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An analytical description for plane-wave propagation in metamaterials is presented. It follows the usual
approach for describing light propagation in homogeneous media on the basis of Maxwell’s equations, al-
though applied to a medium composed of metallic nanostructures. Here, as an example, these nanostructures
are double (or cut) wires. In the present approach it is assumed that the carriers perform collective oscillations
in a single wire. These oscillations are coupled to those in the adjacent wire; thus, the internal carrier dynamics
may be described by a coupled-oscillator model. The multipole expansion technique is used to account for the
electric and magnetic dipole as well as the electric quadrupole moments of these carrier oscillations within the
nanostructure. It turns out that the symmetric normal mode is related to the electric dipole moment whereas the
antisymmetric normal mode evokes simultaneously a magnetic dipole and an electric quadrupole moment. It is
shown how effective permittivity and permeability can be derived from analytical expressions for the disper-
sion relation, the magnetization, and the electric displacement field. The results of the analytical model are
compared with rigorous simulations of Maxwell’s equations yielding the limitations and the domain of appli-
cability of the proposed model.
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I. INTRODUCTION

Since optical research has been extended toward mesos-
copic light-matter interactions, plasmonic effects have be-
come one of the hottest topics in modern optics. New funda-
mental phenomena in the field of nanoplasmonics have been
observed, such as, e.g., extraordinary light transmission in
subwavelength apertures [1], interaction of light with nano-
scale metallic inclusions [2], and various nonlinear effects
due to strong field localization at metal nanoparticles [3].
Probably the most appealing aspect in this research field is
the possibility to incorporate metallic nanostructures into a
dielectric host medium and to control the dispersive dielec-
tric and magnetic properties of the resulting composite ma-
terial, at least to a certain extent, at will. The effective prop-
erties of these materials can be engineered by varying the
size, shape, and material of the nanostructures. To reasonably
apply a homogenization procedure [4] to these composite
materials, the metallic inclusions and the period of their ar-
rangement have to be much smaller than the incoming wave-
length. This requirement is usually not strictly satisfied be-
cause the size of typical nanostructures is only about 3-5
times smaller than the wavelength. Nevertheless, it makes
sense to apply this homogenization procedure, which com-
pares to the transition from the microscopic to the macro-
scopic Maxwell’s equations, but on the next higher level, in
order to simplify the description of light propagation in such
composite materials in resorting to plane waves as the rel-
evant normal modes. Comparison with rigorous simulations
and experiments must be performed to define the applicabil-
ity limits of the corresponding effective medium model and
to disclose, and subsequently to prevent, additional effects
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such as arising from higher-order Bloch modes and nonlocal
interactions.

In contrast to naturally available media, the optical re-
sponse of such peculiar composite materials is determined by
both the electrical (permittivity) and the magnetic properties
(permeability). These materials, which show significant dis-
persion in the permittivity and permeability in certain fre-
quency ranges, are usually termed metamaterials (MMs).
The combination of basic theoretical works [5-7] with mod-
ern manufacturing technologies led to the successful realiza-
tion of MMs at microwave frequencies at first [8]. During
recent years MMs have also been realized in the optical do-
main [9-12].

The MM design in the optical domain is mainly carried
out using rigorous Maxwell’s equation solvers like finite-
difference time-domain simulations [13], finite-element
methods [14], and Fourier modal methods (FMMs) [15]. In-
stead of these differential methods, integral ones, such as,
e.g., the boundary-element method [16], can be used. The
discrete-dipole approximation [17] and the multiple multi-
pole method [18] are more physical techniques, where the
structure is represented by localized electric multipoles. Nev-
ertheless, presently differential descriptions dominate in MM
design.

In contrast to such numerical techniques, the analytical
description of MMs is much less developed. Up to now only
a few fundamental papers have been published. Podolskiy e?
al. introduced the coupled-dipole equations in order to ap-
proximate single and coupled metal wires [19,20]. The direct
excitation of LC resonances with the magnetic field of the
incident plane wave in a system of two coupled rods has
been proposed in [21] in order to explain the observed phe-
nomena in terms of effective parameters. Following the ef-
fective medium theory, an investigation of dielectric and
magnetic conducting inclusions has been performed for
spheroids [22]. In spite of the fact that the approach is basi-
cally limited to the realm of quasistatics, the model was ex-
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tended to describe dynamical problems. In order to simulate
the current distribution in a coupled-wire structure and to
calculate the permeability, the Green’s function technique
has also been applied [23]. The application of RLC circuit
theory has been recently used to obtain the resonance fre-
quencies and the quality factors of coupled split-ring resona-
tors [24].

In this paper an analytical description of the double-wire
geometry is presented based on a multipole expansion be-
yond the standard electric dipole approximation. The model
accounts for electric dipole, electric quadrupole, and mag-
netic dipole contributions appearing upon interaction of
charges with the electric field of the incoming plane wave.
By this approach, Maxwell’s equations can be self-
consistently solved and the effective parameters of the MM
can be expressed in analytical form. It is shown that the
electric quadrupole term has to be retained in this model
provided that the magnetic dipole moment is taken into con-
sideration. To describe the internal charge dynamics a
coupled-oscillator model has been adapted, which leads to
only Lorentzian-shaped solutions. This, in turn, yields ex-
pressions which automatically obey the Kramers-Kronig dis-
persion relations, a compulsory criterion for effective param-
eters [25].

The paper is organized as follows. Section II is dedicated
to the expansion of Maxwell’s equations up to the electric
quadrupole and magnetic dipole moments. Section III intro-
duces the coupled-oscillator model, while in Sec. IV the nor-
mal modes (plane waves) of the respective Maxwell’s equa-
tions are derived. In Sec. V effective parameters (effective
permittivity and permeability) are elaborated using the pre-
viously developed formalism. A qualitative comparison be-
tween numerically calculated dispersion relations and the de-
rived analytical expression is performed in Sec. VI. A short
Summary and Outlook that recapitulates the approximations
and considers possible strategies for further work and poten-
tial improvements of the method conclude the paper.

II. MACROSCOPIC MAXWELL’S EQUATIONS
AND HIGHER-ORDER MULTIPOLES

One of the basic problems in the physics of metamaterials
is the homogenization in a medium with small metallic in-
clusions, i.e., the introduction of an effective medium. If this
homogenization is successful, the corresponding normal
modes are plane waves obeying a dispersion relation which
might be rather involved. This procedure resembles the tran-
sition from the microscopic to the macroscopic Maxwell’s
equations, but now on a second level. Here, we have to av-
erage over an ensemble of inclusions (meta-atoms) to arrive
at a new homogeneous material, the metamaterial. To avoid
confusion it has to be noted that the conventional macro-
scopic Maxwell” equations hold still in these nanoparticle
down to sizes of a few nanometers. An effective medium
approach based on the macroscopic (averaged) Maxwell’s
equations provides a good approximation in the case when
the field remains almost unchanged in the volume of averag-
ing. This requirement is well satisfied in condensed matter,
where the averaging procedure is performed over volumes
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with dimensions much smaller than the wavelength. At the
same time the volumes contain a large number of atoms or
molecules. For example, for a wavelength of about 1 wm the
averaged volume should, rigorously speaking, not exceed
1073 um?3. Taking into account typical concentrations of
about 1023 atoms/cm?, the number of atoms in the volume is
about 10, For metamaterials, where metallic inclusions play
the role of atoms or molecules, the averaging procedure is
more involved: typical sizes of the metallic inclusions are
just 3-5 times smaller than the wavelength (in the optical
domain), and the same averaged volume 1073 ,u,m3 does not
contain a single metallic nanoinclusion. Strictly speaking,
this prohibits application of the homogenization procedure
for these compounds. Nevertheless, it makes sense to apply
the homogenization formalism involving the multipole ex-
pansion beyond the dipole approximation and to compare the
results with rigorous numerical calculations. This is backed
by the fact that in this framework the details of the nanopar-
ticle geometry are mapped onto the dipole, quadrupole, and
magnetic dipole moments and an analytical solution can be
obtained rather straightforwardly.

A typical strategy for getting a medium with strong di-
electric and magnetic dispersion, exhibiting potentially a
negative refractive index, is to use metallic nanostructures of
a specific shape. These nanostructures have been modelled
and manufactured in various geometries [11,12,26]. The rea-
son for using metallic nanostructures is the possibility of
exciting localized plasmon polaritons (LPPs), collective ex-
citations of the free-electron gas confined in the metal nano-
structure and the field in the surrounding dielectric [27].
Such excitations are characterized by their charge and field
distributions. The periodic or randomly distributed metallic
structures incorporated in a dielectric host represent the com-
posite medium. An effective permittivity and an effective
permeability can be assigned to this medium, which in this
case is regarded as a homogeneous effective medium.

Thus MMs are a particular subcategory of effective media
that influence both the electric and magnetic fields, with the
potential to evoke negative refraction. It is important to em-
phasize that the magnetic response of the effective medium
is caused by the interaction of the electric field with the
confined carriers [28]. The incoming electromagnetic wave
will inevitably lose energy by the excitation of LPPs. More-
over, as will be seen below, the introduction of permittivity
and permeability for MMs is not straightforward since the
electric as well as the magnetic response are consequences of
the same effect, i.e., the LPP excitation by the electric field.
Nevertheless, the effective permittivity and permeability can
be unambiguously introduced in the framework of the pre-
sented model.

The multipole expansion technique provides a tool to cal-
culate the dispersion relation of the normal mode in the ef-
fective medium under consideration. In order to calculate the
multipoles, it is suggested to model the LPP charge dynamics
by two eigenmodes of coupled harmonic oscillators and then
to start the analytical treatment. This “bottom-up” approach
means that the macroscopic effective medium parameters are
elaborated from the microscopic ones using an idealized but
physical model.

The detailed derivation starts with the averaged Max-
well’s equations
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JB(R,1)

VXER)+—===0. V -DR.)=0.

DR,

V -B(R,7)=0. (1)
The medium fields D(R,7) and H(R,?) contain electric di-

pole, electric quadrupole, and magnetic dipole contributions
[29]

D(R,?) =goE(R,1) + P(R,1) - V- Q(R,1),

H(R,7) = iB(R,t) -M(R,7). (2)
Mo

P, Q, and M represent the electric polarization, the electric
quadrupole tensor, and the magnetization, respectively.
Capital letters (R) are used for macroscopic coordinates
in the averaged Maxwell’s equations. The term
[V-Q(R,1)];=0Q;;/ X, is the divergence of the quadrupole
tensor. It is important to take into account both the electric
quadrupole and the magnetic dipole terms, because they are
of the same order in the multipole expansion series [29,30].
Upon inserting all moments into the material equations,
the quasimicroscopic equations can be defined as follows

[30]:

N

P(R,7) = 72, qiri(E(R,)),
k=1

N
0;(R.1) = 2 gty ERN]rER.0)],
k=1

N

M(R, ) = %’E

qkrk<E<R,t))§rk<E<R,r>>. 3)
k=1 it

The definitions clearly distinguish between microscopic (r)
and macroscopic (R) coordinates, g represents the charge, N
the total number of charges, and # their density. The micro-
scopic coordinates (r) designate the position vectors of the
charges in a microscopic coordinate system. The center of
the microscopic coordinate system is chosen to be the center
of symmetry of the charges.

The reason for the different coordinate systems derives
from the averaging procedure for the averaged Maxwell’s
equations (1). The microscopic coordinates are functions of
the electric field and do not appear explicitly in the final
expressions. Only one coordinate system, namely, the mac-
roscopic system of coordinates R (i.e., the space coordinate),
remains.

III. MULTIPOLE APPROACH FOR THE
DOUBLE-WIRE STRUCTURE

Now the multipole expansion is applied to describe the
widely used double-wire geometry [9]. As was mentioned
above, the microscopic interaction between charges and the
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FIG. 1. (Color online) Double-wire MM geometry and corre-
sponding suitable charge distributions that support electric dipole,
electric quadrupole, and magnetic dipole moments. The dynamics
including interactions between the top and the bottom wires is de-
scribed by a coupled harmonic oscillator model which is indicated
by the red (gray) arrows.

electromagnetic wave is determined by the interaction with
the electric field. The interaction with the magnetic field be-
comes significant only for relativistic velocities or extremely
large magnetic fields [31] which are irrelevant in the present
study. Under these restrictions the damped and driven har-
monic oscillator equation, describing the dynamics of the
charge ¢, takes the following form [32]:

&
%(t) + Yk&r;:t) + wir(1)
my ot my

(4)

In Eq. (4) v, represents the damping constant and wj, the
eigenfrequency of the charge in the microscopic coordinates
r;(¢). This set of equations of motion can be analytically
solved and the system parameters can be evaluated phenom-
enologically by comparison with experimental or numerical
data.

To apply this model to the double-wire geometry we pro-
pose the charge arrangement as shown in Fig. 1:

X1 — X —X2 X2
r=\yr [, nLy={yr |, L3=|=Yi [, La=—-Y1 |
0 0 0 0
91=94=9, 42=q43=—¢q. (5)

Thus the double-wire geometry is modeled by four charges
where the two upper and the two lower ones represent elec-
tric dipoles. One important detail of the charge arrangement
has to be mentioned explicitly, namely, the introduced asym-
metry of the charge dynamics in the top and bottom wires
(Fig. 1). The asymmetry has its origin in the finite size of the
charge distribution and the spatial retardation of the exciting
electric field, i.e., the field is different at both dipole sites,
which will be considered in the coupled-oscillator approach.
This difference occurs due to the phase and amplitude varia-
tion of the electric field propagating along the y direction
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between the wires. The interplay of the external field with
the induced local field excited in the wires results in the
excitation of symmetric and antisymmetric dipole moments
in the upper and lower wires. It is worth noting that the
required asymmetry to excite second-order multipoles can
also be modeled by different oscillator properties (e.g., the
damping constant) which will be discussed in detail else-
where. By substituting Eq. (5) into Eq. (3), the electric di-
pole, the electric quadrupole, and the magnetic dipole mo-
ment can be calculated straightforwardly:

X1+)C2
PR,)=2nq( O |,
0
0 x;—x, 0
QR.)=mngy| x;=x, 0 0, (6)
0 0 0
0
0
M(R,?) = - ngy, o
o a

From Egs. (6) one can recognize that all second-order expan-
sion moments (the electric quadrupole and the magnetic di-
pole moment) vanish for a symmetric charge configuration
X|=X,, while the polarization (electric dipole) is still non-
zero. The symmetric system (x;=x,) would consist of two
classical dipoles with no influence of higher-order multi-
poles, and hence with no magnetization.

The coupling of the two oscillators, i.e., the influence of
the field generated by the plasmon dynamics, can be consid-
ered by introducing an empirical coupling constant o. For a
polarization along the wire axis (x direction) the complete
equations describing the charge dynamics in the two wires
with the pair center at y simplify to

Fx,(1) ox, (1) q
Y epn(0) = omlD) = En(y+ya).

&
%(t) + y%ft) + w(z)xz(t) —ox ()= %sz(y -y.0).
(7)

The inhomogeneous solution to the system (7) can be ob-
tained in the Fourier domain [x(#) — X(w)e™"“"] as

q Ep(y +y1,0)(iyo+ o’ = ) = 0y (y — y1, )

X(w) = s
(@) m 0'2—(iyw+w2—wg)2

~ qEZx(y+yl’w)(i7w+wz_w(z))_o-ilx(y_yl’w)
XHlw)=— .

m o - (iyw+ a)z—w(z))2
(8)

Evidently, because of Eq. (6), only the expressions x;+x,
and x; —x, enter the formalism,
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~ ~ qux()’+y1,w)+sz(y—)’hw)
¥(w) + X(w) = = 2 5 .
m wy— W —iyw—0o

=[E,(y +y,0) + E5(y -y, 0) [x"(w),

_ _ g Ei(y+y,0) = E)(y—y;,0)
T(w) - %(w) == R
m wy— o —iyo+ o

= [Elx(y +Y,0) = sz(y -yo)x (w),
)

where we have introduced the substitution

1
X (w=2

. 10
m(wy— o —iyw * o) (10

The dependence of the oscillation amplitudes on the electric

field in the upper [E, (y+y,,w)] and bottom wires [E,,(y
-y, )] can be transformed into a dependence on the field at
the center between both wires by taking the retardation into
account:

Elx(y + V1 0)) = EOx(w)eik(yﬂyl) = Ex(y’ w)eikyl >

E]x(y - yl’w) = E()x(w)eik(y_yl) = Ex(y’w)e_ikyl . (l 1)

At this point we explicitly mention that in our model the
excitation via plane waves is described in an approximate
manner. The electric field propagating from the first to the
second wire is determined by k, the complex wave number.
In addition to this external electric field evolution, the exci-
tation process is also governed by the near-field coupling of
the two wires. This mechanism is taken into account by the
empirical coupling constant o between the two wires and not
by the additional electric fields on the right side of Eq. (11).
This approximation provides an analytical solution for the
equations of motion and prevents us from regarding the com-
plex near-field interactions between the wires by introducing
that coupling constant. Therefore k represents the propaga-
tion vector of the corresponding effective medium, not the
free-space wave vector. Upon substitution into Eq. (9), the
oscillation amplitudes depend only on the electric field at a
single site required for performing the multipole expansion,

%1(w) + () = 2E,(y, w)cos(k,y) x* (),

%1(w) = F(w) = 2E(y,w)sin(k,y ) x (0).  (12)

The quantities y“(w) introduced above represent the polar-
izabilities related to the eigenmodes of the coupled system,
where the (+) and the (—) signs indicate the symmetric and
the antisymmetric modes, respectively. It turns out that the
antisymmetric mode induces both the magnetic dipole and
the electric quadrupole moments, whereas the symmetric
mode is related to the electric dipole moment. Now the cal-
culated multipole moments (6) can be rewritten
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2x"(w)cos(kyy;)
P(y,®) =2¢7 0 E(y,w),
0
Qy,w)

0 2ix (w)sin(kyy;) 0
= ngy,| 2ix (w)sin(k,y,) 0 0 |E(y,w),

0 0 0

0

M(y, ) = iwgy, 7 0 E(y,w). (13)

2ix (w)sin(kyy,)

IV. THE DISPERSION RELATION OF PLANE WAVES IN A
DOUBLE-WIRE SYSTEM

For a plane wave propagating along the positive y axis
and with an electric field polarized along the x direction, the
set of Maxwell’s equations can be simplified. The Maxwell
curl equations reduce to
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OE (v, -
){Tyw)z—inZ(y,w), (14)
and, taking into account Eq. (2),
&Ez(y,w) &ﬁx(y,w) &Mz(y,w)
= Mo + Mo
dy ot dy
- - 90..(y,
ool o0+ P50 &‘éy(y—“’))
M (y, )
Mmoo (15)
dy

Differentiating Eq. (14) with respect to y and substituting
(15) into the right side of the (14) results in

_ % = wZ,LLO(SoEx(y,w) + ﬁx(y,w) _ @%)
! WO%W' (16)

Finally, the substitution of the electric and magnetic multi-
poles (13) provides a self-consistent equation for the x com-
ponent of the electric field,

aZEx(y’ CO) s ot . . aEx(y7 (,())
T o’ o| £0E () +47mgxH (w)cos(kyy ) E(y, @) - 2l77qy1x‘(w)sm(kyy1)—&y
. N JE(y, )
- 2i0’ Mgy X (w)sm(kyyl)T- (17)
|
It is interesting to note that the magnetic dipole and electric (k,y,)? )
quadrupole contributions are identical. This is another proof cos(kyy) = 1 - 5 sin(k,y1) = kyyi,
that the electric quadrupole and magnetic dipole contribu-
tions have the same order of magnitude and both (not only
the magnetic dipole term) have to be taken into account si- 5 2 1 +Ax*(w)
multaneously. The dispersion relation for the plane wave can ky=— (19)
c

be found straightforwardly by plugging the ansatz Ex(y,a))
=E, (w)e™ into Eq. (17),

2
w .
kK (w) = 2l +Ax (@cos(kyyy) + AX (@)yik, sin(k,y )],

4
A=""
€0

(18)

The implicit dispersion relation obtained can be solved only
numerically. To keep the model analytical, we can approxi-
mate the trigonometric functions cos(k,y,) and sin(k,y,) for
small arguments k,y; <1:

2
o ol
1+C2Ay1<2)( () x(w)>

Now with Eq. (19) the dispersion relation is explicit in k, and
mirror symmetric with respect to k,=0, as in Eq. (18). The
above approximation is justified because y; <<\ holds in the
considered cut-wire geometry.

V. EFFECTIVE PARAMETERS

In this section the model is used to derive effective pa-
rameters. The strategy is to show that both quantities (per-
mittivity and permeability) can be derived independently
while the resulting propagation constant
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) 0 2
kett = 2 Bethhett = Ky (20)

must coincide with the dispersion relation Eq. (19). First, the
effective permittivity can be introduced using Eq. (2) and
substituting Eq. (13),

~ ~ ~ Jd ~
Dx(y7w) = SOEX(y’w) + Px(y’w) - EQxy(va)

Ak%y? _
= 80(1 +Ax (o) - —Zﬂ[f(w) - X‘(w)])Ex(y,w)

= Sogeff(ky»w)gx(y, w) . (21)

Thus we obtain
Akzy2
Eetil(ky @) = 1+ Ax*(w) - —f[f(w) - x(@]. (22)

Note that the effective permittivity is spatially dispersive,
1.e., gq 18 a function of the propagation vector itself. This is
caused by the nonvanishing electric quadrupole moment,
which enters the equation through the first derivative.

Now we proceed to introduce the effective permeability.
For the pertinent field components we write Eq. (2) as

~ 1 - ~ ~
Hz(va)=_Bz(y7w)_Mz(y’w)E Bz(y’w)

Mo Megi( o) Mo
(23)

In Eq. (23) it is required that the relation M[B(R, )] is
explicitly known. To evaluate this dependence we rewrite the
magnetic dipole moment (13) and Maxwell’s equations (1)
for plane waves,

wA

Mz(y’ 0)) =- ?EY%X_(Q’)I@EX()’, (U) 5

~ ® ~
Ex(y’w) == _Bz(va)a

ky

~ a)2 A , -
M (y.0) = 3 yixX (@)B(y, o). (24)
Substitution of (24) into (23) results in the desired effective
permeability,

1
A

-5 =yix
c? 2y1X (w)

Heti(@) = (25)

It is straightforward to show that the product of the two
effective quantities, the effective permittivity and effective
permeability, satisfies condition (20). Actually, it is not nec-
essary to calculate the permeability separately since the dis-
persion relation (19) is explicitly known. That is again a
fragment of the multipole expansion that leads to a coupling
between these two material properties that would be com-
pletely decoupled in a purely dipole interaction regime.
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This coupling can be interpreted as follows. In our model
the interaction of the incoming plane wave with matter is
determined only by the electric field (interaction with the
magnetic field is negligible). This interaction with the elec-
tric field can be expressed in terms of electric and magnetic
multipole responses that consequently determine the depen-
dence of all quantities on the electric field. The excitation of
coupled-charge oscillations leads to a magnetic response that
can be described by an effective magnetic permeability,
which is again a consequence of the interaction with the
electric (not the magnetic) field. It should be emphasized
again that the physical picture of the magnetic response dif-
fers basically from that taking place in solid state physics.
The magnetic response in the latter case is caused by a mag-
netic field which induces or aligns existing magnetic mo-
ments of atoms or molecules (the free-electron magnetism
effect again is caused by interaction with the magnetic com-
ponents of the field). In the case of MMs the electric field
excites LPPs which contribute to both electric and magnetic
responses, while the microscopic magnetic component does
not participate in the light-matter interaction.

To summarize this section, two issues have to be empha-
sized.

(1) In the framework of the present model, the effective
permittivity and permeability can be unambiguously intro-
duced. Furthermore, the product of the two material param-
eters reproduces the independently calculated dispersion re-
lation for normally incident plane waves; and both effective
parameters are reduced to trivial expressions if the electric
quadrupole and the magnetic dipole contributions are set to
ZEero.

(2) The introduction of effective parameters might look
artificial because the electric as well as the magnetic re-
sponse are caused by an interaction of carriers confined in
the nanostructure with the electric field [28,36], and are mu-
tually related to each other. However, the decoupling of these
two responses, e.g., by introducing permittivity and perme-
ability, might be necessary, for example, for comparing them
with numerically determined electric and magnetic proper-
ties in terms of & and u.

VI. VALIDATION OF THE MODEL

In this section, a quantitative comparison of results ob-
tained by the outlined analytical approach and rigorous nu-
merical calculations is performed. First it is necessary to
summarize that the wave vector [Eq. (19)] depends on fre-
quency o, on the product of the carrier density z with the
charge ¢, on the geometrical parameter y;, on the two quan-
tities x*(w) and y (w) (which are in turn functions of the
eigenfrequency ), on the damping constant 7y, and on the
coupling constant o of the carrier oscillations.

In order to determine rigorously the dispersion relation of
the geometry shown in Fig. 2(a) we have used the Fourier
modal method [33]. To describe the propagation of electro-
magnetic waves in 3D bulk media [see Fig. 2(b)] the calcu-
lation has been examined with periodic boundary conditions
in all three space dimensions. The periods used in the x, y,
and z directions are A,=600 nm, Ay=500 nm, and A,
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FIG. 2. (Color online) (a) Geometry of the simulated double-
wire meta-atom is shown. (b) Three-dimensional (3D) bulk MM
alignment to calculate the dispersion relation of a bulk MM and (c)
the slab arrangement which allows additionally the calculation of
effective parameters.

=150 nm, respectively. The double wires are formed from
gold with the sizes shown in Fig. 2(a), and are separated by
a thin glass layer with n=1.44. The corresponding effective
material parameters of the same geometry have been ob-
tained by FMM calculations for one layer [see Fig. 2(c)]. The
effective permeability and permittivity are calculated from
the complex reflected and transmitted amplitudes which are
used in inverted expressions for the reflection and transmis-
sion of light at a homogeneous slab [34].

First the dispersion relation of the 3D infinite metamate-
rial was calculated numerically and the analytical version
was fitted to it (Fig. 3). The comparison shows very good
agreement in the small-frequency domain, while for larger
frequencies the analytical dispersion relation differs from the
numerical one. This can be explained by the violation of the
subwavelength criterion for larger frequencies. Since no nu-
merical data for the corresponding effective parameters are
available due to the absence of boundaries, a finite geometry
has been simulated. Therefore Fig. 4(a) shows the effective
refractive index that corresponds to the dispersion relation of
the slab arrangement as well as the retrieved effective param-
eters [see Figs. 4(d) and 4(g)]. The second column contains
the fitted effective refractive index [Fig. 4(b)] and the follow-
ing effective parameters [see Figs. 4(e) and 4(h)]. Since only
the dispersion relation in terms of the refractive index has
been fitted, the coincidence of the effective parameters is
significant. Another remarkable property of the analytically
determined effective parameters is the vanishing of the anti-
resonances. In Fig. 4(g) this feature appears in the effective
permeability exactly at the resonance position of the effec-
tive permittivity. The same antiresonance appears in the ef-
fective permittivity at the resonance position of the effective

Numerical

Analytical

/
= e -T2l
0 <Zm=zl

K Vector [um'1]
K Vestor [um’]

(o]

|
0
2
|
|
|
I
1

-20 -20

(a) (b)

FIG. 3. (Color online) (a) Dispersion relation obtained from the
numerical calculations in an infinite 3D MM as shown in Fig. 2(b)
and the corresponding fitted analytical version (b).
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permeability but it is much weaker and cannot be observed
in Fig. 4(d). The last column in Fig. 4 shows the effective
parameters that are a direct result of the fit of the dispersion
relation of the bulk metamaterial, presented in Fig. 3. It can
be seen that the resonance positions as well as their absolute
values differ from the slab parameters [35]. This can be ex-
plained by the coupling of neighboring metamaterial layers,
which leads to slightly different effective material parameters
from those for a decoupled metamaterial, e.g., a metamate-
rial slab. In the following we describe the fitting procedure in
detail.

First, the locations of both resonances and their band-
widths were fitted. The resonance positions in the analytical
model have been tuned by selecting the eigenfrequency w, in
between the two resonance frequencies of the numerical dis-
persion relation. We notice that the eigenfrequency w, corre-
sponds to the localized plasmon-polariton frequency of an
isolated wire. The eigenfrequency of such a wire can be es-
timated with an ellipsoidal particle in the quasistatic regime
[27] with the same dimensions shown in Fig. 2(a). The cal-
culated value coincides approximately with the eigenfre-
quency used for the fit (see the value in parentheses in Table
I). To realize the presence of two resonances, the coupling
constant o was increased until the two resonance positions
coincide with the numerical ones.

The resonance width, which represents the damping, has
been retrieved from the full width at half maximum value of
the imaginary part of the peak in the dispersion relation for
the 3D geometry and the refractive index for the 2D arrange-
ment. The unknown term Ag/m [this term appears in the
expressions for k(w), &(w), and u(w)] represents the only
remaining free fitting parameter. The values found for both
scenarios are listed in Table I.

While the dispersion relation can be fitted, the permittiv-
ity and the permeability are not direct outcomes of the fitting
procedure. Having the dispersion relation (and respective
constants) fitted, the assigned effective parameters can be
calculated from Egs. (22) and (25) without any further adap-
tation. The comparison of these functions (refractive index,
permittivity, and permeability) validates the procedure intro-
duced for the modeling of effective parameters as well as the
application of the multipole expansion (see Fig. 4).

Nevertheless, one can conclude that for such a rather
primitive model the analytical results are in quite good
agreement with the rigorous simulations, especially for small
frequencies (long wavelengths) where the approach based on
the averaged Maxwell’s equations is supposedly more appro-
priate.

VII. SUMMARY AND OUTLOOK

The aim of this paper was to develop simple tools for the
analytic description of plane-wave propagation in MMs em-
ploying mathematical techniques well known in electrody-
namics. The calculations are based on the averaged Max-
well’s and material equations which retain higher-order
multipole terms. In order to model the MM structure, a col-
lective carrier arrangement has been proposed that supports
electric dipole, magnetic dipole, and electric quadrupole mo-
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FIG. 4. (Color online) Retrieved effective index (a), effective permittivity (d), and effective permeability (g) from FMM simulations of
a 2D single-layer metamaterial. Based on the coefficients from fitting the dispersion relation that is equivalent to the refractive index in the
2D case, the resulting effective index (b), the effective permittivity (e), and the effective permeability (h) resulting from the analytical model
are shown. (c), (f), and (i) correspond to the analytically determined effective parameters for the 3D infinite bulk metamaterial. Therefore the

dispersion relation (Fig. 3) has been fitted by the analytical one.

ments and mimics qualitatively the LPP dynamics. The
charge dynamics and the eigenmodes of the carrier oscilla-
tions have been described by using a coupled harmonic os-
cillator model. It turned out that the symmetric eigenmodes
evoke an electrical dipole moment whereas the antisymmet-
ric mode induces both an electrical quadrupole and a mag-
netic dipole moment. A self-consistent solution for plane
waves has been achieved and its dispersion relation has been
calculated. The effective permittivity and the permeability
have been elaborated based on the material equations and the
obtained dispersion relation. It has been shown that the ef-

fective electric and magnetic properties appear to be mutu-
ally coupled. Finally, a comparison between numerically cal-
culated and analytically obtained dispersion relations and
effective permittivity and permeability parameters has been
performed in order to evaluate the applicability of the theory.
It has been verified that the main features of the dispersion
relation can be reproduced by our analytical model. The ef-
fective parameters calculated in the framework of the ana-
lytical model display a good qualitative agreement with the
ones obtained by the numerical calculations.

TABLE 1. The fitting parameters that have been applied to match the dispersion relation for the slab as
well as for the bulk arrangement. Together with Egs. (22) and (25) the effective parameters can be calculated
as shown in Fig. 4. Additionally, the eigenfrequencies of the single wire calculated separately in the quasi-

static regime are listed in parentheses.

Fitting parameter

Slab MM

Bulk MM

wy (rad/s) 1.62X 10" (1.85x 10'%) 1.39X 10" (1.85x 10'9)
v (rad/s) 9.42x 103 9.42x 103
o (rad/s) 1.60 X 107 0.60 X 103
Ag/m (AsV/m?>K g) 5.00 X 10% 2.20 %X 10%
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It is believed that the introduced formalism provides a
deeper insight into the description of MMs using quasimicro-
scopic Maxwell’s equations. Due to the approximate nature
of the model it is not considered for use for design purposes.
The same basic ideas of the model can be applied to other
geometries for MMs as well. A detailed work on the analyti-
cal description of light propagation in a medium comprising
split-ring resonators is presently in progress. A nonlinear ma-

PHYSICAL REVIEW A 78, 043811 (2008)

terial response can be naturally obtained from the quadrupole
and magnetic dipole description as well.
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