�

where the Kl, �l� 
1, . . .7�� are coefficients independent of
�31.

Again, the coherence �̂ij is determined by the difference
of the populations of �̂ii

�0� and �̂ j j
�0� ��i , j�� 
�2,1� , �3,2���.

For small ��31�, the term proportional to �̂33
�0�− �̂11

�0� can be
neglected. For large ��31�, this term outweighs the others at
first sight. However, for ��31�→� and arbitrary, but fixed
detunings, one finds

�̂11
�0� →

1

�2/�3 + 2
, �37a�

�̂22
�0� →

1

2�3/�2 + 1
, �37b�

�̂33
�0� →

1

�2/�3 + 2
. �37c�

Therefore, �̂11
�0�− �̂33

�0�→0 such that also in this case, �̂ij is
determined by �̂ii

�0�− �̂ j j
�0�.

Equations �37� also imply that for a strong control field,
both probe transitions show opposite absorptive behavior
�see Fig. 3�: absorption in case of the upper probe transition,
and amplification for the lower one. The reason is that due to
the small decay rate �3, most population is trapped in state
�2�, such that the relevant population differences in Eqs. �35�
have opposite sign. For small ��31�, Eqs. �36� yield �̂11

�0�

� �̂22
�0�� �̂33

�0�, which explains the absorptive properties in
Fig. 3.

Before we come to the discussion of the cross terms, we
would like to note that, of course, there are also differences
between the direct terms of the two systems. We already
discussed the ac Stark shift that occurs only in the loop sys-
tem. But the closed-loop system also offers more degrees of
freedom than the incoherently pumped system, most impor-
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FIG. 4. �Color online� Real �red solid line� and imaginary �blue dashed curve� parts of the expansion coefficients �a� �̂21
�1,0� and �b� �̂32

�0,1�

in Eqs. �15�. The curves are drawn for 
1=2� in the closed-loop system. The coefficients are scaled by �. The parameters are as in Fig. 2�a�,
except for the nonvanishing detuning of the control field.
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tantly 
1. The role of the control field detuning 
1 is shown
in Fig. 4. In this figure, we plot the expansion coefficients of
the direct terms in the coherence over the probe field detun-
ings 
2 and 
3 for 
1=2�. The detuning 
1 essentially de-
termines the position of one of the maxima of the imaginary
part of the response function. Increasing 
1 moves the peak
to higher frequencies, while decreasing it moves it to lower
frequencies. For example, in Fig. 4, the corresponding maxi-
mum can be seen close to 
2=2�.

B. The cross terms

Let us now come to the most important difference be-
tween the two systems: The coherences of the closed-loop
system have cross terms, while the coherences of the inco-
herently pumped system do not. However, as found in Sec.
III A, the cross terms contribute only to the magnetic and
electric responses for 
=0, i.e., for �p=�c /2. The following
comparison serves as basis for the conclusion which will be
drawn in the discussion section regarding the enhancement
of the magnetic response.

The mathematical origin of the cross terms can be identi-
fied from the derivation of the coherences in Sec. III A. The
relevant response of the system to the probe field is given by
the contributions of the respective probe transition coher-
ences oscillating in phase with the incident probe field. Ac-
cording to this criterion, for 
�0, only one of the terms in
Eq. �24� contributes to each probe field coherence. In con-
trast, for 
=0, all terms in Eq. �24� contribute to this re-
sponse. The additional terms lead to the cross terms dis-
cussed here. In principle, also other terms contribute in this
case, but they are of higher order in the probe field Rabi
frequencies and can therefore be neglected in linear response
theory.

How can we interpret the different contributions R̃k �k
� 
−1,0 ,1�� to Eq. �24� physically? An explicit calculation
reveals their dependence on the probe and control field Rabi
frequencies. The control field Rabi frequencies appear for
two different reasons. First, the populations depend on the
control field Rabi frequencies. But second, the Rabi frequen-
cies also indicate the physical process described by the re-
spective terms. The obtained combinations of the different

Rabi frequencies lead to an interpretation of R̃k as depicted in

Figs. 5 and 6. For example, R̃0 contributing to �̃21 is shown

in Fig. 5�a�. This term arises from the scattering of the con-
trol field off of transition �1�→ �3� and the probe field off of
transition �3�→ �2� into the probe transition �2�→ �1�, which
contributes to the magnetic response.

We now turn to a numerical study of the cross terms. In
Fig. 7, we plot �̂21

�0,1�, multiplied by a factor of � to achieve
unitless quantities. �̂32

�1,0� is not shown, as it is virtually iden-
tical to −�̂21

�0,1� for the chosen parameters. It is important to
note that, in Fig. 7, the cross terms are plotted over the vari-
able 
 which is defined as 
= 1

2 �
3−
2�=�2− 1
2 ��3+�1�.

This new variable can be interpreted as the energy shift of
state �2� with respect to the average energy of �1� and �3�.
Hence, in a plot against 
, effectively state �2� is moved. In
this way, the probe field frequency remains fixed such that
the multiphoton resonance condition 
=0⇔�p=�c /2 is sat-
isfied for all values of 
. For 
=0, �2� lies in the very middle
of �1� and �3�.

It turns out that apart from the phases of the dipole mo-
ments, the chiralities in Eqs. �14� depend on the phase �

−2�+K� r� arising from the closed interaction loop, where K�

= �k�c−2k�p� is the so-called wave vector mismatch. For the
plot in Fig. 7, we set all involved phases to zero. This does
not affect our final conclusion regarding the enhancement of
the magnetic response, since it will only be based on the
magnitude of the cross terms. If in an experiment the differ-
ence between the absolute field phases �−2� is not fixed,
then the chiralities average to zero. While absolute phase
control is very difficult to achieve, relative phase control has
been accomplished experimentally �22�. In related systems,
the phase dependence of the cross terms can be made inde-
pendent of the probe field phase, as will be discussed in Sec.
V. The observed phase dependence is a characteristic of
closed-loop systems, and has been observed in related sys-
tems as well �15,30�. The phase can be calculated by follow-
ing the interaction loop, and counting phases of fields that
deexcite the atom and phases of fields that excite the atom
throughout this loop path with opposite sign.

Due to the dependence of the chiralities on K� r�, a further
condition for the enhancement arises, namely, that the so-

called wave vector mismatch should vanish, i.e., K� =0� . This
condition on the relative propagation directions of the differ-
ent fields for the enhancement to take place can be fulfilled,
for example, for copropagating fields �30�.
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FIG. 5. �Color online� Interpretation of the different scattering processes that contribute to �̃21 in the case of 
=0. �a� R̃0 contributes to

the cross term in �̃21, and thus to the chirality �̃HE. �b� R̃1 contributes to the direct term, i.e., to the magnetic susceptibility. �c� R̃−1 is of higher
order in either one of the probe field Rabi frequencies and therefore negligible in our calculation.
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C. Parametric enhancement of the magnetic response

We are now in the position to evaluate the magnitude of
the magnetic response. For this, we examine the different
contributions in Eq. �19b�. In particular, we compare the two
contributions to the magnetization, which except for the
common prefactor are given by

M1 = d32	21Epei��̂21
�0,1�, �38a�

M2 = 	21
2 Bp�̂21

�1,0�. �38b�

Here, M1 refers to the cross-term contribution that only con-
tributes at 
=0 and M2 denotes the direct term.

First, Figs. 2 and 7 show that in the closed-loop system

��̂21
�1,0�� � ��̂21

�0,1�� . �39�

Thus, the magnitude of the two expansion coefficients is
comparable. Note that in Sec. IV D we will show that a
further optimization allows to significantly enhance the chi-
ral response. The order of magnitude of the involved transi-
tion dipole moments can be estimated as

	21 � 	B � ea0�c , �40a�

d32 � ea0, �40b�

where 	B is the Bohr magneton, e the elementary charge, a0
the Bohr radius, � the fine-structure constant, and c the
vacuum speed of light. Finally,

Bp =
1

c
Ep. �41�

With Eqs. �40� and �41�, we thus arrive at

�M1� � �−1�M2� . �42�

Therefore at multiphoton resonance, the magnetic response
of the closed-loop system is enhanced by a factor of �−1 due
to the scattering of the electric probe field component into

the magnetic probe transition �described by R̃0 in Fig. 5�.
This explains the chiral enhancement observed in previous
proposals for achieving negative refraction in atomic gases,
and concludes our analysis of the origin of the parametric
enhancement. A similar argument shows that the direct terms
of the incoherently pumped and the closed loop system are

comparable in magnitude, such that the closed-loop system
in multiphoton resonance also allows an enhancement of the
magnetic response by �−1 as compared to the incoherently
pumped system.

D. Nonparametric enhancement of the magnetic response

In the previous section, we have identified the mechanism
that led to a parametric enhancement by �−1 of the magnetic
response. This mechanism was used in recent proposals to
realize negative refraction in a dense gas �12–15�. It is im-
portant to note, however, that there is the as-yet unexplored
additional possibility to enhance the magnetic response non-
parametrically via the expansion coefficient �̂21

�0,1� in Eq.
�38�. In the following, we show that our system allows to
achieve a considerable further nonparametric enhancement
of the magnetic response via an optimization of this coeffi-
cient.
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FIG. 6. �Color online� Interpretation of the different scattering processes that contribute to �̃32 in the case of 
=0. �a� R̃0 contributes to

the direct term in �̃32, and thus to the electric susceptibility. �b� R̃1 is of higher order in either one of the probe field Rabi frequencies and

can therefore be neglected. �c� R̃−1 contributes to one of the cross terms, i.e., to one of the chirality coefficients.
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FIG. 7. �Color online� Real �red solid line� and imaginary �blue
dashed� parts of the expansion coefficient �̂21

�0,1� in the closed-loop
system �see Eqs. �15��. �̂32

�1,0� is not shown, since it is virtually
identical to −�̂21

�0,1�. The coefficients correspond to cross terms and

determine �̃HE and �̃EH, respectively. The plotted coefficients are
phase dependent; in this figure all phases are set to zero. The vari-
able 
= �
3−
2� /2=�2− ��3+�1� /2 denotes the shift of the eigen-
frequency of �2� with respect to the average frequency of �1� and �3�.
Then, for all values of 
, the multiphoton resonance condition 

=0 is satisfied for a fixed probe field frequency �p.
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To this end, we reconsider the expression for the chiral
contribution to the magnetization, �̂21

�0,1� �see Eq. �19��. From
Eqs. �15� and �26�, we find that we need to optimize �R0�4.
Again, we consider parameters �1=�, �2=�, �3=�2�, and
set the phases to zero. An expansion with respect to the small
parameter � then yields

��̂21
�0,1� =

��31

�
2 − 
1��
2 + i�� − ��31�2
+ O��2� . �43�

Choosing 
2=
1, this expression reduces to

��̂21
�0,1� = −

�

�13
. �44�

This means that for this particular probe field frequency the
chiral contribution can be made very large by choosing a
small �13, albeit only over a small range of 
 since the peak
structure is very narrow �see Fig. 8�. In this figure, the pa-
rameters are 
1=0, and �31=��. Also, Fig. 8 shows the
result to all orders of �.

The special importance of pumping strengths ��31����
becomes clear if one analyzes the three populations. For
��31����, most population is trapped in �1�, because the
weak pumping �1�→ �3� limits the population dynamics. But
if ��31����, then most population is trapped in �2� due to
the small natural decay rate out of �2�. Close to the critical
value ��, the populations of �1� and �2� both are close to 0.5,
such that a maximum coherence on the magnetic probe tran-
sition can be created. A comparison with the direct response
terms shows that it is indeed the chiral contribution that
dominates the magnetic response in this parameter range.
The narrow width of the peak structure arises from the two-
photon resonance of the transition �1�→ �2� induced by the
control field and the electric probe field component.

It should be noted that for all values of 
, the multiphoton
resonance condition is fulfilled in Fig. 8. This is possible,
since the parameter 
= �
3−
2� /2 only determines the
eigenfrequency of state �2� with respect to the states �1� and
�3�. Also, the small width of the peak structure in Fig. 8 does
not impose additional constraints on the system, since the
non-parametric enhancement is also possible if the level

structure is such that state �2� is not exactly in the middle
between �1� and �3�, i.e., for 
�0. From Eq. �43�, we require

1=
2 to achieve maximum enhancement. This together
with the multiphoton resonance condition 
=
2+
3−
1
=0 implies 
3=0. Thus, the nonparametric enhancement oc-
curs at 
=−
1 /2+O��2�, and therefore can be adjusted via

1. The contributions of higher order in �, however, cause
the peak to decrease in height for 
1�0. For 
1=�, the
minimum of the real part has a value of � Re��̂21

�0,1���−52.
From Fig. 8, we also see that for the chosen value of

�31=��, Eqs. �43� and �44� do not quantitatively predict the
exact maximum value of the response, since corrections of
order �2 become important. Nevertheless, from Fig. 8 which
was plotted without any of the approximations leading to Eq.
�44�, we find that � Re��̂21

�0,1���−91, i.e., a nonparametric
enhancement almost of order �−1. Thus, we have shown that
a suitable optimization of the control laser fields allows to
considerably enhance the magnetic response in addition to
the parametric enhancement by �−1 discussed in Sec. IV C.

A similar calculation for the chiral contribution to the
electric polarization yields

��̂32
�1,0� =

��31


3�i� − 
2� − ��31�2
+ O��2� . �45�

Choosing 
3=0, this expression simplifies to

��̂32
�1,0� = −

�

�13
. �46�

As discussed above, at multiphoton resonance, the condition

2=
1 required to optimize the chiral contribution to the
magnetic response Eq. �43� is equivalent to 
3=0. Therefore,
from Eq. �45� we find that both chiral contributions can be
nonparametrically enhanced at the same time by choosing

3=0.

V. DISCUSSION

We have seen that the direct response, which describes the
polarization �magnetization� created by the electric �mag-
netic� probe field component, is of the same order of magni-
tude in all three cases considered in Sec. III. Only at multi-
photon resonance does the response of the closed-loop
system contain in addition a term corresponding to the scat-
tering of the electric probe field component into the magnetic
probe field transition. We showed that this scattering effec-
tively enhances the magnetic response by one inverse power
of the fine-structure constant �−1, and thus identified this
scattering as the origin of the chiral enhancement facilitated
in current proposals for negative refraction in atomic gases.

Of course, the reverse process of scattering the magnetic
field into the electric probe field mode can also occur. How-
ever, Eqs. �19� show that this does not lead to an enhance-
ment of the electric response, since, mathematically speak-

ing, �d32
2 E� p���−1�d32	32B� p�. Physically speaking, the

coupling of the magnetic probe field component to a mag-
netic transition is smaller than the coupling of the electric
probe field component to an electric transition by a factor of
�.
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FIG. 8. �Color online� Nonparametric enhancement of the mag-
netic response. The parameters are as in Fig. 7, but with �31=��.
Note the different scale of the frequency axis.
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The multiphoton resonance condition restricts the mag-
netic enhancement in the system discussed here to a single
probe field frequency. Extended closed-loop systems can be
constructed in such a way that a complete loop contains an
excitation on the electric probe transition and a deexcitation
on the magnetic probe transition, or vice versa �14,15�. A
simple example for this is shown in Fig. 9. In such a system,
the multiphoton resonance condition does not depend on the
frequency of the probe field, such that it can be satisfied for
arbitrary probe field frequencies by suitably choosing the
coupling field frequencies. The physical interpretation iden-
tified in our analysis directly carries over to these extended
systems. It should be noted, however, that the multiphoton
resonance condition goes along with similar conditions on
the wave vectors of the coupling and probe fields that need to
be fulfilled in order to obtain chiral enhancement, as dis-
cussed in Sec. IV B. This is of particular importance if the
level structure does not allow to achieve low absorption both
for the coupling and the probe fields. Then, a pencil-shaped
medium could be used, where the weakly absorbed probe

field propagates along the long axis of the medium, whereas
the more strongly absorbed control fields propagate along the
small axis of the medium. Such extended geometries are re-
stricted by the fact that chiral enhancement occurs only if the
wave vector mismatch is zero.

The analysis of different level schemes has shown that,
even with the chiral parametric enhancement by �−1, very
dense gases with particle densities of order 1017 cm−3 are
required in order to achieve sufficient magnetic response.
But our results show that further nonparametric enhance-
ments of similar magnitude as the parametric enhancements
are possible. Ideally, parametric and nonparametric enhance-
ment should be combined, enabling one to further relax the
requirement for a high vapor density. Alternatively, a non-
parametric enhancement can be used to increase the direct
magnetic response term, such that no chiral contributions to
the magnetic response are required. This could lead to a re-
laxation of the stringent conditions on the atomic level
scheme that needs to contain an electric dipole and a mag-
netic dipole transition with similar transition frequency for
the chiral enhancement to take place. One example could be
two-component gases, where one atomic species accounts for
the electric response, whereas the other species leads to mag-
netic response �35�, similar to the case in metamaterials.

In conclusion, by using a time-dependent analysis and by
comparing a chiral closed-loop system to a reference system,
we have identified the mechanism leading to the parametric
chiral enhancement of the magnetic response by a factor of
�−1. This enhancement can be traced back to a multiphoton
scattering of the electric probe field component into the mag-
netic probe field component. We have further shown that our
system in addition to this parametric enhancement allows the
magnetic response to be nonparametrically increased by al-
most two orders of magnitude via a suitable choice of the
control field parameters. A combination of parametric and
nonparametric response could lead to negative refraction at
substantially lower vapor densities.
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