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For identical bosons with a large scattering length, the dependence of the three-body recombination rate on
the collision energy is determined in the zero-range limit by universal functions of a single scaling variable.
There are six scaling functions for angular momentum zero and one scaling function for each higher partial
wave. We calculate these universal functions by solving the Skorniakov-Ter-Martirosian equation. The results
for the three-body recombination as a function of the collision energy are in good agreement with previous
results from solving the three-body Schrödinger equation for 4He atoms. The universal scaling functions can be
used to calculate the three-body recombination rate at nonzero temperature. We obtain an excellent fit to the
data from Grimm and co-workers for 133Cs atoms with a large positive scattering length.
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I. INTRODUCTION

Three-body recombination is a three-particle process in
which two of the particles bind to form a molecule. This
process is important in cold atom physics, because it is one
of the most important loss mechanisms for trapped ultracold
atoms. If the interactions of the atoms are known with suffi-
cient accuracy, the three-body recombination rate can be cal-
culated by solving the three-body Schrödinger equation nu-
merically. However, the interactions between complex atoms
may not be known with sufficient accuracy. This is especially
true for atoms whose S-wave scattering length a is large
compared to the range of their interaction. In this case, the
atoms have universal properties that depend on a but are
otherwise insensitive to length scales set by the range. This
makes possible a complementary approach to the few-body
problem that involves expanding in powers of the range di-
vided by a. The leading term in this expansion is called the
zero-range limit or, alternatively, the scaling limit. In the
three-body sector, the approach to the few-body problem
based on expanding around the zero-range limit was pio-
neered by Efimov beginning around 1970.

Efimov discovered that the zero-range limit of the three-
body problem for nonrelativistic particles with short-range
interactions is quite remarkable. If a= ��, there are infi-
nitely many three-body bound states with an accumulation
point at the three-atom scattering threshold. These Efimov
states or Efimov trimers have a geometric spectrum �1�

ET
�n� = �e−2�/s0�n−n

*�2�*
2 /m , �1�

where �* is the binding wave number of the Efimov trimer
labeled by n* and m is the mass of the particles. This geo-

metric spectrum is a signature of a discrete scaling symmetry
with discrete scaling factor e�/s0 �2�. In the case of identical
bosons, s0�1.006 24 and the discrete scaling factor is e�/s0

�22.7. We will refer to the universal phenomena character-
ized by this discrete scaling symmetry as Efimov physics �3�.
Efimov showed that discrete scale invariance is also relevant
if a is large but finite �4,5�. The negative values of a for
which there is an Efimov trimer at the three-atom scattering
threshold are related by the discrete scaling symmetry. The
positive values of a for which there is an Efimov trimer at
the atom-dimer scattering threshold are also related by the
discrete scaling symmetry. Another dramatic example of Efi-
mov physics is the vanishing of the three-body recombina-
tion rate at threshold at positive values of a that are related
by the discrete scaling symmetry �6–8�.

Efimov also showed that the discrete scaling symmetry
governs the energy dependence of three-body scattering pro-
cesses, such as atom-dimer elastic scattering and three-body
recombination �5�. It is convenient to measure the total en-
ergy E of the three atoms in their center-of-mass frame rela-
tive to the three-atom scattering threshold. The discrete scal-
ing symmetry implies that the scattering rates at energy E in
a system with parameters a and �* differ from those at en-
ergy �e−2�/s0�nE in a system with parameters �e�/s0�na and �*
only by an overall change in the scale. The zero-range limit
gives more detailed predictions that Efimov referred to as the
radial law. The radial law expresses the dependence of the
scattering rates on E in terms of universal functions of a
scaling variable x= �a2mE /�2�1/2. Once these scaling func-
tions have been calculated, the scattering rates can be pre-
dicted for any system of identical bosons with a large scat-
tering length.

The universal results defined by the scaling limit are exact
only in the limit of zero range. Corrections to the universal
results associated with a nonzero range are suppressed by
powers of � / �a�, where � is the natural low-energy length
scale �2�. For a short-range potential, � is simply the
range of the potential. For atoms whose potential has a van
der Waals tail −C6 /r6, � is the van der Waals length �vdW
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= �mC6 /�2�1/4. The effects of the nonzero range can be cal-
culated within a systematic expansion in the small parameter
� / �a� �9–13�. The next-to-leading-order term in this expan-
sion is proportional to rs /a, where rs is the effective range
�9,10�. Surprisingly, the next-to-next-to-leading-order term in
this expansion is also determined only by the scattering
length a, the Efimov parameter �*, and the effective range
�13�.

The natural low-energy length scale � allows us to differ-
entiate between a shallow dimer and deep dimers. The shal-
low dimer is a universal feature of the two-body system with
large positive scattering length and has binding energy ED
��2 / �ma2�. The underlying interaction can also support
deep dimers whose binding energies are comparable to or
larger than �2 / �m�2�. The properties of these deep dimers are
not universal. The alkali metal atoms used in most cold atom
experiments form diatomic molecules with many deeply
bound energy levels. Efimov trimers can therefore decay into
an atom and a deep dimer with large kinetic energies. These
final states also provide inelastic atom-dimer scattering chan-
nels and additional three-body recombination channels. If the
atoms do not form deep dimers, the zero-range results for
scattering rates are determined by two parameters: the scat-
tering length a and the Efimov parameter �*. If the atoms do
form deep dimers, the zero-range results for scattering rates
are determined by three parameters: a, �*, and a parameter
�* that determines the widths of the Efimov trimers �14,15�.
Remarkably, the same universal functions that determine the
energy dependence of scattering rates for the case �*=0 in
which there are no deep dimers also determine their energy
dependence for �*�0.

The first experimental evidence for Efimov physics was
presented by Grimm and co-workers �16�. They carried out
experiments with ultracold 133Cs atoms in the lowest hyper-
fine state, using a magnetic field to control the scattering
length. They observed a resonant enhancement in the three-
body recombination rate at a�−850a0 that can be attributed
to an Efimov trimer near the three-atom threshold. At the
temperature 10 nK, the loss rate as a function of a can be
fitted rather well by the universal formula for zero tempera-
ture derived in Ref. �15� with a width parameter �*
=0.06�1�. Grimm and co-workers also observed a local mini-
mum in the three-body recombination rate near a�210a0
that might be associated with an interference minimum of the
three-body recombination rate. The measurements were car-
ried out at 200 nK, which is large enough that it is essential
to take into account the nonzero temperature.

The three-body recombination rate can be calculated at
nonzero temperature by carrying out a thermal average of the
three-body recombination rate as a function of the collision
energy. There have been several previous calculations of the
three-body recombination rate for atoms with large scattering
length at nonzero temperature using specific models.
D’Incao, Suno, and Esry used a simple two-parameter poten-
tial with either one or two S-wave bound states �17,18�. Mas-
signan and Stoof used a four-parameter scattering model for
atoms near a Feshbach resonance �19�. There have been sev-
eral previous calculations of the three-body recombination
rate for nonzero temperature that have exploited the univer-

sality of atoms with large scattering length. In the case a
	0, the three-body recombination rate was calculated by
Jonsell using the adiabatic hyperspherical approximation
�20� and by Yamashita, Frederico, and Tomio using a reso-
nance approximation �21�. In the case a�0, the three-body
recombination rate has been calculated using simplifying as-
sumptions to neglect some of the universal scaling functions
�22–24�. The calculations in Refs. �20–24� all involve uncon-
trolled approximations, so they are not definitive zero-range
predictions.1

In this paper, we present definitive zero-range predictions
for the three-body recombination rate at nonzero temperature
for the case a�0. We calculate the universal scaling func-
tions that determine the hyperangular average of the three-
body recombination rate at collision energies up to about 30
times the binding energy of the shallow dimer. Our results
are validated by comparing with a previous calculation of the
three-body recombination rate as a function of collision en-
ergy for 4He atoms. The universal scaling functions can be
used to calculate the rate constants for three-body recombi-
nation into the shallow dimer and into deep dimers at tem-
peratures and densities where Boltzmann statistics are appli-
cable. We apply the results to 133Cs atoms with large positive
scattering length a and show that they give an excellent fit to
the data from Grimm and co-workers on the three-body re-
combination rate as a function of a.

II. THREE-BODY RECOMBINATION

Three-body recombination is a three-atom collision pro-
cess in which two of the atoms bind to form a diatomic
molecule or dimer. We take the three atoms to have the same
mass m. The three-body recombination rate R�p1 ,p2 ,p3� is a
function of the momenta of the three incoming atoms. Gal-
ilean invariance implies that R does not depend on the total
momentum ptot=p1+p2+p3. It can therefore be expressed as
a function R�p12,p3,12� of a pair of Jacobi momenta p12=p1

−p2 and p3,12=p3− 1
2 �p1+p2�. It is convenient to parametrize

the Jacobi momenta in terms of six orthogonal variables: the
collision energy E= �3p12

2 +4p3,12
2 � / �12m�, four Jacobi angles

giving the orientations of the unit vectors p̂12 and p̂3,12, and a
hyperangle 
3=arctan��3p12 / �2p3,12��. The integration ele-
ment in these variables is

d3p1d3p2d3p3 = �3m3E2dE sin2�2
3�d
3d�12d�3,12d
3ptot.

�2�

We will refer to the average of a quantity over the Jacobi
angles and over the hyperangle as the hyperangular average.
We denote the hyperangular average of the three-body re-
combination rate R�p12,p3,12� by K�E�.

In a gas of atoms with number density nA, the rate of
decrease in the number density due to three-body recombi-
nation defines an experimentally measurable loss rate con-
stant L3:

1Definitive zero-range predictions at temperatures small compared
to the dimer binding energy are available for resonant dimer relax-
ation, which is an important loss process for atom-dimer mixtures
�25�.
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d

dt
nA = − L3nA

3 . �3�

The event rate constant 
 for three-body recombination is
defined so that the number of recombination events per unit
volume and per unit time is 
nA

3 . If the number of atoms lost
from the system per recombination event is nlost, the rate
constant is L3=nlost
. The binding energy of the dimer is
released through the kinetic energies of the recoiling atom
and dimer. If their kinetic energies are large enough that the
atom and dimer both escape from the system and if the num-
ber density is low enough that subsequent collisions do not
prevent them from escaping from the system, then nlost=3.
On the other hand, if they both remain in the system and if
we regard the dimer as a distinct chemical species with its
own number density nD, then nlost=2.

In an ensemble of identical bosons with number density
nA in thermal equilibrium at temperature T, the event rate per
unit volume and per unit time is 
nA

3 , where


�T� =
� R�p12,p3,12�n�E1�n�E2�n�E3�d3p1d3p2d3p3

3!� n�E1�n�E2�n�E3�d3p1d3p2d3p3

�4�

and n�E� is the Bose-Einstein distribution: n�E�
= �e�E−��/�kBT�−1�−1. The chemical potential � is determined
by the condition 	n�E1�d3p1 / �2��3=nA. The factor of 1 /3!
in Eq. �4� accounts for the indistinguishable nature of the
three identical particles. The denominator in Eq. �4� can be
written 6�	n�E1�d3p1�3=6�2��9nA

3 .
The critical temperature Tc for Bose-Einstein condensa-

tion is given by kBTc�3.3�2nA
2/3 /m. If T is significantly

larger than Tc, the product of the three Bose-Einstein distri-
butions in Eq. �4� can be approximated by a Boltzmann dis-
tribution:

n�E1�n�E2�n�E3� � e3�/�kBT� exp�− Etot/�kBT�� , �5�

where Etot=E1+E2+E3 is the total energy of the three atoms.
The total energy can be expressed as the sum of the center-
of-mass energy and the collision energy E: Etot= ptot

2 / �6m�
+E. The Gaussian integral over ptot cancels between the nu-
merator and the denominator of Eq. �4�. The effect of the
integrals over the hyperangle and the Jacobi angles is to re-
place R�p12,p3,12� in the numerator by its hyperangular aver-
age K�E�. Thus, if T is significantly larger than Tc, the event
rate constant 
�T� in Eq. �4� reduces to a Boltzmann average
over the collision energy E:


�T� �
�

0

�

dE E2e−E/�kBT�K�E�

6�
0

�

dE E2e−E/�kBT�

. �6�

The integral in the denominator can be evaluated analytically
to give 2�kBT�3. We will refer to temperatures and densities
for which this approximation is valid as the Boltzmann re-
gion. Note that the Boltzmann region can extend to arbi-
trarily low temperatures if the number density nA is arbi-

trarily small. At T=0, the approximation in Eq. �6� reduces
to 
�0�=K�E=0� /6. However, this applies only if the tem-
perature is small enough that K�E� can be approximated by
K�0� but is still in the Boltzmann region. At T=0, the atoms
are in a Bose-Einstein condensate. The correct result for the
rate constant at T=0 is therefore 
�0��K�E=0� /36. The
extra factor of 1 /3! comes from the three identical bosons
being in the same quantum state.

If the scattering length a is positive and large compared to
the range of the interaction, one of the dimers that can be
produced by the recombination process is the shallow dimer.
Its binding energy in the zero-range limit is

ED = �2/�ma2� . �7�

If there are deep dimers, they can be produced by the recom-
bination process for either sign of a. The recombination rate
can be decomposed into the contribution from the shallow
dimer and the sum of the contributions from all the deep
dimers:

K�E� = Kshallow�E� + Kdeep�E� . �8�

The three-body recombination rate into the shallow dimer
can be further decomposed into contributions from the chan-
nels in which the total orbital angular momentum of the three
atoms has definite quantum number J:

Kshallow�E� = 

J=0

�

K�J��E� . �9�

The threshold behavior for each of the angular momentum
contributions to Kshallow�E� follows from a generalization of
Wigner’s threshold law �26�: K�J��E��E
J, where 
0=0, 
1
=3, and 
J=J for J�2. At the scattering threshold E=0,
only the J=0 term is nonzero.

The hyperangular average Kshallow�E� of the three-body
recombination rate is related in a simple way to the dimer-
breakup cross section for the scattering of an atom and the
shallow dimer:

Kshallow�E� =
192�3��3�ED + E�

m2E2 �breakup�E� . �10�

Thus in the Boltzmann region, the contribution to the event
rate constant in Eq. �6� from three-body recombination into
the shallow dimer is determined by the dimer-breakup cross
section �breakup�E�. Using the optical theorem, �breakup�E� can
be determined from the phase shifts for elastic atom-dimer
scattering. We will show in Sec. VI that, in the case of a large
scattering length, Kdeep�E� is determined by the same univer-
sal scaling functions that determine Kshallow�E�. Thus in the
Boltzmann region, the rate constant for three-body recombi-
nation is completely determined by the elastic atom-dimer
scattering amplitude.

III. UNIVERSAL SCALING BEHAVIOR

In this section, we consider atoms with a large positive
scattering length and no deep dimers, so the only diatomic
molecule is the shallow dimer whose binding energy is given
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by Eq. �7�. The total three-body recombination rate K�E� is
therefore equal to Kshallow�E�, which is related to the dimer-
breakup cross section by Eq. �10�. We summarize the con-
straints of universality on the three-body recombination rate
for this case.

A. Angular momentum and hyperangular decompositions

The zero-range results for scattering rates, such as
Kshallow�E�, are functions of the collision energy E, the scat-
tering length a, and the Efimov parameter �* defined by Eq.
�1�. An alternative Efimov parameter that is particularly con-
venient when considering three-body recombination is a*0,

which is one of the values of the scattering length at which
Kshallow�E� vanishes at E=0. This Efimov parameter differs
from �*

−1 by a multiplicative factor that is known only to two
digits of accuracy �2�:

a*0 � 0.32�*
−1. �11�

The dependence of scattering rates on the Efimov parameter
is strongly constrained by the discrete scale invariance. Their
dependence on the energy E can be conveniently expressed
in terms of universal functions of a dimensionless scaling
variable x defined by

x = �ma2E/�2�1/2. �12�

Atom-dimer scattering states in the center-of-mass frame
can be labeled by the relative momentum k between the atom
and the dimer or, equivalently, by the energy E relative to the
three-atom threshold and the angular momentum quantum
numbers J and M. The S matrix elements for atom-dimer
elastic scattering are functions of E that are independent of
M and diagonal in J. They can be expressed in terms of the
phase shifts �AD

�J� �E� for atom-dimer elastic scattering:

SAD,AD
�J� �E� = e2i�AD

�J� �E�. �13�

The phase shifts �AD
�J� �E� are real below the three-atom

threshold and have a positive imaginary part for E�0.
Three-atom scattering states in the center-of-mass frame

can be labeled by the Jacobi momenta p12 and p3,12. One can
define subsystem angular momenta associated with rotations
of the unit vectors p̂12 and p̂3,12. We denote the associated
angular momentum quantum numbers by �x ,mx and by
�y ,my, respectively. An equivalent set of quantum numbers is
�x ,�y, and the total orbital angular momentum quantum
numbers J and M. The possible values of J are integers rang-
ing from ��x−�y� to �x+�y. The range of the hyperangle 
3 is
from 0 to 1

2�. Since this range is compact, we can expand
functions of 
3 in terms of orthogonal functions relative to
the weight factor sin2�2
3� that are labeled by an index n3
=0 ,1 ,2 , . . .. A convenient set of variables for the three-atom
scattering states is the collision energy E and five discrete
variables: J, M, �x, �y, and the hyperangular index n3. Since
�x, �y, and n3 are a denumerable set, we will denote them
collectively by a single integer n that takes values 3,4,5,….
The reason for choosing this peculiar set of values will be-
come clear in Sec. III C. The S-matrix elements for three-

body recombination can be expressed as functions
SAAA,AD

�J,n� �E� of the collision energy with index n. The contri-
bution from angular momentum J to the hyperangular aver-
age of the three-body recombination rate can be expressed as

K�J��E� =
144�3�2�5�2J + 1�

m3E2 

n=3

�

�SAAA,AD
�J,n� �E��2. �14�

The hyperangular average is implemented by the sum over n.
The unitarity of the S matrix in the angular momentum J
sector implies

�SAD,AD
�J� �E��2 + 


n=3

�

�SAD,AAA
�J,n� �E��2 = 1. �15�

This can be used together with Eq. �13� to express the three-
body recombination rate in Eq. �14� in terms of the phase
shifts �AD

�J� �E� for elastic atom-dimer scattering:

K�J��E� =
144�3�2�5�2J + 1�

m3E2 �1 − �e2i�AD
�J� �E��2� . �16�

B. Scaling behavior for JÐ1

In the sector with angular momentum quantum number
J�1, the scattering rates do not depend on �*. The con-
straints of universality are therefore particularly simple for
J�1. The atom-dimer phase shifts �AD

�J� �E� defined by Eq.
�13� are universal functions of the scaling variable x defined
in Eq. �12�. Below the three-atom threshold, these scaling
functions are real. Above the three-atom threshold, they are
complex.

The contribution to the three-body recombination rate into
the shallow dimer from angular momentum J has the form

K�J��E� =
144�3�2�2J + 1�fJ�x�

x4

�a4

m
, �17�

where fJ�x� is a real-valued scaling function:

fJ�x� = 1 − exp�− 4 Im �AD
�J� �E�� . �18�

As x→0, the leading powers of x are determined by Wign-
er’s threshold law �26�: fJ�x��x2
J+4, where 
1=3 and 
J
=J for J�2.

C. Discrete scaling behavior for J=0

The zero-range results for J=0 are more intricate than for
J�1, because they depend not only on E and a, but also on
�* or, equivalently, a*0. General scaling formulas for scatter-

ing rates in the three-atom sector can be derived from Efi-
mov’s radial law. The radial law expresses the S-matrix ele-
ments for low-energy scattering processes in the J=0
channel of the three-atom sector in terms of universal func-
tions of the scaling variable x defined in Eq. �12�. The
S-matrix elements for atom-dimer elastic scattering and
for three-body recombination from three-atom states labeled
�J=0,n� have the form �2�
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SAD,AD
�J=0� �E� = s22�x� +

s21�x�2e2i�
*0

1 − s11�x�e2i�
*0

, �19a�

SAD,AAA
�J=0,n� �E� = s2n�x� +

s21�x�s1n�x�e2i�
*0

1 − s11�x�e2i�
*0

, �19b�

where the angle �*0 is

�*0 = s0 ln�a/a*0� . �20�

The functions sij�x� are entries of an infinite-dimensional
symmetric unitary matrix that depends only on the scaling
variable x defined in Eq. �12�. The unitarity of the infinite-
dimensional matrix s can be expressed as

s1i
* s1j + s2i

* s2j + 

n=3

�

s
ni
* snj = �ij . �21�

This condition implies the unitarity of the physical S matrix
for the J=0 sector. For example, one can use Eq. �21� to
verify that the unitarity condition in Eq. �15� for J=0 is
automatically satisfied if the S-matrix elements are given by
the expressions in Eqs. �21�.

Efimov’s radial law has a simple interpretation in terms
of the adiabatic hyperspherical representation of the three-
atom Schrödinger equation. The hyperradius R= ��r12

2 +r23
2

+r31
2 � /3�1/2 is the root-mean-square separation of the three

atoms. We take the scattering length a to be much larger than
the absolute value of the effective range rs: a� �rs�. In this
case, there are four important regions of R for three-atom
configurations with energies near the scattering threshold:
the asymptotic region R�a, the scaling region R�a, the
scale-invariant region �rs��R�a, and the short-distance re-
gion R��rs�. Efimov’s radial law reflects the fact that there is
only one adiabatic hyperspherical potential that is attractive
in the scale-invariant region of R. It is only through this
adiabatic hyperspherical potential that three-atom configura-
tions with energies near the scattering threshold can reach
the short-distance region of R. The outgoing and incoming
asymptotic states with respect to the scaling region are as
follows.

�1� Incoming and outgoing hyperradial waves in the scale-
invariant region �rs��R�a of the lowest adiabatic hyper-
spherical potential. We label these asymptotic states by the
index 1.

�2� Outgoing or incoming atom-dimer scattering states
with angular momentum quantum number J=0. We label
these asymptotic states AD or simply by the index 2.

�3� Outgoing or incoming three-atom scattering states
with J=0. We label these asymptotic states AAA by the in-
dex n=3,4 ,5 , . . . that specifies �x, �y, and n3.

The evolution of the three-atom wave function through
the scaling region is described by a unitary matrix sij whose
indices correspond to the asymptotic states relative to the
scaling region that were enumerated above. Time-reversal
invariance implies that the matrix s is symmetric.

The expressions for the S-matrix elements in Eq. �19�
have simple interpretations. The factor e2i�

*0 in Eqs. �19� is
the phase shift due to reflection of a hyperradial wave from

the short-distance region. The S-matrix elements in Eqs. �19�
can be expanded as a power series in e2i�

*0 with each term
corresponding to a different pathway between the incoming
and outgoing scattering states. The term with the factor
�e2i�

*0�n is the amplitude for a pathway that includes n re-
flections from the short-distance region. In the S-matrix ele-
ment SAD,AD

�J=0� �E� in Eq. �19a�, the leading term s22 is the
amplitude for the incoming atom-dimer scattering state to be
reflected from the scaling region. The second term
s21e

2i�
*0s12 is the amplitude for the atom-dimer scattering

state to be transmitted through the scaling region to an in-
coming hyperradial wave, which is reflected from the short-
distance region into an outgoing hyperradial wave, which is
then transmitted through the scaling region to an outgoing
atom-dimer scattering state. The factors of e2i�

*0s11 from ex-
panding the denominator are the amplitudes for the hyperra-
dial wave to be reflected from the short-distance region and
then reflected from the scaling region.

The contribution to the hyperangular average of the three-
body recombination rate from angular momentum J=0 can
be obtained by using the unitarity condition in Eq. �15� to
eliminate the sum over n in Eq. �14� and then inserting the
expression for the S-matrix element in Eq. �19a�:

K�0��E� =
144�3�2

x4 �1 − 
s22�x� +
s12�x�2e2i�

*0

1 − s11�x�e2i�
*0

2��a4

m
.

�22�

D. Analytic results near threshold

Macek, Ovchinnikov, and Gasaneo have derived some re-
markable analytic results for the three-body problem of iden-
tical bosons with large scattering length and energies near the
three-atom threshold �27,28�. In Ref. �27�, they derived an
analytic result for the S-wave phase shift �AD

�J=0��0� for atom-
dimer elastic scattering at the breakup threshold E=0. They
obtained analytic results for the values s11�0� and s12�0� of
the universal scaling functions at this threshold. In Ref. �28�,
they extended their analytic solution for �AD

�J=0��E� to the first
nontrivial order in E. They used this result to derive an ana-
lytic expression for the three-body recombination rate
Kshallow�0� at the three-atom threshold.

An analytic expression for the atom-dimer S-wave phase
shift �AD

�0� �E� near the dimer-breakup threshold is given in
Ref. �28�. Using the first equality in Eq. �54� of Ref. �28� �to
avoid typographical errors in the last line of Eq. �54��, the
S-matrix element at energy E=x2ED can be expressed in the
form

exp�2i�AD
�0� �E�� =

e2i����x�−��x��

1 + e−2�s0e−2i��x� �1 + e−2�s0e2i��x�

+ e−�s0A�x��e2i��x� − 1�� , �23�

where

��x� = �0�x� − s0 ln�a/R0� . �24�

The variable R0 is a matching point at short distances where
the three-body wave function vanishes. �The function ��x�
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was denoted by ��R0� in Ref. �28�.� The function A�x� and
the energy-dependent phases ���x� and �0�x� are universal
functions of the scaling variable x. By replacing the expres-
sion inside the absolute value signs in Eq. �22� by the phase
shift in Eq. �23�, the three-body recombination rate can be
expressed in the form

K�0��E� = 288�3�2A�x�
x4 �1 −

A�x�
2 sinh��s0��

�
sinh��s0�sin2 ��x�

sinh2��s0� + cos2 ��x�
�a4

m
. �25�

To determine the three-body recombination rate at thresh-
old, we need the limiting behavior of the functions A�x� and
�0�x� as x→0. The values of these phases at x=0 were cal-
culated numerically in Ref. �27�:

���0� = 1.736, �26a�

�0�0� = 1.588. �26b�

The leading term in A�x� as x→0, which is proportional to
x4, was calculated analytically in Ref. �28�:

A�x� →
8�4� − 3�3�

3�3 sinh��s0�
x4. �27�

The recombination rate in Eq. �25� vanishes at the threshold
if ��0�=0. Thus the expression for ��x� in Eq. �24� can be
written

��x� = �0�x� − �0�0� − s0 ln�a/a*0� , �28�

where a*0 is a value of the scattering length for which the

three-body recombination rate vanishes at threshold. The ex-
pression for the S-wave atom-dimer phase shift in Eq. �23�
reduces at the three-atom threshold to

�AD
�0� �E = 0� = ���0� + arctan�tanh��s0�tan �*0� . �29�

The expression given in Ref. �27� is equivalent but less com-
pact. The analytic result of Macek, Ovchinnikov, and Gasa-
neo for the three-body recombination rate at the three-atom
threshold �28� can be obtained by taking the limit x→0 in
Eq. �25�:

K�0��E = 0� =
768�2�4� − 3�3�sin2�s0 ln�a/a*0��

sinh2��s0� + cos2�s0 ln�a/a*0��
�a4

m
.

�30�

This result was also derived independently by Petrov �29�.
For fixed a, the rate in Eq. �30� is a log-periodic function of
a*0 that oscillates between zero and a maximum value

Kmax = 6Cmax�a4/m , �31�

where Cmax is

Cmax =
128�2�4� − 3�3�

sinh2��s0�
. �32�

Its numerical value is Cmax�67.1. The expression in Eq.
�30� has zeros when a is �e�/s0�na*0, where n is an integer.

The maxima of K�0��0� in Eq. �33� occur when a is
�e�/s0�n14.3a*0. Since sinh2��s0��139 is so large, the ex-

pression for K�0��0� in Eq. �30� can be approximated with an
error of less than 1% of 6Cmax�a4 /m by

K�0��E = 0� � 6Cmax sin2�s0 ln�a/a*0���a4/m . �33�

This approximate functional form of the rate constant was
deduced independently in Refs. �6–8�.

By comparing the expression for the S-matrix element in
Eq. �23� with the Efimov radial law in Eq. �19a�, we can
determine the universal scaling functions s11�x�, s12�x�, and
s22�x� in the approximation of Ref. �28�:

s11�x� � − e−2�s0e−2i��0�x�−�0�0��, �34a�

s12�x� � ei����x�−�0�x�+�0�0���1 − e−4�s0�1 −
A�x�

2 sinh��s0��
1/2

,

�34b�

s22�x� � e2i���x�e−2�s0�1 + e�s0A�x�� . �34c�

The limiting behavior of the functions ���x�, �0�x�, and
A�x� as x→0, is given in Eqs. �26� and �27�. At x=0, we
obtain s11�0�=−e−2�s0 and s12�0�=ei���0��1−e−4�s0�1/2. These
differ from the values deduced in Ref. �27� because a phase
e2i�0�0� has been absorbed into e2i�

*0. They also differ by a
minus sign in s11�0�. For small x, the leading terms in
s12�x�−s12�0� and s22�x�−s22�0� scale as x4. The leading
terms in s11�x�−s11�0� scale as a higher power of x.

IV. UNIVERSAL SCALING FUNCTIONS

In this section, we calculate the universal scaling func-
tions associated with atom-dimer elastic scattering. These
functions are then used to calculate the hyperangular average
of the three-body recombination rate as a function of the
collision energy.

A. Skorniakov–Ter-Martirosian equation

Three-body observables for systems with a large scatter-
ing length can be calculated by solving an integral equation
called the Skorniakov-Ter-Martirosian �STM� equation �30�.
In momentum space, the STM equation can be expressed in
the form �2�

A�p,k;E� = −
16�/a

mE − �p2 + p · k + k2� + i�

−� d3q

�2��3

8�

mE − �p2 + p · q + q2� + i�

�
A�q,k;E�

− 1/a + �− mE + 3q2/4 − i�
. �35�
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The solution is, up to a normalization constant, the amplitude
for an atom with momentum p and energy p2 / �2m� and a
pair of atoms with total momentum −p and total energy E
− p2 / �2m� to evolve into an atom with momentum k and
energy k2 / �2m� and a pair of atoms with total momentum −k
and total energy E−k2 / �2m�. The STM amplitude can be
resolved into the contributions from channels with orbital
angular momentum quantum number J:

AJ�p,k;E� =
1

2
�

−1

1

dy PJ�y�A�p,k;E� , �36�

where y=p ·k / pk and PJ�y� is a Legendre polynomial.
In a specific angular momentum channel, the STM equa-

tion in Eq. �35� reduces to an integral equation with a single
integration variable q. In the case J=0, the behavior of the
integral is sufficiently singular at large q that it is necessary
to impose an ultraviolet cutoff q	�, where � is much
greater than p, k, and �m�E��1/2. The STM equation for J=0
reduces to

A0�p,k;E,�� =
8�

apk
ln

p2 + pk + k2 − mE − i�

p2 − pk + k2 − mE − i�

+
2

�
�

0

�

dq
q

p
ln

p2 + pq + q2 − mE − i�

p2 − pq + q2 − mE − i�

�
A0�q,k;E,��

− 1/a + �3q2/4 − mE − i�
. �37�

It can be shown that changing the ultraviolet cutoff � corre-
sponds to changing the Efimov parameter �* �31–33�. The
values of � and �* differ simply by a multiplicative con-
stant:

ln��/�*� � 1.74 mod ��/s0� . �38�

The solutions of Eq. �37� are log-periodic functions of �. If
� is increased by a factor of e�/s0 �22.7, it corresponds to
the same value of �*. The S-wave atom-dimer phase shift
�AD

�0� �E� can be obtained from the amplitude with both mo-
mentum arguments p and k set equal to kE= � 4

3m�ED+E��1/2:

A0�kE,kE;E,�� =
3�

kE cot �AD
�0� �E� − ikE

. �39�

This phase shift depends not only on the parameter a but also
on the parameter �* through the dependence of the ampli-
tude on �.

In the case J�1, no ultraviolet cutoff is required and the
partial wave projection of the STM equation leads to �see,
e.g., Ref. �34��

AJ�p,k;E� =
16�

apk
�− 1�JQJ� p2 + k2 − mE − i�

pk
�

+
4

�
�

0

�

dq
q

p
QJ� p2 + q2 − mE − i�

pq
�

�
�− 1�JAJ�q,k;E�

− 1/a + �3q2/4 − mE − i�
, �40�

where

QJ�z� =
1

2
�

−1

1

dx
PJ�x�
z − x

�41�

is a Legendre function of the second kind. The atom-dimer
phase shift �AD

�J� �E� can be obtained from

AJ�kE,kE;E� =
3�

kE cot �AD
�J� �E� − ikE

for J � 1. �42�

This phase shift is a function of the dimensionless variable
ma2E /�2.

B. Universal scaling functions for JÐ1

We calculate the atom-dimer phase shifts �AD
�J� �E� for J

=1,2 , . . . ,6 as functions of the energy E from 10−2ED to
102ED. The scaling variable x defined in Eq. �12� then ranges
from 0.1 to 10. For each energy E, we solve the STM equa-
tion in Eq. �40� and determine the phase shift �AD

�J� �E� using
Eq. �39�. The universal scaling function fJ�x� defined in Eq.
�18� is then determined from the imaginary part of the phase
shift. Our numerical method loses accuracy for x smaller
than values that range from 0.1 for J=2 to x=0.45 for J=6.
To determine fJ�x� for smaller values of x, we fit our results
for the lowest ten accurate points to the form

fJ�x� = aJx
2
J+4 + bJx

2
J+6, �43�

where 
1=3 and 
J=J for J�2. We use the formula in Eq.
�43� to extrapolate to small values of x where our numerical
method loses accuracy. Our results are shown in Fig. 1. For

0.1 1 10
x

10
-8

10
-6

10
-4

10
-2

10
0

f J(x
)

J = 1
J = 2
J = 3
J = 4
J = 5
J = 6

FIG. 1. �Color online� Universal scaling functions fJ�x�=1
−exp�−4 Im �AD

�J� �E�� for J=1, . . . ,6 as functions of the scaling vari-
able x.
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J�2, fJ�x� is a decreasing function of J. This pattern is
broken by f1�x�, which is smaller than f2�x� and f3�x� at
small x but eventually becomes larger than f2�x� around x
=9.

C. Universal scaling functions for J=0

We calculate the atom-dimer phase shift �AD
�0� �E� by solv-

ing the STM equation for J=0 with an ultraviolet cutoff �,
which is given in Eq. �37�, for energies E ranging from
10−2ED to 102ED. We choose values of the ultraviolet cutoff
� that are equally spaced on a logarithmic scale and cover
three-quarters of a discrete scaling cycle from �0 to 10.4�0.
The smallest cutoff �0 is chosen to be much greater than 1 /a
and �m�E� /�2�1/2 and large enough that the calculated phase
shift is unchanged if � is increased by a factor of 22.7. For
each energy E, we calculate the phase shift as a function of
ln�a�� and fit it to the universal formula

exp�2i�AD
�J=0��E�� = s22�x� +

s12�x�2 exp�2is0 ln�a/a*0��

1 − s11�x�exp�2is0 ln�a/a*0��

�44�

to determine the universal scaling functions s12�x�, s22�x�,
and s11�x�. The sign ambiguity in s12�x� is resolved by using
continuity together with the analytic result for s12�0� given
by Eq. �34b�.

The numerical results for the modulus �sij�x�� and the
phase arg sij�x� of each of these functions are shown in Fig.
2. The modulus �s12�x�� remains close to 1 for x	1 but it
decreases to 0.59 at x=10. The moduli �s11�x�� and �s22�x��
both have the tiny value 0.0018 at x=0 and they remain tiny
for x	1. While �s22�x�� increases to 0.37 at x=10, �s11�x��
increases much more slowly to 0.035.

D. Three-body recombination rates

In this section, we use the universal scaling functions cal-
culated in the previous sections to calculate the three-body
recombination rate into the shallow dimer. We show the con-
tributions from angular momentum J=0–6 as functions of
the collision energy.

In Eq. �22�, the J=0 contribution K�0��E� to the three-
body recombination rate is expressed in terms of the univer-
sal scaling functions s11�x�, s12�x�, and s22�x�. In Fig. 3, it is
shown as a function of the collision energy E for six values
of �*0: 0, 1

30�, 1
10�, 1

2�, 9
10�, and 29

30�. For �*0= 1
2�, K�0��E�

at E=0 has the maximum possible value Kmax given in Eq.
�31� and it decreases monotonically with E. For �*0=0 or �,

K�0��E� vanishes at E=0, increases to a maximum value of
0.0143Kmax at E=4.61ED, and then decreases. For �*0 be-

tween 1
2� and �, K�0��E� has its maximum at a nonzero en-

ergy. As �*0 increases from 1
2� to �, the local minimum at

E=0 becomes increasingly deep and the maximum moves
outward from 0 to 4.61ED. For �*0 between 0 and 0.124�,

K�0��E� has a local minimum at a nonzero energy E. As �*0

increases from 0 to 0.124�, the local minimum moves out-

ward from 0 to about 8ED and its depth decreases until it
becomes just an inflection point. For �*0 between 0.124�

and 1
2�, K�0��E� decreases monotonically with E.

At small energies, the dimensionless recombination rate
K�0��E� /Kmax varies by many orders of magnitude as a*0

ranges over a complete discrete scaling cycle. Even at E
=ED, it varies by more than three orders of magnitude. The
variations with a*0 become smaller at larger energy. If there

were no relevant length scales at high energy, dimensional
analysis would imply that K�0��E� should be proportional to
E−2 at large E. Our results at the largest values of E are
compatible with the approach to this simple scaling behavior.
The differences between K�0��E� for different values of a*0

seem to decrease as a higher power of E. Our results at the
largest values of E are compatible with their approach to the
asymptotic behavior E−5/2.

In Eq. �17�, the contribution K�J��E� to the three-body re-
combination rate from angular momentum J is expressed in
terms of the universal scaling functions fJ�x�. In Fig. 4, the
rates K�J��E� for J from 1 to 6 are shown as functions of the
collision energy E. Over the range from 0 to 100ED, the
largest of these contributions is the J=2 term. It reaches its
maximum value of 0.214Kmax at E=4.18ED. The total con-
tribution from J=1, 3, 4, 5, and 6 is less than 10% of the J
=2 contribution if E	0.78ED. Thus the sum of the terms for
J=0 and 2 is a good approximation to the recombination rate
if E	0.78ED. The sum of the contributions from J=5 and 6
is less than 10% of the sum of the contributions from J
=1–4 if E	32ED. Thus the sum of the terms for J=0–4 is
a good approximation to the recombination rate if E
	32ED. Truncations of the partial wave expansion quickly
become inaccurate at higher energies.

V. APPLICATION TO 4He ATOMS

The results from the previous section can be applied di-
rectly to systems of 4He atoms.2 There are several modern
potentials that are believed to describe the interactions of
4He atoms with low energy accurately. They all support a
single weakly bound diatomic molecule �or dimer�. The ef-
fective ranges for all these potentials are approximately rs
�14a0, which is a little larger than the van der Waals length
scale �mC6 /�2�1/4=10.2a0. The scattering lengths are larger
by about a factor of ten, and they vary among the potentials.
The large scattering length, a�rs, implies that 4He atoms
have universal properties that are determined by a and the
Efimov parameter �*. First-order range corrections to the
universal results are estimated to be suppressed by roughly
rs /a if E�ED and by rs�mE /�2�1/2=xrs /a for E�ED. This
makes 4He atoms an ideal system to illustrate the universal
properties of atoms with large scattering length. A thorough
analysis of the universal properties of 4He atoms has been
presented by Braaten and Hammer �35�. Various three-body

2A convenient conversion constant for 4He atoms is �2 /m
=43.2788 K a0

2.
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observables for 4He atoms have been calculated by Platter
and Phillips to next-to-next-to-leading order in the expansion
in powers of rs /a �13�. The agreement with numerical results
from exact solutions of the three-body Schrödinger equation
�36,37� is impressive.

The three-body recombination rate for 4He atoms was first
calculated by Suno et al. �38�. They solved the three-body
Schrödinger equation for 4He atoms interacting through the
HFD-B3-FCI1 potential �where HFD stands for Hartree-
Fock-dispersion and FCI for full configuration interaction;
for details see �39��. They calculated Kshallow�E� as a function

of the collision energy from the threshold to 10 mK �38�,
including the contributions with angular momentum quan-
tum number J=0, 1, 2, and 3. Their results are shown as dots
in Fig. 5. Shepard has calculated the three-body recombina-
tion rates of 4He atoms for the HFD-B3-FCI1 and other 4He
potentials using separable potentials that reproduce the cor-
responding two-body phase shifts together with a three-body
force that is adjusted to fit the binding energy of the excited
trimer �23�.

To apply the zero-range predictions for the three-body
recombination rate to 4He atoms interacting through the
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FIG. 2. Universal scaling functions s12�x� �top panels�, s22�x� �middle panels�, and s11�x� �bottom panels� as functions of x. The modulus
�sij�x�� and the phase arg sij�x� of the function are shown in the left and the right panels, respectively.
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HFD-B3-FCI1 potential, we must determine the scattering
length a and the three-body parameter a*0 for that potential.

The scattering length for the HFD-B3-FCI1 potential is a
=172a0 and the binding energy of the shallow dimer is ED
=1.600 mK �40�. The zero-range predictions for low-energy
three-body observables are most accurate if the dimer bound
state pole is at the correct position �35�. Therefore, we use
the dimer binding energy as the two-body input instead of a.
Using the zero-range expression for the dimer binding en-
ergy in Eq. �7�, we obtain the scattering length

aHe = 164.5a0. �45�

We can determine the value of a*0 for 4He atoms interacting

through the HFD-B3-FCI1 potential from the value of the

three-body recombination loss rate at threshold: Kshallow�0�
=7.10�10−28 cm6 /s. Inserting aHe=164.5a0 in Eq. �30� and
solving for a*0, we obtain

a
*0
He = 143.1a0. �46�

The result for a
*0
He is approximately equal to 0.870aHe. The

near equality between a
*0
He and aHe reflects the fact that

Kshallow�0� for 4He is much smaller than the maximum value
6Cmax��aHe�4 /m=3.67�10−26 cm6 /s allowed by universal-
ity, which implies that a /a*0 is close to a zero of the sine

function in the numerator of Eq. �30�. The value of a*0 for
4He can also be determined from the binding energy of the
excited 4He trimer, which is E3

�1�=2.62 mK for the HFD-B3-
FCI1 potential �40�. The resulting value, a*0�146a0, is con-

sistent with the value in Eq. �46�. Its accuracy is limited by
the accuracy to which the numerical value of the constant in
Eq. �11� is known.

The zero-range predictions for K�J��E� are given in Eq.
�22� for J=0 and in Eq. �17� for J�1. The only information
about the HFD-B3-FCI1 potential that we use are the values
of a and a*0 given in Eqs. �45� and �46�. Our results for

K�J��E�, J=0,1 , . . . ,6, are shown as solid lines in Fig. 5. The
J=0 term dominates at low energies, but has a dramatic dip
near 2 mK, where it is smaller than its value at E=0 by about
a factor of 30. The J=2 term takes over as the dominant term
when the energy exceeds about 0.2 mK. When it reaches its
maximum value at an energy near 4 mK, other partial waves
begin to give important contributions.

Our results can be compared with those of Ref. �38� for
J=0, 1, 2, and 3, which are shown as dots in Fig. 5. The
qualitative agreement is excellent. The deep local minimum
for J=0 and the peculiar shape for J=1 are both reproduced
by the zero-range results. There is also good quantitative
agreement for J=0, 1, and 2. At E=ED=1.6 mK, the frac-
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FIG. 3. �Color online� J=0 contribution to the three-body re-
combination rate into the shallow dimer for the case in which there
are no deep dimers. The hyperangular average K�0��E� is shown as
a function of the collision energy E for six values of �*0: � /2
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FIG. 5. �Color online� Three-body recombination rates K�J��E�
for 4He atoms �in units of cm6 /s� as functions of the collision
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zero-range results for a=164.5a0 and a*0=143.1a0. The dots are the

results obtained in Ref. �38� by solving the three-body Schrödinger
equation for the HFD-B3-FCI1 potential.
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tional discrepancies for J=0, 1, and 2 are 18.5%, 14.4%, and
20.3%, respectively. This is a little larger than the expected
fractional error from range corrections, which is rs /a
=8.5%. At E=10 mK, which is the highest energy for which
the three-body recombination rate was calculated in Ref.
�38�, the fractional discrepancies for J=0, 1, and 2 are
16.5%, 6.0%, and 18.6%. They are consistent with the ex-
pected fractional error from range corrections, which is
xrs /a=21%. For J=3, the agreement between our results and
those of Ref. �38� is not as good. The fractional discrepancy
varies from +77% at 0.1 mK to −36% at 10 mK. Shepard
has also calculated the contributions to the three-body re-
combination rate for the HFD-B3-FCI1 potential from partial
waves up to J=3 �23�. His results for J=3 are similar to ours
and show the same discrepancy with Ref. �38�. The agree-
ment between our results for J=3 and those of Ref. �23�
gives us confidence in the accuracy of our numerical calcu-
lations. We do not understand the origin of the discrepancy
with the results of Ref. �38�.

The inclusion of higher-order corrections in rs /a should
improve the agreement with the results of Ref. �38� at all
energies. If the first-order corrections in rs /a are included,
the errors should decrease to roughly �rs /a�2=0.7% for E
�ED=1.6 mK and to roughly �xrs /a�2 at higher energies. A
first calculation of the range corrections to the threshold re-
combination rate Kshallow�0� was carried out in Ref. �41�.

VI. EFFECTS OF DEEP DIMERS

In this section and in the subsequent section, we consider
atoms that have deep dimers. In the scaling �or zero-range�
limit, the cumulative effect of all the deep dimers on Efimov
physics can be taken into account through one additional
parameter �* �15�. The atom-dimer phase shift and the hy-
perangular average of the three-body recombination rate are
determined by the same universal scaling functions as for
�*=0.

A. Generalization of Efimov’s radial law

The existence of deep dimers implies that there are states
in the three-atom sector with energies near the three-atom
threshold that consist of an atom and a deep dimer with large
kinetic energies. We will denote these states by the symbol
AD. These states provide inelastic atom-dimer scattering
channels and additional three-body recombination channels.
In the scaling limit, the only contributions to the recombina-
tion rate into deep dimers are from the J=0 channels. The
contributions from J�1 are suppressed by powers of rs /a.
The hyperangular average of the inclusive three-body recom-
bination rate into deep dimers can be expressed as

Kdeep�E� =
144�3�2�5

m3E2 

n=3

�



AD

�SAAA,AD
�J=0,n� �E��2, �47�

where SAAA,AD
�J=0,n� �E� is the S-matrix element for the transition

from a three-atom scattering state labeled by �J=0,n� to a
specific state AD consisting of an atom and deep dimer. The

hyperangular average is implemented in Eq. �47� by the sum
over n.

The states AD also have an effect on the amplitudes for
atom-dimer elastic scattering and for three-body recombina-
tion into the shallow dimer. These effects are strongly con-
strained by the fact that the states AD can be accessed only
through a single adiabatic hyperspherical channel, the J=0
channel, whose potential is attractive in the scale-invariant
region of the hyperradius R. If there are deep dimers, an
incoming hyperradial wave need not be totally reflected from
the short-distance region of R, because it can ultimately
emerge as a scattering state consisting of an atom and a deep
dimer. The reflected hyperradial wave will therefore differ
from the incident hyperradial wave not only by a phase shift
e2i�

*0 but also by a decrease in its amplitude by a factor
e−2�

*. The parameter �*, which was introduced in Ref. �14�,
determines the widths of Efimov trimers as well as all other
effects of the deep dimers on low-energy three-atom scatter-
ing processes. If the zero-range result for an amplitude for
the case of no deep dimers is known as an analytic function
of a*0, the corresponding amplitude for a system with deep

dimers can be obtained without any additional calculation
simply by making the substitution

ln a*0 → ln a*0 − i�*/s0. �48�

The generalizations of Efimov’s radial laws in Eqs. �19� to
the case of atoms with deep dimers are

SAD,AD
�J=0� �E� = s22�x� +

s21�x�2e2i�
*0−2�

*

1 − s11�x�e2i�
*0−2�

*
, �49a�

SAD,AAA
�J=0,n� �E� = s2n�x� +

s21�x�s1n�x�e2i�
*0−2�

*

1 − s11�x�e2i�
*0−2�

*
. �49b�

Thus these S-matrix elements are determined by the same
universal scaling functions sij�x� as in the case �*=0 with no
deep dimers.

The S-matrix elements for transitions from an atom-dimer
scattering state or from a three-atom scattering state into a
specific state AD consisting of an atom and a deep dimer
depend on the details of physics at short distances. However
as pointed out in Refs. �14,15�, the inclusive probability
summed over all such states AD is insensitive to short dis-
tances and is determined completely by the parameters a, �*,
and �*. The inclusive probabilities for producing an atom
and a deep dimer from an atom-dimer collision or from the
collision of three atoms in the state labeled �J=0,n� are



AD

�SAD,AD
�J=0� �E��2 =

�1 − e−4�
*��s21�x��2

�1 − s11�x�e2i�
*0−2�

*�2
, �50a�



AD

�SAAA,AD
�J=0,n� �E��2 =

�1 − e−4�
*��sn1�x��2

�1 − s11�x�e2i�
*0−2�

*�2
. �50b�

The factor s21 in Eq. �50a� is the amplitude for an incom-
ing atom-dimer scattering state to be transmitted through the
scaling region into a hyperradial wave in the scale-invariant
region. The factor 1 / �1−s11e

2i�
*0−2�

*� takes into account an
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arbitrary number of reflections of the hyperradial wave from
the short-distance region and then from the scaling region.
The factor 1−e−4�

* is the probability that a hyperradial wave
incident on the short-distance region will not be reflected and
will therefore ultimately emerge as a scattering state of an
atom and a deep dimer. The analog of the unitarity condition
in Eq. �15� for the case �*�0 is

�SAD,AD
�J=0� �E��2 + 


n=3

�

�SAD,AAA
�J=0,n� �E��2 + 


AD
�SAD,AD

�J=0� �E��2 = 1.

�51�

If we insert the S-matrix elements in Eqs. �49� and the prob-
ability in Eq. �50a�, we can use the unitarity conditions for
the matrix sij in Eq. �21� to show that Eq. �51� is automati-
cally satisfied.

The hyperangular average of the three-body recombina-
tion rate into the shallow dimer is obtained by squaring the
S-matrix element in Eq. �49b�, summing over the index n
labeling the three-atom states, and then multiplying by a ki-
nematic factor. Using the unitarity condition in Eq. �51�, the
expression for the S-matrix element in Eq. �49a�, and the
expression for the probability in Eq. �50a�, this can be ex-
pressed as

K�0��E� =
144�3�2

x4 �1 − 
s22�x� +
s12�x�2e2i�

*0−2�
*

1 − s11�x�e2i�
*0−2�

*

2

−
�1 − e−4�

*��s12�x��2

�1 − s11�x�e2i�
*0−2�

*�2��a4

m
. �52�

This reduces to Eq. �22� in the limit �*→0. The hyperangu-
lar average of the inclusive three-atom recombination rate
into deep dimers is given by summing the probability in Eq.
�50b� over the index n labeling the three-atom states and then
multiplying by a kinematic factor. Using the unitarity of the
matrix sij�x�, the rate can be expressed as

Kdeep�E� =
144�3�2�1 − e−4�

*��1 − �s11�x��2 − �s12�x��2�
x4�1 − s11�x�e2i�

*0−2�
*�2

�a4

m
.

�53�

This contribution vanishes in the limit �*→0. The recombi-
nation rates in Eqs. �52� and �53� are completely determined
by the same universal scaling functions s11�x�, s12�x�, and
s22�x� that determine the three-body recombination rate into
shallow dimers in the case �*=0.

B. Analytic results at threshold

Analytic expressions for the three-body recombination
rates Kshallow�0�=K�0��0� and Kdeep�0� at the threshold E=0
can be obtained by inserting the analytic results for the uni-
versal scaling functions s11�x�, s12�x�, and s22�x� in Eqs. �34�
into Eqs. �52� and �53�. The three-body recombination rates
at threshold into the shallow dimer and into deep dimers are

Kshallow�0� =
768�2�4� − 3�3��sin2�s0 ln�a/a*0�� + sinh2 �*�

sinh2��s0 + �*� + cos2�s0 ln�a/a*0��

�
�a4

m
, �54a�

Kdeep�0� =
384�2�4� − 3�3�coth��s0�sinh�2�*�

sinh2��s0 + �*� + cos2�s0 ln�a/a*0��
�a4

m
.

�54b�

Since sinh2��s0+�*��139 is so large, these expressions
can be approximated with errors of less than 1% by omitting
the cos2 terms in the denominators. To within the same ac-
curacy, we can approximate sinh��s0+�*�, sinh��s0�, and
cosh��s0� by exponentials to get the simpler expressions

Kshallow�0� � 6Cmaxe
−2�

*�sin2�s0 ln�a/a*0�� + sinh2 �*��a4/m ,

�55a�

Kdeep�0� �
3

2
Cmax�1 − e−4�

*��a4/m , �55b�

where Cmax�67.1 is given in Eq. �32�.

C. Three-body recombination rate

In this section, we use the universal scaling functions cal-
culated in the previous section to calculate the three-body
recombination rate into deep dimers and the J=0 contribu-
tion to the three-body recombination rate into the shallow
dimer. The effects of deep dimers on the contributions to the
three-body recombination rate into the shallow dimer from
J�1 are suppressed in the zero-range limit.

In Eq. �52�, the J=0 contribution K�0��E� to the three-
body recombination rate into the shallow dimer is expressed
in terms of the universal scaling functions s11�x�, s12�x�, and
s22�x�. In Fig. 6, it is shown as a function of the collision
energy E for six values of �*0: 0, 1

30�, 1
10�, 1

2�, 9
10�, and

29
30�. The left and right panels are for �*=0.1 and 0.2, re-
spectively. Comparing with Fig. 3 for �*=0, we see that the
local minimum for �*0 between 0 and 0.124a0 becomes less

pronounced as �* increases. When �* is large enough, the
local minimum disappears altogether and K�0��E� becomes a
monotonically decreasing function of E.

In Eq. �53�, the three-body recombination rate into deep
dimers is expressed in terms of the universal scaling func-
tions s11�x� and s12�x�. In Fig. 7, the maximum and minimum
values of Kdeep�E� with respect to variations of �*0 are shown

for three values of �*: 0.01, 0.1, and 0.2. The differences
between the maximum and minimum values are visible only
at energies greater than ED. The three-body recombination
rate into deep dimers is insensitive to the value of �*0, be-

cause the dependence on �*0 in Eq. �53� is suppressed by a

factor of s11�x�, which remains small for x	10. For any
value of �*, Kdeep�E� decreases monotonically with E. If
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there were no relevant length scales at high energy, dimen-
sional analysis would imply that Kdeep�E� should be propor-
tional to E−2 at large E. Our results at the largest values of E
are compatible with the approach to this simple scaling be-
havior.

VII. APPLICATION TO 133Cs ATOMS

Grimm and co-workers have carried out measurements of
the three-body recombination rate for ultracold 133Cs atoms3

in the �f =3,mf = +3� hyperfine state �16�. By varying the
magnetic field from 0 to 150 G, they were able to change the
scattering length from −2500a0 through 0 to +1600a0. In this
range of magnetic field, the �f =3,mf = +3� state is the lowest
hyperfine state, so two-body losses are energetically forbid-
den. Thus, the dominant loss mechanism is three-body re-
combination. The van der Waals length scale for Cs atoms is
�mC6 /�2�1/4�200a0. The range of scattering lengths studied
by Grimm and co-workers includes a universal region of
large negative a and a universal region of large positive a
separated by a nonuniversal region of small �a�. In the two
regions of large scattering length, few-body physics should
be universal and characterized by three-body parameters �*
and �* that may be different in each universal region. An
interesting open question is whether there is any relation
between the three-body parameters �* and �* for different
universal regions.

In the region of negative a, Grimm and co-workers mea-
sured the loss rate constant L3 as a function of a at three
different temperatures: T=10, 200, and 250 nK. They ob-
served a dramatic enhancement of the loss rate for a near
−850a0. At T=10 nk, the loss rate as a function of a can be
fitted rather well by the zero-range formula for T=0 in Ref.
�15� with parameters a*� =−850�20�a0 and �*=0.06�1�,

where a*� denotes the negative scattering length for which
there is an Efimov resonance at the three-atom threshold.
Thus, the large enhancement in the loss rate can be explained
by the resonant enhancement from an Efimov trimer near the
three-atom threshold. More recently, Grimm and co-workers
have measured the position of the maximum loss rate as a
function of the temperature �42�. Its behavior as a function of
temperature can be explained at least qualitatively by the
dependence of the binding energy and width of the Efimov
resonance on the scattering length �20,21�.

In the region of positive a, Grimm and co-workers mea-
sured the loss rate constant L3 at T=200 nk for values of a
ranging from 62.3a0 to 1228a0. Their results in this region
are shown in Fig. 8. The vertical axis is the recombination
length �3 defined by

3A convenient conversion constant for 133Cs atoms is �2 /m
=1.303 39 K a0

2.

10
-2

10
-1

10
0

10
1

10
2

E/ED

10
-3

10
-2

10
-1

10
0

K
de

ep
(E

)/
K

m
ax

η*= 0.01

η*= 0.1

η*= 0.2

FIG. 7. �Color online� Three-body recombination rate into deep
dimers. The maximum and minimum values of Kdeep�E� with re-
spect to variations of �*0 are shown as functions of the collision

energy E for three values of �*: 0.01, 0.1, and 0.2.

10
-2

10
-1

10
0

10
1

10
2

E/ED

10
-3

10
-2

10
-1

10
0

K
(0

) (E
)/

K
m

ax

θ*0

π/2
9π/10
π/10
29π/30
π/30
0, π

η*=0.1

10
-2

10
-1

10
0

10
1

10
2

E/ED

10
-3

10
-2

10
-1

10
0

K
(0

) (E
)/

K
m

ax

θ*0

π/2
9π/10
π/10
29π/30
π/30
0, π

η*=0.2

FIG. 6. �Color online� J=0 contribution to the three-body recombination rate into the shallow dimer for cases in which there are one or
more deep dimers. The hyperangular average K�0��E� is shown as a function of the collision energy E for six values of �*0: � /2 �upper solid

line�, 9� /10 and � /10 �upper and lower dashed lines�, 29� /30 and � /30 �upper and lower dash-dotted lines�, and 0 or � �lower solid line�.
The left and right panels are for �*=0.1 and 0.2, respectively.

THREE-BODY RECOMBINATION OF IDENTICAL BOSONS … PHYSICAL REVIEW A 78, 043605 �2008�

043605-13



�3 = � 2m
�3�

L3�1/4

. �56�

They observed a local minimum in the loss rate for a near
200a0. This value is near the van der Waals length scale
�mC6 /�2�1/4�200a0, so range corrections may be large near
the minimum. The zero-range prediction for the loss rate at
T=0 is 
=K�0� /6, where K�0� is the sum of Kshallow�0� and
Kdeep�0� in Eqs. �54�. To an approximation of better than 1%,
they can be approximated by the expressions in Eqs. �55�. By
fitting the data for a�500a0 to this expression, they obtained
a+=1060�70�a0 for the scattering length e�/�2s0�a*0 at which

the coefficient of a4 achieves its maximum value. Universal-
ity would then imply that the minimum should be at a*0

=223�15�a0. The fit was insensitive to the value of �* and
yielded only the upper bound �*	0.2. Grimm and co-
workers also determined the location of the minimum di-
rectly by measuring the fraction of atoms that were lost after
a fixed time. The result was amin=210�10�a0, which is con-
sistent with the value obtained by fitting the data for a
�500a0.

We now consider whether our results are applicable to this
system of 133Cs atoms. In the experiments with positive scat-

tering length, the typical peak number density was 5
�1013 cm−3. The corresponding critical temperature for
Bose-Einstein condensation is Tc�160 nK. Thus, the tem-
perature T=200 nK was not far above Tc. We ignore this
complication and calculate thermal averages using the
Maxwell-Boltzmann distribution as in Eq. �6� instead of the
Bose-Einstein distribution. When a=amin, the zero-range pre-
diction for the binding energy ED of the shallow dimer in Eq.
�7� gives 3�104 nK, so T /ED�0.007. The binding energy
ED decreases to about 9�102 nK at a=1228a0, so T /ED
�0.22. Thus the temperature T=200 nK is safely in the re-
gion T	30ED in which the thermal average in Eq. �6� can be
calculated accurately using the scaling functions calculated
in Sec. IV.

In Fig. 8, we compare the zero-range predictions for the
recombination length �3 defined in Eq. �56� with the data of
Grimm and co-workers for T=200 nK in the a�0 region. A
blowup of the region 0	a	400a0 is shown in the left panel
of Fig. 9. We assume nlost=3, so that L3=3
. We set a*0

=210a0, which is the central value of amin measured in the
experiment of Grimm and co-workers. In Fig. 8, we plot �3
as a function of a for T=200 nK and three values of �*: 0,
0.1, and 0.2. The predictions for nonzero �* are larger than
those for �*=0 in the region a	500a0 and smaller in the
region a�500a0. We extend the zero-range predictions
down to a=100a0, which is smaller than the effective range
of Cs atoms, even though range corrections are expected to
be 100% at such small values of a. The predictions for �*
=0 give a good fit to the data only in the region near 500a0
where the predictions are insensitive to �*. The prediction
for �*=0.2 gives a remarkably good fit to the data for a
ranging from the highest point at 1228a0 all the way down to
202.7a0. As a decreases below 200a0, the prediction for �*
=0.2 continues to decrease monotonically while the data
seem to have a local maximum near 137.3a0. The best fit to
the data for a in the range from 202.7a0 to 1228a0 is �*
=0.18, which gives a �2 per data point of 1.22.

In the right panel of Fig. 9, we show the zero-range pre-
diction for the lower temperature of T=40 nK. For �*=0,
the local minimal of �3 at 210a0 becomes much deeper at
40 nK. The predictions for �*=0.1 and �*=0.2 at 40 nK are
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FIG. 8. �Color online� Three-body recombination length �3 for
133Cs atoms as a function of a for T=200 nK. The data points are
from Ref. �16�. The curves are the zero-range predictions for three
values of �*: 0 �solid line�, 0.1 �dashed line�, and 0.2 �dotted line�.
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essentially indistinguishable from the predictions at 200 nK
in the region a	600a0.

In Fig. 10, we illustrate the temperature dependence of the
recombination length. We show �3 for �*=0.2 as a function
of a for three temperatures: 0, 40, and 200 nK. Also shown
are the data of Grimm and co-workers for 200 nK. For a
	500a0, the difference between the predictions at T=0 and
200 nK is very small. At larger values of a, the prediction is
significantly lower at 200 nK. The prediction for T
=200 nK fits the data much better than the prediction for T
=0. By comparing Figs. 8 and 10, we can see that increasing
�* and increasing T both have the effect of decreasing the
prediction for �3 for a�500a0 without changing the predic-
tion for smaller values of a. Thus accurate measurements of
the temperature are essential if the data in this region are to
be used to determine �*.

VIII. COMPARISON WITH PREVIOUS WORK

In this section, we compare our results with previous cal-
culations of the three-body recombination rate for identical
bosons. The previous results include calculations using spe-
cific models for the interactions between the atoms as well as
calculations based on the universality of atoms with large
scattering length.

Esry and D’Incao have calculated the three-body recom-
bination rate at nonzero temperature by solving the three-
body Schrödinger equation for identical bosons interacting
through the simple potential V�r�=D /cosh2�r /r0� �17,18�. In
Ref. �18�, the depth parameter D was used to vary the scat-
tering length from +� to −� in the region with one two-body
bound state and from +� to −� in the region with two bound
states. This range of D includes three universal regions with
large scattering length. The range parameter r0 determines
the two three-body parameters �* and �* for each of those
universal regions. To apply this simple model to the experi-
ment of Grimm and co-workers on 133Cs atoms, Esry and
D’Incao tuned r0 to fit the position of the recombination
resonance at a=−850a0. The predicted height of this reso-
nance is larger than that measured by Grimm and co-

workers. Since �* is sensitive to the height and width of the
resonance, tuning r0 to get the correct value of �* gives too
small a value for �*. Esry and D’Incao also compared the
predictions of their model to the data of Grimm and co-
workers on 133Cs atoms with a large positive scattering
length. The model does not give a good quantitative fit to the
200 nK data for large positive scattering length.

Massignan and Stoof have calculated the three-body re-
combination rate at nonzero temperature by solving the
Skorniakov-Ter-Martirosian equation in a scattering model
for the lowest hyperfine spin state of 133Cs atoms �19�. Their
scattering model is defined by a two-body T-matrix element
with four parameters that models the Feshbach resonance
of 133Cs atoms centered at B=−11 G. The four parameters
consist of the large background scattering length abg
=1800a0 and three Feshbach resonance parameters B0, �B,
and ��. Their two-body T matrix also depends on a back-
ground effective range parameter re, which provides a
“physical” ultraviolet cutoff and guarantees a well-behaved
three-body integral equation. Massignan and Stoof took re
to be a function of the Feshbach resonance parameters: re
=−2�2 / �mabg���B�. The effective range is defined to be
twice the coefficient of k2 in the low-momentum expansion
of k cot ��k�, where ��k� is the S-wave phase shift. In their
model, the effective range is always small and negative,
varying from 2re at the resonance to re�−0.3a0 far from the
resonance. An estimate of the true background effective
range can be obtained by exploiting the fact that the inter-
atomic potential is −C6 /r6 at long distances and using abg
and the van der Waals coefficient C6 for Cs atoms as inputs
�43,44�: rbg� +250a0. Thus the model of Massignan and
Stoof may not provide an accurate representation of the two-
body problem. For T=10 nK, the prediction for the recom-
bination length �3 at the peak of the resonance in their model
is too large by 40%, which is about four standard deviations.
In the nonuniversal region of small scattering length, the
model predicts a minimum in the three-body recombination
rate near −150a0 that was not observed in the experiment.
For positive scattering length, the model does not give a
good quantitative fit to the 200 nK data. It predicts the local
minimum to be at 240a0, which is a little larger than the
observed position 210�10�a0. At the minimum, the prediction
for �3 is less than half the measured value, which is too small
by more than ten standard deviations. At a=1228a0, their
prediction for the recombination length �3 is too large by
10%, which is about two standard deviations.

Lee, Köhler, and Julienne have calculated the three-body
recombination rate at T=0 using a coupled-channel potential
model for the relevant hyperfine spin states of 133Cs atoms
�45�. Their model had six fitting parameters: two interchan-
nel coupling parameters that were tuned to fit the position
and width of the Feshbach resonance and four parameters in
a separable interatomic potential that were tuned to fit the
background scattering length, the background effective
range, and the binding energies of the two shallowest deep
dimers �45�. They compared their zero-temperature calcula-
tions with the measurements of Grimm et al. at nonzero tem-
perature. The agreement between their calculation and the
data is not very good even at a qualitative level. Their pre-
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zero-range predictions for three values of the temperature: T=0
�solid line�, 40 �dashed line�, and 200 nK �dotted line�. The data
points are for T=200 nK from Ref. �16�.

THREE-BODY RECOMBINATION OF IDENTICAL BOSONS … PHYSICAL REVIEW A 78, 043605 �2008�

043605-15



diction for the magnetic field of the recombination resonance
in the a	0 region is 5.1 G, compared with the measured
value of 7.4 G �42�. Away from the resonance, their predic-
tions for ��3�4 are sometimes lower than the 10 nK data by
about two orders of magnitude. In the a�0 region, their
predictions for ��3�4 were below the 200 nK data by at least
one standard deviation at all points and by many standard
deviations at some of the points. Their prediction for the
position of the recombination minimum is about 130a0,
which is much smaller than the observed value 210�10�a0.

Lee, Köhler, and Julienne have criticized universal ap-
proaches to the three-body recombination as being “incom-
plete” and they claimed that these approaches “could there-
fore lead to unreliable conclusions” �45�. These criticisms
were based on misconceptions. In the case of 133Cs atoms,
the two deep dimers that are closest to the threshold have an
avoided crossing near the Feshbach resonance at −11 G. Lee,
Köhler, and Julienne pointed out that as a consequence the
probabilities Z−1�B� and Z−2�B� for these deep dimers to con-
sist of atoms in the lowest hyperfine spin state change dra-
matically with the magnetic field. They concluded incor-
rectly that Kdeep�0� must depend on B not only through the
scattering length a�B� but also through the strong B depen-
dence of the properties of the deep dimers. It should be noted
that no quantitative evidence for this conclusion was given in
Ref. �45�. Their conclusion would certainly be true of the
exclusive recombination rates into each of the deep dimers.
What the authors of Ref. �45� did not appreciate is that the
inclusive recombination rate summed over all deep dimers is
much less sensitive to details involving short distances, such
as level crossings between the deep dimers. The inclusive
effects of the deep dimers can be taken into account through
the three-body parameter �*. Universal approaches are cer-
tainly incomplete in the sense that, although they can de-
scribe the inclusive recombination rate into deep dimers and
the exclusive recombination rate into the shallow dimer in
the case a�0, they cannot describe the exclusive recombi-
nation rates into individual deep dimers. However, contrary
to the suggestion of Ref. �45�, there is no reason to expect
universal approaches to lead to unreliable conclusions for
those recombination rates that they can describe.

In Ref. �45�, Lee, Köhler, and Julienne referred to univer-
sal approaches to the three-body problem as “universal fit-
ting procedures.” Assuming that the scattering length is
known, the zero-range results require fitting the three-body
parameters �* and �*. This approximation is very economi-
cal in the number of fitting parameters. One price that is paid
for this economy is that the three-body parameters depend
sensitively on the details of the two-body potential. They
may be so sensitive that the only practical way to determine
them is through experimental measurements of three-body
observables. The model used in Ref. �45� has six parameters
that were used to fit results from a more accurate represen-
tation of the two-body problem �46�. Three of the parameters
are sufficient to reproduce the scattering length a�B� as a
function of the magnetic field. The other three were used to
fit the background effective range and the binding energies of
the two shallowest deep dimers. The authors expected this to
be sufficient to calculate the three-body recombination rate
accurately. The large errors in their predictions for the posi-

tions of the recombination resonance for a	0 and the re-
combination minimum for a�0 show that this is not the
case. They imply that their model does not correctly predict
the physical values of �* for these two universal regions.
One way to proceed would be to add more and more param-
eters to the interatomic potential and use them to fit addi-
tional two-body observables. However, �* and �* might be
too sensitive to the details of interactions at short distances to
make this approach practical. An alternative that is motivated
by the universal approach is to add two parameters to the
interatomic potential and use them to tune appropriate three-
body observables in the universal region to their measured
values, thus tuning �* and �* close to their physical values.

In Refs. �22–24�, the three-body recombination rate for
the case a�0 has been calculated using simplifying assump-
tions to neglect some of the universal scaling functions. The
starting point in Ref. �22� was an approximation in which
only the first term in the expression for K�0��E� in Eq. �14�,
which corresponds to the three-body channel labeled by n
=3, was retained. Inserting the zero-range expression for the
S-matrix element SAD,AAA

�J=0,3� �E� in Eq. �19b�, this approxima-
tion becomes

K�0��E� �
144�3�2

x4 
s23�x� +
s21�x�s13�x�e2i�

*0

1 − s11�x�e2i�
*0

2�a4

m
.

�57�

This approximation could have been avoided by using Eq.
�22� for K�0��E� as a starting point instead. The first simpli-
fying assumption of Ref. �22� was to neglect s11�x� in the
denominator. According to the analytic result in Eq. �34a�,
this function is very small at the threshold: �s11�0���0.002.
The assumption of Ref. �22� was that �s11�x�� remains small
for larger values of x. This assumption has now been verified
by our explicit calculation of s11�x�, which shows that
�s11�x� � 	0.035 for x	10. With this simplifying assumption,
the expression for the recombination rate in Eq. �57� can be
reduced to

K�0��E� �
144�3�2

x4 �s23�x�e−i�
*0 + s21�x�s13�x�ei�

*0�2
�a4

m
.

�58�

The amplitude inside the absolute value sign can be ex-
pressed as a linear combination of cos �*0 and sin �*0 with

coefficients that are complex functions of x. The coefficient
of sin �*0 can be made real valued by multiplying the ampli-

tude by an x-dependent phase that does not affect the rate.
Thus the approximation in Eq. �58� depends on three inde-
pendent real-valued scaling functions. The second simplify-
ing assumption of Ref. �22� was that the coefficients of
cos �*0 and sin �*0 were relatively real. This assumption was

motivated by the existence of a deep minimum in K�0��E� at
E=2.1 mK in the three-body recombination rate for 4He at-
oms calculated in Ref. �38�. This behavior can be most easily
understood if the square of the complex amplitude in Eq.
�58� can be approximated by the square of a real amplitude
that vanishes at E=2.1 mK. Given the second simplifying
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assumption, the approximation in Eq. �58� depends on only
two independent scaling functions. In Ref. �22�, these two
scaling functions were constrained by the requirement that
they reproduce the result of Ref. �38� for K�0��E� for 4He
atoms interacting through the HFD-B3-FCI1 potential, which
corresponds to a=1.15a*0. By assuming the absence of a

near cancellation between the two scaling functions for a
=1.15a*0, they obtained predictions for the recombination

rate with surprisingly narrow error bands in the region of a
near a*0. In Ref. �23�, Shepard reduced the error bands to a

line by using K�0��E� for 4He atoms interacting through a
second potential to determine the two scaling functions sepa-
rately. In Ref. �24�, Platter and Shepard removed the second
simplifying assumption of Ref. �22� by using K�0��E� for four
different 4He potentials to determine the three independent
real-valued scaling functions in Eq. �58�. Their approxima-
tion to the zero-range result for K�0��E� is accurate to better
than 5%.

In Refs. �22,24�, the universal scaling functions that were
extracted from calculations of three-body recombination for
4He atoms were applied to 133Cs atoms with a�0. The ef-
fects of deep dimers on the three-body recombination rate
into the shallow dimer were obtained by making the substi-
tution in Eq. �48� for ln a*0 in the expression for K�0��E� in

Eq. �58�. Since their approach was unable to determine the
function s12�x� that appears in Eq. �53�, they approximated
the three-body recombination rate Kdeep�E� into the deep
dimer by its value at E=0, which is given in Eq. �55b�. In
Ref. �22�, the error bands associated with undetermined uni-
versal scaling functions were small for a	300a0 but they
widened rapidly as a increased, so they were unable to obtain
a quantitative fit to the data of Grimm and co-workers. In
Ref. �24�, the authors obtained a reasonably good fit to the
data for a�200a0 with values of �* in the range from 0 to
0.01, although their results tended to lie above the highest
data point at 1228a0. Our definitive zero-range results give a
significantly better fit. There is a qualitative difference in the
dependence on �* between our definitive zero-range results
and the approximation in Ref. �24�. As �* increases, the
definitive zero-range prediction in the region a�600a0 de-
creases as shown in Fig. 8, while the approximation in Ref.
�24� increases. The difference comes primarily from the ap-
proximation of Kdeep�E� by its threshold value in Ref. �24�.
As illustrated in Fig. 7, this is a good approximation for E
	0.1ED, but Kdeep�E� decreases rapidly with E for energies
above ED. The calculation of the energy dependence of
Kdeep�E� was essential for obtaining the excellent fit to the
recombination length of 133Cs atoms with �*=0.2 that is
illustrated in Fig. 8 and the left panel of Fig. 9.

IX. SUMMARY AND OUTLOOK

In this work, we have calculated the universal scaling
functions that determine the three-body recombination rate
for identical bosons as a function of the collision energy in

the zero-range limit.4 We used the STM equation to calculate
the phase shifts for elastic atom-dimer scattering above the
breakup threshold for angular momenta up to J=6. For J
�1, the contribution K�J��E� to the three-body recombination
rate into the shallow dimer is expressed in terms of a real-
valued universal scaling function fJ�x� in Eq. �17�. We deter-
mined fJ�x� for each J�1 by fitting the imaginary part of the
atom-dimer phase shift. For J=0, the contribution K�0��E� to
the three-body recombination rate into the shallow dimer is
expressed in terms of three complex-valued universal scaling
functions s11�x�, s12�x�, and s22�x� in Eq. �22�. We determined
these scaling functions by fitting the S-wave atom-dimer
phase shift to Efimov’s radial law. The parameters in the
zero-range predictions for the three-body recombination are
the scattering length and the three-body parameter a*0. We

compared our results to previously published calculations of
the three-body recombination rate of 4He atoms for angular
momenta up to J=3 �38�. We used the three-body recombi-
nation rate at threshold calculated in Ref. �38� to determine
a*0 for 4He atoms. We found good quantitative agreement

for the three-body recombination rate K�J��E� as a function of
energy in the J=0, 1, and 2 channels.

Our results can also be applied to atoms with large scat-
tering length that have deep dimers. The deep dimers provide
additional three-body recombination channels and they also
have an effect on the three-body recombination into the shal-
low dimer. An additional three-body parameter �* is neces-
sary to take into account the inclusive effects of the deep
dimers. Remarkably, the three-body recombination rate is
completely determined by the same universal scaling func-
tions that apply at �*=0. The J=0 contribution K�0��E� to the
three-body recombination rate into the shallow dimer is ex-
pressed in terms of the three complex-valued universal scal-
ing functions s11�x�, s12�x�, and s22�x� in Eq. �52�. The J
�1 contributions K�J��E� are unaffected by the deep dimers
and are still given by Eq. �17�. The inclusive rate Kdeep�E� for
three-body recombination rate into deep dimers is expressed
in terms of the universal scaling functions s11�x� and s12�x� in
Eq. �53�. We compared our results to measurements by
Grimm and co-workers of the three-body recombination rate
for 133Cs atoms with a large positive scattering length at a
temperature of 200 nK. We set the three-body parameter a*0

equal to the position of the recombination minimum mea-
sured by Grimm and co-workers �42�: a*0=210a0. We then

used the three-body parameter �* to fit the dependence of the
recombination length on a. We find that �*=0.2 gives excel-
lent agreement with the experimental results for T=200 nK
in the region a�200a0. We also found that lowering the
temperature would have an observable effect only for
a�500a0.

Our excellent fit to the T=200 nK data is particular re-
markable considering that it was obtained by using only the
scattering length and two adjustable three-body parameters.
The accuracy of this fit presents a challenge to approaches
that use more fitting parameters but tune them to fit two-

4Numerical results for the universal scaling functions can be ob-
tained by contacting any of the authors.
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body observables in addition to the scattering length, as in
Ref. �45�. The three-body parameters �* and �* associated
with a given universal region are complicated functions of
the two-body parameters. The three-body parameters �* and
�* may be too sensitive to details at short distances to be
determined accurately by fitting a small number of two-body
observables. It is possible that the only practical way to de-
termine them accurately is by tuning them to fit measure-
ments of three-body observables.

Our zero-range results for the three-body recombination
rate have a fractional theoretical uncertainty rs / �a�, where rs
is the effective range. Higher accuracy could be obtained by
calculating range corrections. It is known how to account
systematically for these corrections using an effective field
theory for short-range interactions �11,13�. A first calculation
of the range corrections to the recombination rate into the
shallow dimer at threshold and an application to 4He atoms
has already been carried out �41�. In the future, the range
corrections should be calculated for the recombination rate as
a function of the energy. The range corrections to the recom-
bination rate into deep dimers should also be calculated. The
range corrections are particularly important near a recombi-
nation minimum. In particular, they can shift the position of
the minimum �41�. In the case of Cs atoms, the importance
of range corrections near the recombination minimum is fur-
ther increased by the fact that the minimum is at a scattering
length 210a0 that is not large compared to the effective
range.

Our calculations and those in Refs. �18,19� have been
carried out in the Boltzmann region of temperature and den-
sity. It would be useful to have zero-range predictions for
lower temperatures where the Bose-Einstein distribution has
to be used. In the Boltzmann region, we need only the hy-

perangular average K�E� of the three-body recombination
rate, which can be determined from the atom-dimer phase
shifts using unitarity. In the Bose-Einstein region, it is nec-
essary to calculate the three-body recombination rate di-
rectly. This requires the calculation of scattering rates with
three atoms in the initial state. The relevant S-matrix ele-
ments are expressed in terms of universal scaling functions
s11�x�, s12�x�, s1n�x�, and s2n�x� in Eq. �19b�. The scaling
functions s1n�x� and s2n�x� would have to be calculated for
those three-atom states labeled by n=3,4 , . . . that are most
important near the three-atom threshold.

It is also important to calculate the definitive zero-range
predictions for the three-body recombination rate for nega-
tive scattering length. In this case, recombination can occur
only into deep dimers. Previous calculations based on the
universal approach have used the adiabatic hyperspherical
approximation �20� or a resonance approximation �21�. The
relevant universal scaling functions can be determined by
calculating three-atom elastic scattering rates near the three-
atom threshold.
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