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We study a dipolar boson-fermion mixture in a pancake-shaped geometry at absolute zero temperature,
generalizing our previous work on the stability of polar condensates and the formation of a density-wave state
in cylindrical traps. After examining the dependence of the polar condensate stability on the strength of the
fermion-induced interaction, we determine the transition point from a ground-state Gaussian to a hexagonal
density-wave state. We use a variational principle to analyze the stability properties of those density-wave
state.
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I. INTRODUCTION

The recent realization of a Bose-Einstein condensate of
chromium atoms �1,2� opens up the study of quantum-
degenerate gases that interact via the long-range, anisotropic
magnetic dipole interaction. This is an anisotropic and long-
range interaction that leads to the appearance of a wealth of
new properties past those characteristic of systems with iso-
tropic interactions �3�. In the case of 52Cr s-wave interactions
are normally much stronger than the dipolar part, but it has
been shown experimentally that by applying a magnetic field
the s-wave scattering length can be lowered to values com-
parable to the Bohr radius �4�, so that the dipole interaction
dominates the system. In the regime where the dipole-dipole
interaction is dominant the condensate is characterized by
the existence of a metastable state whose properties depends
on the trapping geometry �5–7,9–11�, as was experimentally
demonstrated in Ref. �8�. A roton feature has also been pre-
dicted to exist in these systems for appropriate parameters.
There would be considerable interest indeed in accessing the
associated roton instability �12–14�, as it is characterized by
the spontaneous generation of a periodic density modulation
in the condensate �15�. Unfortunately that state is unstable
against collapse, but we found recently that this difficulty
can be circumvented by the addition of a small fraction of
noninteracting fermions, resulting in a significant stabiliza-
tion of the bosonic system in cylindrical traps �16�. The si-
multaneous trapping of bosonic and fermionic isotopes of
chromium �17� also points to interesting directions, with the
possibility to observe ground and metastable phases in quan-
tum degenerate polar boson-fermion mixtures.

This paper extends our previous study of dipolar boson-
fermion mixtures from cylindrical traps to pancake-shaped
geometries, showing that dipolar bosons can be stabilized
considerably by increasing the boson-fermion s-wave scatter-
ing length, and more importantly the density-wave states of
dipolar bosons can be stable for typical, zero-field boson-
fermion interaction strengths. Section II describes the in-
duced potential created by fermions on bosons, and Sec. III

discusses the general properties of the energy functional as a
function of boson-fermion interaction using a variational
Gaussian ansatz. Section IV presents an analysis of the tran-
sition point to the density-wave state for various combina-
tions of trap aspect ratios and boson-boson contact interac-
tion strengths. Section V introduces a density-wave ansatz in
the form of a series of shifted Gaussians. The stability of
these density-wave states is determined by varying the width
of each Gaussian to seek minima in the interaction energy for
various boson-boson s-wave interaction. We find a condition
for the stability of these types of density-modulated states.
Finally, Sec. VI is a summary and outlook.

II. FERMION-INDUCED INTERACTION
IN POLAR CONDENSATES

We consider a mixture of Nb dipolar bosons of mass mb
and Nf single-component fermions of mass mf confined in a
pancake-shaped trap characterized by a tight harmonic po-
tential of frequency �z along the z axis and a softer harmonic
potential of frequency �� in the transverse direction. A po-
larizing external electric or magnetic field, is taken to be
along the z axis. The dipole-dipole interaction between two
bosonic particles separated by a distance r is then

Vdd�r� = gdd�1 −
3z2

r2 � 1

r3 , �1�

where gdd is the dipole-dipole interaction strength. In the
mean-field approximation for the condensate, the energy
functional for the order parameter ��r� of the dipolar con-
densate can be expressed as

E =� �*�r�H0��r�d3r +
gNb

2
� ���r��4d3r

+
Nb

2
� � ���r��2Vdd�r − r�����r���2d3rd3r� + Eind,

�2�

where
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H0 = −
�2

2mb
�2 +

mb�z
2

2
��2�x2 + y2� + z2� �3�

is the sum of the kinetic energy and the trapping potential
and �=�� /�z. The second term in the energy functional �2�
denotes the contact interaction between bosons, character-
ized by the strength g=4��2abb /mb with abb being the
s-wave scattering length, and the third term describes the
nonlocal dipole-dipole interaction between bosons. Finally,
the last term Eind accounts for the fermion-induced interac-
tion between bosons, given in linear response theory �18�.
We describe the fermions in the local density approximation
�LDA�, which allows us to calculate the induced interaction,
and subsequent bosonic quantities, analytically. The basic
idea behind that approximation is to assume the local equi-
librium of the free fermions with a position-dependent Fermi
momentum kf�r� at each point. This approximation is justi-
fied in the case of trapped boson-fermion systems provided
that in addition to the familiar LDA validity condition Nf

1/3

�1 for single-component fermionic systems �19�, where Nf
is the number of fermions, the bosonic and fermionic com-
ponents are well mixed �no phase separation� and the char-
acteristic length scale of the fermionic component is larger
than the bosonic characteristic lengths. These conditions are
discussed in more detail in Appendix A.

We assume a contact boson-fermion interaction of
strength gbf =2��2abf /mr, where abf is the boson-fermion
s-wave scattering length and mr=mbmf / �mb+mf� is the re-
duced mass. The boson-fermion interaction energy has the
form gbf	nf�k�n�−k�d3k, with n�k� and nf�k� being the
bosonic and fermion densities in the momentum space. The
linear response of the fermions to a bosonic density n�k� can
be expressed as nf�k�=Vind�k�n�k�, so that for the effect of
the fermions on the bosonic energy functional is

Eind =
1

2

gbfNb

�2��3 � Vind�k�n�k�n�− k�d3k . �4�

The explicit form of the induced potential is

Vind�k� = gbf� f�k� , �5�

where � f is the density response function �18�. It is related to
the dynamical structure factor S�k ,��, which is the probabil-
ity of exciting particle-hole pairs with momentum k out of
the Fermi sea, by � f�k�=−2	0

	d���S�k ,��� /���. For a non-
interacting single-component Fermi system we have

S�k,�� = 

p
kf

	

�p+k��kf

��� − �pk
0 � , �6�

where p= �p�, kf is the Fermi momentum, the excitation en-
ergy is �pk

0 = pk cos  /mf +k2 / �2mf�, and  is the relative
angle between p and k. This expression assumes that the
fermions are locally free, so that there is a local Fermi sphere
in momentum space. In this local density approximation, kf
is given by �19�

kf�z = 1.9Nf
1/6�1/3�mf

mb
, �7�

where �z=�� / �mb�z� is the oscillator length in the z direc-
tion.

Following Ref. �16� the induced potential Vind�k� is given
by

Vind�k� = �gbf�− 1 + 

n=1

	 � k

2kf
�2n 1

4n2 − 1� , k 
 2kf ,

− gbf�

n=1

	 �2kf

k
�2n 1

4n2 − 1
, k � 2kf ,�

�8�

where �=kfmf / ����2 is the three-dimensional fermionic den-
sity of states, and k2=kx

2+ky
2+kz

2 is the square of the fermi-
onic momentum. The induced potential is attractive for very
low momenta and goes to zero with increasing momenta.

Throughout this paper, we consider the parameters corre-
sponding to a 52Cr– 53Cr mixture, and fix the number of fer-
mions to be Nf =103 unless otherwise stated. The zero-field
bosonic s-wave interaction for 52Cr is taken to be abb
=103a0, and abf =70a0 for the boson-fermion scattering
length �20�.

III. STABILITY OF THE GAUSSIAN DIPOLAR
CONDENSATE

We now proceed to determine the stability of the dipolar
condensate, using a variational ansatz in the parameter space
of the fermion-induced interaction and dipolar strength. The
variational wave function is taken as the Gaussian

��r� =
1

��3/2d2dz

exp�−
x2 + y2

2d2 −
z2

2dz
2� , �9�

with d ,dz being the variational parameters and 	d3r���r��2
=1. Substituting this Gaussian ansatz and its Fourier trans-
form into Eqs. �2� and �4� yields the energy Eg of the con-
densate as

mb�z
2

�2 Eg =
1

2
�1

2
+ �2���z

dz
�2

+
1

2
�1

2
+

�2

�2��dz

�z
�2

+ g3d��z

dz
�32

3
�2 − F��−1�

+ �dz

�z
�3

�g
E1

 + g�E1

� + gind�E2

 − E2

� + E3

��� ,

�10�

where �=dz /d, and k̃f =kf�z. The derivation of algebraic
forms of the interaction-energy terms E1


 ,E1
� ,E2


 ,E2
� ,E3




and of the function F are straightforward but lengthy, and
their derivations are relegated to Appendix B. In Eq. �10� we
have also introduced the effective three-dimensional dipole-
dipole interaction
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g3d =
mbNbgdd

�2��2�z

.

The coefficients g
 and g� find their origin in the
momentum-independent contact interaction, given by the
summation of the s-wave boson-boson scattering and the
constant terms in the induced interaction �8�. They are given
explicitly by

g
 =
g − gbf

2 �

4�gdd
,

g� =
g

4�gdd
. �11�

Finally

gind =
gbf

2 �

48�gddk̃f
2

is due to the nonlocal induced interaction. We remark that the
effective contact interaction consists of the boson-boson con-
tact interaction as well as the momentum-independent part of
the dipole-dipole interaction and of the induced interaction.
From Eqs. �10� and �11� we have that for low momenta

gs =
2

3
+ g
. �12�

It is known that in boson-fermion mixtures without dipo-
lar interaction, phase separation occurs when gs becomes
negative �22–24�. In this paper, in contrast, we restrict our
considerations to the case gs�0 by changing the boson-
boson contact interaction g, so that phase separation does not
take place.

The energy functional �10� was minimized with respect to
� and dz /�z for various parameter values, with our results
summarized in Fig. 1. Without the fermion induced interac-
tion, gind=0, the ground-state energy of the system is not
bounded from below, and the strong trapping in z direction
creates a local minimum in the energy landscape as a func-
tion of dz and � �Fig. 1�a��. For finite induced interactions
gind�0, we find in contrast that the energy landscape is char-
acterized by two minima, as shown in Figs. 1�b�–1�d�. In
Fig. 1�b� the global minimum, which occurs for �� ,dz /�z�
��3,2.3�, is a Gaussian state with narrow width in the trans-
verse x-y plane. The additional local minimum close to
�� ,dz /�z���0.2,1.4� is a metastable state.

With increasing boson-fermion interaction gind, though,
the ground-state energy corresponding to the global mini-
mum at ��1 approaches that of the local minimum �Fig.
1�c��, and these minima eventually reach equal energies at a
critical value of gind. The new ground state past that point is
characterized by the parameters �
1 and dz��z �Fig. 1�d��,
that is, it is a wide Gaussian in x-y plane.

Experimentally one may either vary the boson-boson
s-wave scattering length while keeping the boson-fermion
scattering length constant, or vary gbf with constant s-wave
interaction g. In a boson-fermion mixture of chromium iso-
topes, typically gind�10−3 is small, which corresponds to an

energy landscape that resembles that of Fig. 1�b� and the
broad Gaussian corresponds to a metastable state. Such a
metastable state has been achieved experimentally in experi-
ments by the Stuttgart group �8�. A system that offers the
potential to reach the regime of Fig. 1�d� is provided by a
mixture of bosonic 87Rb and fermionic 40K with the scatter-
ing length of rubidium atoms tuned close to zero. In that
mixture, a zero-field scattering length abf �250a0 �21� gives
gind�0.2.

IV. TRANSITION TO A DENSITY WAVE

The excitation spectrum of condensates dominated by a
dipolar interaction is predicted to exhibit a roton minimum
�12,13�. As a consequence, a bosonic density-modulated
state in the x-y plane may arise as a local minimum, and it
may actually have a lower energy than the metastable Gauss-
ian state and for high enough bosonic densities �15�. This
section discusses the transition to the appearance of such a
state as a function of number of bosonic particles for various
combinations of trap ratio.

We proceed by introducing the new variational wave
function that describes a density-wave structure with trian-
gular symmetry,

FIG. 1. �Color online� Energy landscape Eg obtained by the
variational Gaussian ansatz Eq. �9� as a function of �=dz /d and
dz /�z at a constant dipolar interaction strength g3d=30. In these
figures the energy is cut off at Eg=1.5 from above and Eg=−0.5
from below for viewability. �a� Behavior of Eg in the absence of the
fermion-induced interaction gind=0. �b� Energy Eg for gind=0.02.
The plot is characterized by presence of two minima: �i� The true,
narrow Gaussian ground state located at �� ,dz /�z���3,2.3�; and
�ii� a pancake-shaped metastable state located at �� ,dz /�z�
��0.2,1.4�. �c� Energy landscape for gind=0.06. The energies of the
ground and metastable states approach each other. �d� The broad
Gaussian metastable state at �� ,dz /�z���0.2,1.4� eventually be-
comes the true ground state for gind=0.07. In the figures the global
�ground state� and local minima �metastable state� are indicated by
a circle and cross, respectively.
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�dw
t �x,y,z� = ��x,y,z��a0 + 


n=1

	

ancos�nk̃0x

dz
�

+ 2 cos�nk̃0x

2dz
�cos�n

�3k̃0y

2dz
��� , �13�

where ��x ,y ,z� is defined in Eq. �9�, n is an integer, and

k̃0=k0dz��=dz /d. Substituting this trial wave function �13�
into Eq. �1�, we find that the scaled excess energy of the
density-modulated state relative to the Gaussian state

��k̃0,a1,a2,a3� =
2mdz

2

�2 �Edw − Eg�

is approximately given by

��k̃0,a1,a2,a3�
3

�
k̃0

2

4
�a1

2 + 4a2
2 + 9a3

2� +
g3dnd

4
��a1

2 + 2a0a1

+ a1a2 + a2a3�2Veff�k̃0�

+ �a1
2 + 2a1a2�2Veff��3k̃0�

+
1

4
�a1

2 + 2a2
2 + 4a0a2 + 2a1a3�2Veff�2k̃0�

+ 2�a1
2a2

2 + a1
2a3

2 + a2
2a3

2�Veff��7k̃0�

+ �2a0a3 + a3
2�2Veff�3k̃0�� , �14�

where nd��2�z /dz �25�. The normalization condition reads
as a0

2+3�a1
2+a2

2+a3
2� /2=1, and the effective transverse po-

tential is

Veff�k̃0� � �
2

3
+ g
 −��

2
k̃0 erfcx� k̃0

�2
� + gind��z

dz
�2

k̃0
2, k̃0 
 2kfdz,

2

3
+

g

4�gdd
−��

2
k̃0 erfcx� k̃0

�2
� − gind��z

dz
�2 �2kfdz�4

k̃0
2

, k̃0 � 2kfdz.� �15�

In evaluating Eq. �14� we kept only the first four terms n
=0, . . . ,3 of Eq. �13� as the energy converges at the transi-
tion point. The magnitude of the error in that approximate
expression is estimated to be of the order of e

=exp�−k̃0
2�2 /4�. In the subsequent calculations we consider

values of k̃0 such that this error is less than or on the order of
10−6.

We numerically determine the variational parameters that

minimize the excess energy ��k̃0 ,a1 ,a2 ,a3� as a function of
g
 for fixed nd and g3d. These results are summarized in Fig.
2, which shows the critical number of bosonic particles Nb

such that � has a minimum for k̃0�0. By tuning the trap
aspect ratio �=�� /�z to higher values, the critical number
of bosons Nb required to achieve �
0, that is, a transition
from a Gaussian to a density-wave metastable state with
lower energy, is lowered as a result of an increased nd. In

addition, we note that the value of k̃0 determined by the
present variational calculation matches closely the position
of roton minima at the excitation spectrum of the condensate
as in Ref. �15�. We also checked the energy with density
wave having square symmetry and find that the triangular
one always has lower energy.

V. DENSITY WAVE STABILITY

In the preceding section we determined the transition to
the density-wave instability, assuming the ansatz �13�. As

already mentioned, this transition is related to the existence
of a roton minimum in the excitation spectrum. However,
assuming such a density wave does not provide an answer to
the question of its stability against collapse. This is the issue
that we address now, restricting our considerations to the
regime where the boson-fermion interaction strength is close
to its zero-field value abf =70a0. This corresponds in the case

0.16 0.18 0.2 0.22 0.24 0.26
0

2

4

6

8

10

10
–4

N
b

g<

FIG. 2. Critical number of bosonic 52Cr atoms needed for the
transition from the Gaussian state to a hexagonal density-wave state
for the trap aspect ratios �=0.25 �solid curve� and �=0.22 �dashed
curve�. Here �z=0.15 �m.
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of 52Cr-53Cr isotopes to gind�10−3. This is the parameter
regime characterized by a Gaussian metastable state, see Sec.
II and Fig. 1�b�.

Once the transition to the density-wave state has occurred
the condensate can also be described as a superposition of
shifted Gaussian wave functions within the two-dimensional
Z�x+ iy plane,

�dw�Z,z� =
1

�M�3/2�2dz


j=1

M

exp�−
�Z − Zj�2

2�2 −
z2

2dz
2� ,

�16�

where j is the index of the lattice site, Zj the lattice vectors
generating periodic density modulations, � the width of each
density peak, M the total number of density peaks, and l the
distance between neighboring density peaks. It is given by
l=2� /k0 where k0 is the position of roton minimum in the
excitation spectrum of the condensate.

Using the results of Sec. III to investigate the stability of
each Gaussian in Eq. �16�, we now show that the presence of
fermions substantially stabilizes the density-wave state, not-
ing that a stable density wave should be characterized by
nonzero values of � /dz and dz /�z.

From Eq. �16�, the total interaction energy is found to be
�26�

Eint��,dz� =
mb�z

2Eint

�2

M
g3d

= ��z

dz
�32

3
�dz

�
�2

− F�dz/�� + �dz

�z
�3

�g
E1

 + g�E1

�

+ gind�E2

 − E2

� + E3

�� + f�l,�,dz�� , �17�

where we have assumed that �� l, i.e., that neighboring
Gaussian peaks in Eq. �16� have little overlap. Here
E1


 ,E1
� ,E2


 ,E2
� ,E3


 and F have the same form as in the Ap-
pendix B, but � is now a function of �� ,dz ,�, �
=�dz

2 cos2 +�2 sin2 . The function f�l ,� ,dz� is responsible
for the particular geometry of the density-modulated state.
Other terms, on the other hand, just arise from the energy of
each individual Gaussian and we can thus apply the results
of Sec. III to the present analysis.

Assuming a triangular crystal and including only the in-
teraction between nearest neighbors, we have

f�l,�,dz� = 6�
0

	

Veff�k̃�exp�−
k̃2�2

2dz
2 �J0� k̃l

dz
�k̃dk̃ ,

with k̃=kdz, the effective two-dimensional potential Veff�k̃� is
defined in Eq. �15�, and J0 is the zeroth-order Bessel function
of the first kind.

We now discuss the minimum of the energy functional
Eint�� ,dz� as a function of the effective strength of the contact
interaction gs, which is varied by changing g
, see Eq. �12�.
Without boson-fermion interaction, the interaction energy is
a monotonically increasing function of � with Eint��→0,dz�
→−	. As a result each Gaussian of the density-wave Equa-
tion �16� collapses. A typical example of the dependence of

the interaction energy on � is shown as the dotted curve in
Fig. 3�a�. With nonzero boson-fermion interaction energy, in
contrast, the interaction energy �17� exhibits a minimum at a
finite � as illustrated by the solid curve in Fig. 3�a� for dz
=1.8�z and g
=0.17. The existence of that minimum implies
the stability of each Gaussian, that is, the stability of the
wave function �16�.

We can determine the dependence of the Gaussian widths
� on the s-wave boson-boson scattering length by changing
g
. To do this we first minimize Eq. �17� as a function of g
,
treating dz and � as variational parameters. Figure 3�b� shows
the resulting value � /�z as a function of g
 for �=0.25, Nf
=1000 and �z=0.15 �m. We observe that � decreases for
smaller values of the contact interaction g
, and for g


�0.14, the minimum-energy state corresponds to the col-
lapsed state, �=0. Below that point the density wave is un-
stable.

This behavior can be understood from the effective poten-
tial by first integrating out the z direction to obtain the effec-
tive potential ��z /dz�3Veff�k�dz�, where Veff is given by Eq.
�15� and k�

2 =kx
2+ky

2. The width dz of the Gaussians is deter-
mined by the position of the minimum in Eq. �17�. For g


�0.14, Veff�k�dz� is attractive for all high momenta, but at
the critical value g
�0.14, it approaches zero as k�→	, as
shown by the dashed curve in Fig. 4. Hence the energy is
always minimized when the wave function has zero width in
the x-y plane, i.e., �→0. For g
�0.14 the effective potential
is repulsive both at low and high momenta, and attractive
in-between as illustrated by the solid curve in Fig. 4. Subse-
quently the energy is minimized for a finite value of �.

To find the range of parameter space characterized by the
appearance of density-wave states, we need to consider, in
addition to stability arguments, the transition point discussed
in Sec. III. Table I summarizes the range of s-wave scattering
lengths and critical numbers of 52Cr atoms necessary to be
inside stable density-wave regime.

0.2 0.4 0.6 0.8 1
−3

−2

−1

0

0.14 0.16 0.18 0.2 0.22 0.24

10
−2

10
−1

10
0

in
t

g<

ξ/l
z

lo
g 10

(ξ
/l z)

(a)

(b)

ε

FIG. 3. �a� Interaction energy Eint of Eq. �17� as a function of
� /�z at �=0.25, �z=0.15 �m, dz=1.5�z, and g
=0.18. For gbf =0
the energy is unbounded from below, but for gbf =70a0, a minimum
appears at � /�z�0.1. �b� Log-scale plot of the normalized width
� /�z that minimizes Eint as a function of g
.
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VI. CONCLUSION

In summary, we have analyzed the stability of a dipolar
bosonic condensate mixed with noninteracting fermions in a
pancake-shaped trap at T=0. We found that the fermions
help stabilize the condensate for a significant range of boson-
boson and boson-fermion interaction strengths. We then in-
vestigated the transition of the system from a Gaussian-like
to the density-wave ground state as a function of number of
bosons, strength of the contact interaction, and trap aspect
ratio. Our central result is the use of a variational ansatz to
show that while in a purely bosonic system the density-wave
state is always unstable it can be stabilized by the admixture
of even a small boson-fermion interaction.

In particular, this study leads us to the conclusion that a
pancake-shaped 87Rb-40K mixture, which has a large boson-
fermion s-wave scattering length, should be absolutely stable
in the dipole dominated regime. By tuning the s-wave scat-
tering length it is possible to reach a situation characterized
by the appearance of a roton instability in the excitation
spectrum, leading to the existence of a stable density-wave
state. However, due to the small dipole moment of rubidium
atoms the transition to this stable density-wave regime needs
a substantial number of atoms, of the order of 106.

Future work will discuss the effect of the dipolar nature of
the fermionic isotopes on the condensate—with chromium

atoms in mind—the existence and stability of density waves,
as well as possible extensions to rotating systems.
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APPENDIX A: VALIDITY OF THE LOCAL
DENSITY APPROXIMATION

In deriving the induced interaction Eq. �8� we have intro-
duced a local density approximation �LDA� for fermions in a
trapped boson-fermion mixture. For a single component
Fermi gas, the LDA is valid as long as the condition �19�

kf�0�R � Nf
1/3 � 1 �A1�

is satisfied, where kf�0� is the Fermi momentum at the center
of the fermionic density. However, in the case of our boson-
fermion mixture two additional conditions need to be satis-
fied, specifically �i� the bosonic and fermionic components
must not be phase separated, and �ii� all characteristic lengths
of the bosonic component, such as the Gaussian width of the
condensate and the period of the density wave must be less
than the characteristic length of the fermions.

To extract these conditions quantitatively, our starting
point is the linear-response theory form of the fermion-
induced boson-boson interaction energy,

Eind =� � Vind�r,r��n�r�n�r��drdr�. �A2�

Here Vind�r ,r�� is the effective boson-boson interaction in-
duced by the fermions.

Transforming into relative and center-of-mass coordinates
r−r� and rc= �r+r�� /2, taking the Fourier transform with
respect to the relative coordinate, and evaluating the integral
explicitly for a Gaussian bosonic density profile n�r�, we
obtain the induced-interaction energy for Gaussian conden-
sate

Eind = 2�� exp�− 2rc
2�dz

2 cos2 c

+ d2 sin2 c��rc
2drc sin cdc

�� Vind�rc,k�exp�−
k2

2
�dz

2 cos2 

+ d2 sin2 ��k2dk sin d . �A3�

We now invoke the LDA for the fermion component by in-
troducing a position-dependent Fermi momentum kf�rc� re-
sulting from the nonuniform fermionic density in the trap.
�For an explicit form of the induced interaction we can fol-
low the textbook calculation �18� provided that kf →kf�rc�.�
The induced interaction becomes then

0 5 10 15 20 25

−0.1

−0.05

0

0.05

V
ef

f(k
⊥
d z)

l3 z/d
3 z

k⊥d
z

FIG. 4. Effective potential Veff as a function of k�dz for the
parameters of Fig. 3�b� for g
=0.2 �solid curve�, and the critical
value of g
�0.14 �dashed curve�.

TABLE I. Tabulation of the scattering length of boson-boson
contact interaction abb and critical number of bosons Nb for differ-
ent values of aspect ratio � and oscillator length �z inside the
density-wave regime with Nf =103 and gbf =70a0 for a mixture of
chromium isotopes.

� �z �units of �m� abb �units of a0� 10−4Nb

0.25 0.15 16–21 �0.65

0.2 16–19 �2.3

0.25 15–18 �5.0
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Vind�rc,k� = �gbf��rc�− 1 + 

n=1

	 � k

2kf�rc�
�2n 1

4n2 − 1� , k 
 2kf�rc� ,

− gbf��rc�

n=1

	 �2kf�rc�
k

�2n 1

4n2 − 1
, k � 2kf�rc� ,� �A4�

where rc= �rc�. Evaluating the second integral with respect to
�k ,� in Eq. �A3� results in a functional h�kf�rc�� of the
Fermi momentum kf�rc�,

Eind = 2�� exp�− 2rc
2�dz

2 cos2 c

+ d2 sin2 c��h�kf�rc��rc
2drc sin cdc. �A5�

Next we compare the characteristic length scales of bosons
and fermions in a trapped system. The mean spatial width of

the bosonic Gaussian condensate is R̄b= �d2dz�1/3, and the
characteristic length of the fermionic component is given in
the LDA by �19�

R̄f �
1.9Nf

1/6�z

�1/3 .

For the LDA to be valid the fermionic quantities must

change slowly in comparison to the bosonic ones, R̄f � R̄b. If
this is satisfied, the Fermi momentum changes slowly in
comparison to exponential function in Eq. �A5�, and can be
replaced by its value at rc=0,

h�kf�0�� =� Vind�k�exp�−
k2

2
�dz

2 cos2 

+ d2 sin2 ��k2dk sin d ,

which is the expression used in the main text. In this paper
we assume that the number of fermions is of the order of

Nf =103, so that the condition R̄f � R̄b required for the valid-
ity of Eq. �10� is

dz

�z



6.027

�1/3 �2/3. �A6�

APPENDIX B: DERIVATION OF THE ENERGY
FUNCTIONAL (10)

In this appendix we derive the energy functional Eq. �10�
by using the Gaussian ansatz of Eq. �9�. First we consider the
dipolar interaction energy,

Edd =
gddNb

3�2��2 � dk�3
kz

2

k2 − 1�exp�−
1

2
�kz

2dz
2 + �kx

2 + ky
2�d2�� ,

�B1�

where k2=kx
2+ky

2+kz
2. Evaluating this integral gives the form

of dipolar energy

Edd =
gddNb

3�2��2dz
3�2

3
�2 − F��−1�� , �B2�

with �=dz /d and

F�y� =
tan−1��y2 − 1�

�y2 − 1�3/2 −
1

y2�y2 − 1�
.

Next we calculate the energy due to s-wave boson-boson
interaction and fermion-induced interaction. To achieve this
goal we break the integral of the interaction energies ex-
pressed in spherical coordinates into two parts, Es�Es




+Es
� and Edd�Edd


 +Edd
� , according to

�
0

	

dk = �
0

2kf

dk + �
2kf

	

dk . �B3�

For k
2kf and in spherical coordinate, the interaction en-
ergy including the s-wave and induced interaction is given
by

Es

 + Eind




=
gddNb

2�
�

0

2kf �
0

� g
 +
gbf

2 �

4�gdd


n=1

	 � k

2kf
�2n 1

4n2 − 1�
�exp�−

k2

2
�dz

2 cos2  + d2 sin2 ��k2dk sin d ,

where g
 is defined by Eq. �11�. This integral contain con-
tribution from both the local and nonlocal part of the induced
interaction. After integrating over k and rearranging the
terms we obtain the expression

Es

 + Eind


 = g
E1

 + gind�E2


 + E3

� , �B4�

with

E1

��� = �

0

�/2 erf��2kf��
�3 sin d ,

E2

��� =

48kf
3

�2�
�

0

�/2 exp�− 2kf
2�2�

�2 sin d ,
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E3

��� =

3
�2�



n=1

	
2n+1/2

4n2 − 1

1

2kf
2�n−1�

��
0

�/2 ��n + 3/2� − ��n + 3/2,2kf
2�2�

�2n+3 �sin d ,

�B5�

Here �=�dz
2 cos2 +d2 sin2  is a function of � ,dz ,d�,

erf�y�, erfc�y�, �, and � denote the error function, comple-
mentary error function, � function, and incomplete � func-
tion, respectively.

Similarly, the contribution for k�2kf to the interaction
energy that contains both the s-wave boson-boson interaction
and the nonlocal induced interaction is

Es
� + Eind

� =
gddNn

2�
�

2kf

	 �
0

� g� −
gbf

2 �

4�gdd


n=1

	 �2kf

k
�2n 1

4n2 − 1�
�exp−

k2

2
�dz

2 cos2  + d2 sin2 ��k2dk sin d ,

where g� defined in Eq. �11�. In this equation the first term
in the bracket stems from the s-wave boson-boson interac-
tion and the last term from attractive nonlocal part of the
induced interaction. Again after evaluating the integral over k
we obtain

Es
� + Edd

� = g�E1
� − gindE2

� �B6�

where

E1
���� = �

0

�/2 erfc��2kf��
�3 sin d , �B7�

and

E2
���� =

3
�2�



n=1

	
2kf

2�n+1�

4n2 − 1
�

0

�/2 �−
�− 1�n��/2
�2n − 1�!!

�2n−3

�erfc��2kf��

+ 

m=0

n−2
�− 1�m2m+1�2kf�2m

2kf
2n−2m−3�2n − 3��2n − 5� ¯ �2n − 2m − 3�

�exp�− 2kf
2�2��2m�sin d , �B8�

The total interaction energy is the sum of the contribu-
tions in Eq. �B2�, �B4�, and �B6� and is given in Eq. �10�. In
the present paper we took n=1, . . . ,3 in the series in Eqs.
�B5� and �B8� as the energy Eg in Eq. �10�, as they are
sufficient to reach an adequate convergence.
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